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LP MATRIX COEFFICIENTS FOR
NILPOTENT LIE GROUPS

LAWRENCE CORWIN AND CALVIN C. MOORE

ABSTRACT. We show that if G is a connected, simply
connected nilpotent Lie group, then there is a fixed number
p such that if 7 is any irreducible unitary representation of
G, then some (equivalently, a dense set of) matrix coefficients
are LP functions on G mod the kernel of 7.

1. Introduction. In this paper we undertake a study of one aspect
of the asymptotic behavior of the matrix coefficients of irreducible uni-
tary representations of Lie groups. The behavior at infinity of these
matrix coefficients often gives important information about the struc-
ture of the irreducible representations themselves and about harmonic
analysis in general. For example, detailed asymptotic estimates on the
behavior of matrix coefficients of irreducible representations of semi-
simple groups (real and p-adic) have played a central role in the work
of Harish-Chandra, Langlands, and others. (Examples of fairly recent
results for these groups are given in [1, 3] and [11].) A related exam-
ple where the asymptotics of matrix coefficients plays a key role is the
Kunze-Stein LP convolution theorem [9]. Again, square integrable rep-
resentations, or discrete series representations, which are characterized
by the asymptotic behavior of their matrix coefficients (namely square
integrability, see below) are a very important class of representations,
since they are exactly the irreducible representations that appear as
summands in the regular representation. (For a proof of this fact,
see Section 14 of [5].) These representations are also the fundamental
building blocks for all unitary representations of semi-simple groups,
and they can play a similar role in other Lie groups as well; see [10].

For more general groups, it was proved in [8] that the matrix coef-
ficients of any irreducible unitary representation 7 of a real algebraic
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group G vanish at co, mod the projective kernel P, of w. In fact, it
was also shown in [8] that some tensor power of 7 is a summand of the
regular representation of G; this establishes a connection with square
integrability. For simply connected nilpotent Lie groups (a special case
of real algebraic groups), a simple characterization of when square in-
tegrable representations exist was proved in [12]; many other useful
properties of these representations are also proved there. In [7], Howe
studied some properties of matrix coeflicients for general irreducible
representations of matrix coefficients of nilpotent Lie groups. Thus the
current study, which concerns pth power integrability of matrix coef-
ficients for nilpotent Lie groups, is a continuation of themes in [7, 9]
and [12].

We now give the basic definitions and results for this paper. Let G
be a locally compact group and 7 an irreducible unitary representation
of G on a Hilbert space H. We say that 7 has LP matrix coefficients,
1 < p < o0, if there exist nonzero vectors v, w € H such that the matrix
coefficients f, ., : G — C, defined by

fow(@) = (n(2),v,0)

is in LP(G). (The case p = oo, is of course, uninteresting.) Since
fv,w € Lp(g) A f’lr(y)v,w € LP(G) e fv,rr(y)w € LP(G) for any y € Gv it
is easy to see that if 7 has LP matrix coefficients, then there are dense
subspaces V, W of H such that f, , € LP(G) for allv € V and w € W.
It is also obvious that if m has LP matrix coefficients, then it has LY
matrix coefficients for all ¢ > p.

If z € G is central, then 7(z) is scalar and |fy, ., (22)] = |fo,w ()]
for all x € G. Therefore m cannot have LP matrix coeflicients if
its center is noncompact. More generally, 7 cannot have LP matrix
coefficients if its projective kernel P, = {z € G : w(z) is scalar} is
noncompact. We therefore extend our definition in the customary way:
we say that m has LP matrix coefficients mod the center Z of G if
for some nonzero v,w € h, the function |f, . (z)|, which is constant
on Z-cosets of G, is in LP(G/Z), and we define 7 to have LP matrix
coefficients mod the projective kernel P, (or modKer ) analogously.
If P,/Ker is compact (as it will be in the cases considered in this
paper), then having LP coefficients mod P, and having L? coefficients
modKer 7 are equivalent.
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In this paper we consider real nilpotent Lie groups. Our main result
is:

Theorem 1.1. For any connected, simply connected real nilpotent
Lie group G, there is a number p < oo such that for oll m € G, 7 has
LP matriz coefficients modKer 7.

