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A SET OF POLYNOMIALS ASSOCIATED WITH
THE HIGHER DERIVATIVES OF y = 2*

H.W. GOULD

ABSTRACT. The expansion

n

) emenpar =3 (-1 () (L4 loga)"FFi(a)

k=0

is proved, together with the inverse expansion

(2) Fu(z) = Z( 1) ( ) (1 +logz)"~kz==Dkg®,

n > 2, with Fy(z) = 1 and Fi(z) = 0 shows that Gr(z)

" Fp(z) is a polynomial in z. The fact that G (z)
P 1 _

Zogjgn/z AZ2? with AT = (n — j)A? + nA] 13 >1,

where A7 = 0 for j < 0 or for j > n/2, shows that Gn(x) is of

exact degree [n/2] in z. Finally, in terms of Stirling numbers
of the first kind

n k j )
(3) Fn(x)—;(l)k<2) > () ZO e

j=0 i=

The recurrence F,(z) = —DgFr_1(z) + ((n — 1)/z)Fn—2(z )_

Another curious property is that Zlgkgn AZHC =n",n>1.
In terms of Comtet-Lehmer numbers,

W E = 3 o 3 0k ()l nt )

0<j<n/2 k=n—j

An elementary calculus problems asks to find D, z®. The answer is
easily found by logarithmic differentiation and is z*(1 4 logz). The
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higher derivatives are quite involved and are the motivation of this
paper. My study of these polynomials began in 1955 [2, Vol. V, pp.
250-253], and the results presented here were obtained at various times
between 1955 and 1975.

Let us examine a few higher derivatives. We find

1
7 °D22x% = — 4+ (14 logx)?;
x
1 3
r7*D3x" = — += (1 +logz) + (14 logx)?;
—z T 2 4
x *Diz® = (—3 —) - P(l—i—logm)
+ = (1 logz)? + (1 + log z)*;
o 6 10 I

10
+;(1+logaz) + (1 +logx)°.

It is then easy to conjecture that there exists a sequence of rational
functions {F,(z)}, n =0,1,2,..., such that

n

(1) =z °Dlz® = Z(—l)k <Z> (1 +log )" *Fy(z), n > 0.

k=0

In fact, (1) is easily proved by mathematical induction based on the
recurrence relation

n—1

2) Fo(2) = —DyFp_1(z) + Fo os(z), n>2

with Fy(z) =1 and Fi(z) =0.

The recurrence relation (2) recursively defines F,,(z) to be a rational
function. Moreover, if we define G,(z) = z"F,(z), then G,(z) is a
polynomial in z. This is proved by translating the recurrence relation
(2) over into the corresponding form:

(3) Gri1(z) = (n—2D,)Gr(z) + neGp_1(z), forn >1,
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with Go(z) =1, G1(z) = 0.

Table 1 gives some values of Gy, (z). Examination of these yields the
conjecture that G, (z) is of exact degree [n/2]. To prove this, let

(4) Gu(z)= Y Ajal.
0<j<n/2

This may be proved by induction using (3) and the recurrence

(5) AT = (n— j)A} + AT} i>1

j—1

with A7 =0 for j <0 or for j > n/2. Indeed, assuming (4) we have

(n —2Dy)Gp(z) = (n— xDy) Z A?wj

0<j<n/2
o = Y g sape
0<j<n/2
= 2. (n—jAg
0<j<n/2
and
nxGn_1(x) = Z nA;-l_lachrl

0<j<(n—1)/2

n—1_3j
= E nAjflx .

1<j<(nt1)/2

(7)

Adding (6) and (7), then in virtue of (3) we have

Gny1(z) = Z {(n — A} +ndj" Yo
0<j<(n+1)/2
S
0<j<(nt1)/2

provided we assume recurrence (5).
Examination of Table 1 yields another conjecture:

(8) ZAZH“ =n", n>1.
k=1
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TABLE 1.

Gn(@) = 2" Fo(7) = Yo jcns2 Aja?