Our proof also gives a value for p (depending only on dim G), but in
general it is not the best possible.

We can also add one result about square integrable matrix coefficients
for nilpotent Lie groups.

Theorem 1.2. Let G be a connected, simply connected real nilpotent
Lie group, and suppose that m € G has square integrable matric
coefficients modKerw. Then for any v,w € HZ® (the space of C*
vectors for ), fuw is a function of Schwartz class on S(G/Kerm) on
G/Kerm. In fact, (v,w) — fy s continuous from HX x HZ° (with
the usual C* topology to S(G/Ker)).

Theorem 1.2 has an obvious analog in the p-adic case: if G is an
algebraic nilpotent group over a p-adic field, if = € G has square
integrable matrix coefficients modKer 7, and if v,w € H, are smooth
vectors, then f, ,, has compact support modKerm. This result is a
theorem of van Dijk [4]. van Dijk also states in [4] that in the real
case, he can show the existence of one matrix coefficient in S(G/Ker ).
Roger Howe pointed out to us that one can then get the first part of
Theorem 1.2 above by using Theorem 3.4 of [7]. Since the details of
van Dijk’s proof are not published, however, we have included a proof.

There is every reason to suppose that the theorems given here remain
valid for more general classes of groups. For example, it is likely that
if G is any connected algebraic solvable group over a local field of
characteristic 0 and 7 € G , then there is a p such that 7 has LP matrix
coefficients mod P,.. (The analogous result for nilpotent groups is our
Theorem 3.1.) Quite possibly one can arrange for p to depend only
on G when G is algebraic and solvable; this would be the theorem
corresponding to our Theorem 1.1.
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The techniques used here to prove Theorem 1.1 are brute force. For
the idea behind the proof, consider the following simple example: g is
the Lie algebra spanned by X,Y3,Y5,Y; and Z, with [X,Y;] = Y4,
j=2,3,and [X,Y1] = Z, and G is the corresponding Lie group. Write
a typical element of G as (z,y, z) = (2, y1,Y2,¥3, 2) = exp(y1Y1 +y2Ya+
y3Y3 + 2Z) exp X. Then G has an irreducible representation 7 realized
on L?(R) by

m(x,y,2)9(t) = p(a + t)e T,

where . )
t t
Py t) =5 + 2 4yt
3 2
(Indeed, for any irreducible unitary representation of G in general
position, we can recoordinatize G so that 7 is of this form.) Thus,

we look at f = fy 4, where

f(z,y) Z/R¢(m+t)meip(y,t) i

Suppose that ¢ has compact support. Then f vanishes for large z, and
we need only examine f as y — oo. Consider P;(y,t) = y3t® + yat + y1.
If we restrict y to a region where P; has no roots (as a polynomial in %)
near supp ¢, then integrating by parts lets us estimate f. If P; has roots
near supp ¢, then the method of stationary phase gives an estimate.
(Stationary phase is not quite satisfactory because its estimates are not
uniform when the roots are close together; we therefore use a somewhat
different approach.) Combining these estimates gives the theorem.

In general we can regard 7 as acting on some L?(RF) in such a way
that under a natural coordination of G ~ R"™, we have

(r(z)9)(t) = "=V g(Q(x,t), x€R", teRF,

where P and @ are polynomials. Suppose that £ = 1. If P(z,t)
and Q(z,t), regarded as polynomials in ¢ with coefficients in z, have
bounded coefficients in some set S, then one can show that S is bounded
modKer 7. Thus we may assume that the coefficients in P? + Q? go
to oo with . When @ has large coefficients, the above modification of
stationary phase gives an estimate for the matrix coefficient f. When
the coefficients of P go to oo, the simple considerations of the example
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do not generally suffice. However, we may restrict the vector ¢ € L?(R)
to have support in [—1,1], and we then show that {¢ : |[¢| < 1 and
|P(z,t)| <1} has measure that is small when the coefficients of P are
large. The proof is by induction on the degree of P (as a polynomial
in ). If the constant term dominates the others, the result is clear. If
not, OP/0t has large coefficients and is of lower degree. But if 0P/t is
large, then P(t) cannot stay small on a large interval in ¢. The details
are given in Lemma 2.1.