8 8 O©

2x + 322

6x + 1022

24z + 40z2 + 1523

120z + 19622 + 10523

720z + 114822 + 70023 + 10524

5040z + 7848z + 5068z + 1260z*

40320z + 6141622 4 40740z + 12600z* + 945z°

© 00 O Ut AW~ oS3

—
o

Examples.

Al=1; Al+A;=1+3=4=2%
AT+ A+ A5 =24+10+15=27=3°
A+ AS + AT+ A% = 6 + 40 + 105 + 105 = 256 = 4*.

This interesting fact may be proved by introducing the change of
notation

(9) T(n, k) = APtk

Then relation (8) becomes
(10) Y T(n,k)=n", n>1
k=0

and recurrence (5) becomes
(11) T(n+1,k) =nT(n,k)+ (n+ k)T (n,k—1),

with 7(0,0) = 1 and T'(0, k) = T'(n,0) for n,k > 1. The proof of (10)
(with notation S(n, k) for T'(n,k)) was the subject of a problem posed
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by Peter Shor [7]. Two proofs were given, by Shor and by Otto Ruehr.
There was no indication there that the array had anything to do with
the derivatives of z*.

A somewhat different perspective on the higher derivatives of x®
has been given by Comtet [1, pp. 139-140] in 1974 who obtained the
expansion

n n—j
(12) x_zD:mI:ZIng ()an jyn—1—j)z=*, n >0,
=0

=0

where the array of integers {b(n, k)} is defined by the expansion

o0

(13) Zb(n,k)i_ ;, (1+2)log(1 + )}

n=1

As Lehmer notes [3, p. 469] Comtet gave the relation

n

(14) b0) = 3 (1) 4s(0,)

i=k

where the s(n, j) are the Stirling numbers of the first kind in Riordan’s
notation [4, 5]:

m(m—l)---(w—n+1):n!<z)
:Zn:s(n,j)mj, n > 0.

=0

(15)

Lehmer works with the equivalent generating function expansion

’(L

(16) {log(1 + z) i g k> 0.

Lehmer develops many interesting relations involving b(n, k), its inverse
B(n, k), Stirling numbers of the first kind s(n, k), and their inverse the
Stirling numbers of second kind S(n, k).
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It is possible to translate (1) into (12) and conversely; however, the
compelling reason for my having worked with expansion (1) is that it
lends itself more easily to finding D?z%|,—; which can be found by
direct substitution of x = 1 in (1) but would have to be found by
taking limits in Comtet’s expansion (12). In the present terminology,
of course,

(17) Dra|  =3"(-1)F <Z> Fiu(1), n>0,

so that we have only to evaluate F,(1) to find these higher derivatives.
Table 2 gives some values for F,, (1) as well as the derivatives.

TABLE 2.
n DIa®| =1 F,(1)
0 1 1
1 1 0
2 2 1
3 3 1
4 8 )
5 10 16
6 54 79
7 -42 421
8 944 2673
9 -5112 19216
10 47160 156021

It is interesting to note that the derivative values are identical to the
numbers o, which are found in a different context by Lehmer [3, pp.
467-468], who obtains o, as the coefficient of ™ /n! in the expansion of
(14+)'~% in powers of x. He gives a table of values for n = 0,1,... ,14
which agree with the values we give in Table 2.
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Lehmer defines o, = 0,(1) with ¢,,(t) defined by

(18) on(t) = Zn:b(n, K", n>0,
k=0

where b(n, k) is the array defined by Comtet in expansion (13) above.

We now return to the further study of expansion (1). First we find
that the expansion inverts to give

(19)  Fa(z) = n (=1)*(") (@ +logz)"*z~"Dkz®,  n>o0.
,; <k> &

The proof follows from the well-known (e.g., see Riordan [4]) binomial
series inversion pair

A, = zn:(—l)k<z>3k, n >0,

k=0

if and only if
Bn - E —1 >Ak, n > 0,
k:—O( ) (k

by setting

and
B, =2 *Dya(1+logz) ".
But expansion (19) is not an explicit formula for F,(z) unless we

already know the higher derivatives of z*.

We come to our first major result.