Finally, we need to deal with the case k > 1. Write t = (¢1,... ,t;) =
(t,t') and assume that the function ¢ has support on {¢ : |t;| < 1,
for all j}. The case k = 1 suffices to prove Theorem 1.1 if the
hypotheses apply to P(z,t1,t') as a polynomial in #;, uniformly in
{t" : |t;| < 1,2 < j < k}. We show that this is true after an appropriate
change of variables. The (somewhat gory) result is Lemma 2.3.

These lemmas, together with fairly weak assumptions on the poly-
nomials P and @ suffice to show that = has LP matrix coefficients for
some p. To get a uniform p for all 7 € G, we need further structural
information on P and . This is done in Proposition 3.2.

For each 7 € é, the set of p such that m has L? matrix coeflicients is,
as noted earlier, a half-infinite interval. In those cases where we have
calculated it explicitly, the interval is open. It would be interesting to
know if this is true in general. The simplest groups to consider (aside
from those with square integrable representations) are the groups G,
with Lie algebras g, spanned by X,Yi,...,Y,, n > 2, and brackets
[X,Y;] =Y;_1,2<j<n,[X,Y1] = Z. When n = 2 one can explicitly
compute that there are matrix coefficients in LA for any ¢ > 0.
For n = 3 we can show that there are matrix coefficients in LP*™* for
p=5++/7 and any € > 0. We do not know if this is best possible, and
the calculation does not give a hint of what an appropriate conjecture
would be.

2. In this section we prove some technical lemmas about polynomials.
We begin by fixing some notation.

We generally work with real-valued polynomials P(z,t), € R™ and
t € RF. Fix Euclidean norms, | |, on these and any other finite-
dimensional spaces that arise. We often regard P(z,t) as a polynomial
in t = (t1,...,t) with coeflicients in R[z]; then we write P, using
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multi-index notation, as

= Z P,(z)t

and define
I1P@)|* = palz)

In particular, we use this convention when n = 0 (so that the p,
are constants). When k = 1 we write P'(z,t) = OP/0t; for k > 1
we write ||P'(z)|| for the largest of the ||0P/0t;(x)||, 1 < j < k.
When Q(z,t) is a polynomial map to some R*, Q = (Q1,-..,Qs),
[1Q(z)|| = max{HQJ( z)||: 1 <j<s} Weuse| |» to denote the usual
sup norm on RF.

Our first lemma is simple, but quite useful. For any polynomial
f € R|z] of one variable and any K > 0, set

Ef(K)={teR: | <L[f(t)| <K},  ps(K)=meas(Es(K)).

Lemma 2.1. For each integer n > 0, there is a constant C,, such
that if f € Rlz] is a polynomial of one variable of degree n, then

s (K) < CLEM 0 (|| 7] 4+ K)/0H, v E > o,

Proof. 1t suffices to prove this for K = 1, since the general case
follows by considering f/K. We proceed by induction on n. If n =0,
then py(1) = 0 once ||f|| > 1, and we can take Cp = 2.

. k .
Assume the result for all integers < n, and let f(t) = >_;_ja;t’. If
lag] > 1+ Z;C:l laj|, then Ef(1) is empty and the lemma surely holds

for f. We may therefore assume that |ag| < 1—{—2?:1 la;|. Now assume
that ||f]| > (n+ 2)||f'||. Then

2
aj,

k
= 1

k k
Z 32 (n+2)2
j =

(Ga;) 2 (n+2)°
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or
k
ag > (n+1)? a?;
j=1
in particular,
k
2> la + e ol
ao| > 2 la;| + 1?gagxn ||
]:

Hence if |f]| > (n+2)[1f']| and Jao| < 1+, laj], then maxy< < [a;]
< 1 and [|f|| is bounded. Since p¢(1) < 2, the lemma certainly holds
for all these f if C), is sufficiently large. We may therefore assume that
A1 < (n+2)I1£]l-

We now consider Ef(1l). It is the union of at most n disjoint
closed intervals, since between any two such intervals f must have an
extremum. Fix a number L > 1 in a manner to be further specified
below. Let [a,b] be a typical interval in E(1); divide it into maximal
subintervals where |f'(t)] > L and where |f'(t)] < L. the intervals
where |f'(¢)] > L have length < 2/L, by the Mean Value theorem;
there are at most (n — 1) intervals where |f'(t)] < L and their total
length is < C,, _(LY™(||f'||+L)~'/™ < C,, 1 LY™(||f'||+1)~/". Thus,
there are at most n intervals in [a,b] where |f'(t)] > L. So the total
length of [a,b] is at most C,,_1 LY/™(||f'|| 4+ 1)~/ + 2nL~', and

s (1) < G LI + 1)V 4 20701

Set L = (||f|| + 1)'/™*! to complete the inductive step. O

We next prove a lemma which will serve as a substitute for stationary
phase estimates in what follows.

Lemma 2.2. For every integer v > 1, there is a number K, with the
following property: Let f(z,t), x € R" andt € R be a C' function, let
P(z,t) be a polynomial of degree < r, and let m be a number such that

(a) for all z, f(x,t) has support (as a function of t) in |t| < 1;

(b) for all x, the function (f/P')' (derivatives with respect to t),
which is defined except at a finite number of points, changes sign at
most m times on R.
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(c) P(z,0)=0 for all z.
Then

1) | [ 0 f(at) ] < (ot v+ DK 1+ PG
R

Proof. Let P'(z,t) = E;;é p;(z)t’. Then ||P'|| and ||P|| are of the
same order of magnitude, from (c). So it suffices to prove (2.1) with
P’ for P on the right side of (2.1).

Assume that P’(z,t) has h zeros within a fixed distance d of [—1, 1]
and (r—h—1) zeros elsewhere (we count multiplicity and fix ). Choose
e > 0in a way to be described below, and write the integral as [, + [ ,
where I, I> are unions of intervals, I; has total length < 2he, and all
zeros of P'(z,t) are at least ¢ away from I5. Then

(2.2) /| S Wl 20 < 27

Divide I into intervals on which (f/P’)" never changes sign. Since Iy
is composed of at most r intervals, there are at most (m + r + 2) such
intervals, and

’ iP(z,t) etPlet) b
/ e f(w,t) dt = mf(x,tﬂa
b

_/ (f/P’)/(w,t)eiP(z’t) dt,

/ab "D (f/P) (z,t) dt‘ < /ab |(f/P") (z,t)| dt

< |(f/P) (@, b)| + [(f/P)(x,a)]
< [ lloo (1P (y a)|7F + |P" (2, 1) 7).

From this and (2.2) we get
(2.3)

/ eip(m’t)f(m,t) dt‘ < fl|oo (2re + 4(m + 7 + 2)) max | P’ (z,a)| ™,
R a
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where a ranges over the end points of the intervals in L.

Let a1,... ,a,_1 be the roots of P'(z,t); of course, the o; depend on
x. Suppose that ay,... ,ap are within distance d of [—1,1]. Then for
a constant Cy depending on d

r—1 r—1
[P'(z,0)] = pr—1(2)| [ ] la = a;] = Colpr—a ()" T layl,
j=1 j=h+1

where Cy is such that [[_p,;la — oj| > Co[[j_pyy ley| for all
€ [-1,1]. Furthermore,

r—1

IT les] > Clon(@)/prr (@),
j=h+1
from the expression of polynomials as symmetric functions of their
roots. For the same reason, |py(z)| is of the same order of magnitude
as ||P'(z)|| (and hence as ||P(x)||). Therefore,
|P'(z,0)] > Cilpn(2)[e" > Ca||P(x)]|e".