Theorem. The rational functions F,(z) are given explicitly by

n n k 1
20 e = k:o(il)k (k:) =0 (J)
; (i%!—kj)!s(j,i)xi_k, n > 0.
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Proof. Apply the binomial theorem to (1 + logz)™ % in (1), and we
find

21 —prgt — S (logz)' S (=1)"F (n) F_(2).
(21) ™" Djjw ;(ng) kz::i( ) i) k()
On the other hand, we have

D7z = D7 exp(zlog z)

x

n k! k—n+j ko (logz)* . )
<]> (k_n‘i‘])'x xJ Z il S(],k Z)

=0

so that
(22) Dy =) (lof!x) > (n> (k+!+j)!xk_"s(j, k—i).

Now, however,

(23) z~ % =exp(—zlogz) = Z(—l)iwi (log »T)l’

i=0

7!

so that, multiplying (22) and (23) together as formal power series in
the variable z = log z and simplifying, we get

(24) wsz;sz — Z (log'ac) (7l)sfixsfi
=0 ¥ Do
a n k' k—n . .
) 2" "s(j, k-1
;jzo <J>(k—n+1)! ( )

In this the coefficient of (logz)? is

- k! )
) >3 () b

k=0 j=0
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But in (21) the coefficient of (logz)° is
o) S (M) Ea @) = S0 (M) Fate).
kZ:O <k> Ha) =D <k) *

Equating (25) and (26), we have then

n

k=0 k=0 j=0

n oo n k' .
= . - nS(Jak)
;,;)(J)(k—TH"J)!

n J

n> k' k— .

S ] () PN Y
j_Ok_0<J (k—n+j)!

since s(j, k) = 0 whenever k > j. Therefore, we have proved that

n

(27) (-1 <Z) Fi(z) = Zn: i <7;> ﬁw’“w, k),

k=0 §=0 k=

o

0.

v

By appealing to the binomial inversion pair we used earlier we find
- 7\ <=~ (& 7!
F,(z) = —1)* ) ———— a7 Fs(5,4), n >0,
@=L () EE ()i e

which proves formula (20). O

In the language of the calculus of finite differences,

@) Y[tk = AL nzo,

k=0

where A, ,, f(z) = (f(2+h)— f(2))/h, so that the relation (27) is (—1)"
times the nth difference of F (z) with respect to z and increment h = 1,
evaluated at z = 0.
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To see how F,(z) is related to Comtet’s array {b(n, k)}, we find the
coefficient of (logz)? in (12) above and recall (26). We have proved
then that

(29) Z(—l)k <Z> Fy(z) = Z b(n,n — k)z=".

k=0 k=0

Again by simple binomial inversion we find the simple and elegant
formula

"1 . (n .

@ R@-Y 53 (F)usk-i. nzo

k=0 k=j

However, there are some zero terms in this expansion. Indeed, recall
that we showed that G, (z) = 2" F,(z) is a polynomial of exact degree
[n/2] in z. It follows easily then that

(31) Gu(z)= > o ) (—1)k<Z)b(k,k—n+j).

0<j<n/2  k=n—j

Another way of saying this is that

(32) Ar= 3" (-1 <Z> b(k, k —n + j).

k=n—j

Since b(n, k) is given in terms of s(n, k) by (14), then (31) says that
(33)

= ¥ @ ¥ co(l) X (o L, )

0<j<n/2 k=n—j i=k—n+j

Comparing (33) with our (20) we see that each requires a triple
iterated summation of Stirling numbers of the first kind to express the
form of F,,(z) explicitly. I have not been able to reduce the number of
summations needed. My first result years ago required five summations,
but then I found (20) using three. I am reminded of the 20 years spent
by Ludwig Schlafli [6] in his search for a way to represent the Stirling
numbers of the first kind using as few summations as possible. He
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went from five to two, but never realized that Schlomilch and others
had already done this in a slightly different form. The Comtet numbers
and their inverse counterparts, as Lehmer shows, have many interesting
properties and so, by using them, we are able in formula (31) to require
only two summations involving them instead of the three we need in
formula (20) when we use Stirling numbers. Lehmer’s paper is also
valuable in giving an extensive table of the b(n, k) and the inverse set
B(n, k) which he defines and studies.
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