Combined with (2.2), this gives

‘ [ e s dt‘ < [1Flloo (2re + 4(m + 1+ 2G| ()| e ).
For ¢ = [|P'(z)||~ Y1) we get
@24) | [ =0 fa )] <1 lltim 4+ 1Call PO

This implies the lemma, since h < r 4+ 1, and since all the constants
introduced depend only on r, and since the integral is clearly bounded
by 2||f||cc when ||P(x)|| is small. O

The problem we face in using these lemmas is that they apply to
functions defined on R, while we will need to work with functions on
RF. The purpose of the next lemma is to reduce the general case to R.
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Lemma 2.3. Let r and s be integers greater than 0. There is a
constant C' = C(r, s) with the following property: For every polynomial

=Y aat® t=(ts,... ts),

lal <7

there is a matrix A such that

(a) all coordinate entries of A and A~ are bounded in absolute value
by 2s;

(b) under the change of variables uw = At, u = (u1,... ,us) = (u1,u’),
u' € R*~Y, we have

P(A ') = Q(uy,u Z ar(u)ub,

and for some k, |qi(u')| > C-maxao |aa| whenever u = (u1,u') = A(t)
and |t|eo < 1.

Proof. We may assume that max, |aqa| = |@q,| = 1. Fix a number
K > 1 to be determined below, and call the multi-index « special if
lag| < K1*1=18lja,| for all B with |B] > |a|. Choose a special a with
|| minimal with |a,| maximal among such a. Then |a| > |ap| and
one can see that |a,| > Kl®°/=lel > K=" Suppose that |a| = k. Write
Py(t) = Z|ﬂ|=k agt?, and let @ = (v, ... , ;). By perhaps permuting
the variables, we may assume that a; > as > -+ > a,. Write 8 ~ « if
B = (P1,...,0s) with || = |a| and B; = «; for j # 1, s; of course S is
then determine by 3; (or ;).

Set m = 3r%, and let [ run through the integers < m/3 in absolute
value. Consider

D7 agtt o £ (b + Uty fm)™
Bra

The coefficient of ¢{*7** in this expression is

> api/m),
j=0
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where 3(j) is determined by B(j)s = j, 8(j) ® «. From Lemma 2.1
the set S of points y such that |y| < 1/3 and | Y77, agH¥’| < Klaql
is the disjoint union of at most (r + 1) intervals and has measure
< OV (1 4 g)~/ 4D where C' is a constant depending only
on r. If one chooses k small enough (in a manner depending only on
r), this set has measure < 1/(3r +1). Thus, each interval in .S has < r
points of the form I/m, and there is some number p; = [/m such that
under the transformation A; : ¢} =t,...,t,_ | =ts_1, t, = ts — pit1,
we have

Pu(AM) =) apt”,

|B1=k
and |a2-}| > K’|aa| for B = (al +as,az,... 70557170)'
Now regard P, o A;! as a polynomial in | = t;,...,t, ;, with

coefficients in R[t.]. The terms of highest degree all have coefficients in
R, and one coefficient is > £|a,| in absolute value. We now iterate the
argument on the terms of degree k in Pyo A7". After (s—2) more steps,
we have transformations Ai,...,A,_1 such that A = A1As---Ap_4
and A1 have all coefficients < 2s in absolute value and such that if
u= A, u= (ug,u), then

Pk,(Ailu) = Z bguﬁ,
1Bl=k

where, for By = (k,0,...,0), we have |bg,| > |as|c*~!, k depending

only on r,s.

Now consider P(A 1)u. Write P(t) = > i—o Pj(t), where P; is
homogeneous of degree j. We have

P(A ') =) gi(u)ui,
=0

P](Aflu) = qu(u')uz,
=0

say. We are interested in gx(u') = >27_(qk;(u'). For k > j, the
definition of Py implies that gx j(u") = 0; ||gxk(u')|| = |bg,|. For k < j,
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we estimate ||gx ;(u)|| as follows:

> lagl > sup Y agt?|
1Bl=3 ltloo <1 1515
> sup |P;(t)]
lt/oo <1
r
= sup
|A-tu|<1

gi,j (u')u}
i=0
From Lemma 2.1 there exists Ko such that ||gx,; (u')[| < (32,5,—; |ag|) Ko-

There are fewer than s/ < s” multi-indices with |3| = j, and for all of
them we have |ag| < |aq|K*~9. Thus

llae.i ()] < s"KoK*]aq| for j > k
and |A lu|, < 1.

Now fix K > 3(k~!s)"Kjp, and make k < 1, Ko > 1. Then, for j > k,
llan,j (@)l <35 77k"|aa| when [|A™'u|e <1,

and so ||gk,;j(u')|] > k"|aa|/2 when |A 1 u|s < 1. Since all constants
depend only on r and s, the lemma is proved. O

Applying this lemma to the situations of Lemmas 2.1 and 2.2, we
immediately obtain

Corollary 2.4. For each pair (n,s) of integers with n > 0, s > 0,
there is a constant C' such that if f is a polynomial in s variables of
degree < m, then for any K > 0, {z € R® : |z| < 1,|f(z)] < K} has
Lebesgue measure < CKY/ (]| f|| + K) =Y/ (n+1),

Corollary 2.5. For all integers r,k > 1, there exists a constant
K = K, with the following property: Suppose that f(z,t), z € R"
and t € R* is a bounded C' function, that P(z,t) is a polynomial of
degree < r, and that m is an integer such that for all x,

(a) f(z,t) has support in {|t|-c < 1};
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(b) On every line through the origin in R¥, the directional derivative
(f/P') in the direction of the line (which is defined except at a finite
number of points on the line) changes sign at most m times on this
line;

P(z,0) =0.

Then

[ 0@ < Kt Dl P
RE

3. In this section we prove Theorem 1.1. It clearly suffices to consider
the case in which Ker 7 is discrete; in that case G has a one-dimensional
center. Let g be the Lie algebra of G, Z the center of G and 3 the
center of g. Choose a (vector space) cross-section h to 3 in g, and
let H = exph. If we coordinatize h = R™, then H = R"™ via the
exponential map (we shall, in fact, pick a different map shortly). Then,
by using standard Kirillov theory, we may realize 7 on some L?(RF) so
that for z € H,

(3.1) (n(2)9)(t) = 7= (¢ 0 Q) (2, 1),

where P, @ are polynomials over R and P(z,t), when regarded as a
polynomial in ¢ with coefficients in R[z], has no constant term. We are
interested in

foula) = [ (r@oi@a
= / @D o Q(, t)y(t) dt.
Rk

Let ¢,7 be real-valued C' functions with support in [t|oc < 1 and
with the property that the number of changes of sign of the function
((p 0 Q)¥/P') on any line through the origin is bounded. (One can
arrange this by letting both functions be polynomial on their support.)
Then, by Corollary 2.5,

(3.2) |fo(@)] < CL(|P" ()]l + 1),
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where C; > 0 and ; > 0 are constants (and -; depends only on
deg P). Next, Corollary 2.4 says that ||Q(z,t)|| < 1 on a set of measure
< Co(||Q()]|1)~72 for some Ca,72 > 0 (72 depending only on deg Q).
Since the integrand is 0 unless ||Q(z,t)|| < 1, we get

(3.3) |[fo,0(x)| < Cs(||Q(x)|| + 1) for some C3 > 0.

Combining (3.2) and (3.3) gives

(3.4) o0 (@) < Cu(llP()]| + Q)] +1)772,

where Cy > 0 and 3 = min(~1,72), and where the constants C3 and
C4 depend on the choice of ¢ and . Since P(z,t) has no constant
term in ¢, ||P(z)|| and ||P’(x)|| have the same order of magnitude. It
follows that if we can prove that

(35) 1P| +[|Q(@)|l +1 = K(|jz| +1)° for some k1,6 > 0,

then f, ., € LP (for any p > (y36)™1).

It is in fact possible to prove (3.5) directly, and this gives a weak form
of Theorem 1.1. We include the proof here because it may be useful in
more general situations.

Theorem 3.1. Let G be a connected, simply connected nilpotent Lie
group, and let m be an trreducible unitary representation of G. Then
there exists p < oo such that m has LP? matriz coefficients modulo its
projective kernel Pi.

Proof. As the discussion above shows, it suffices to prove (3.5). But
for this purpose, it suffices to show merely that

(3.6) I1P(@)|* +1|Q)|* +1 — 0o as || — oo

(see, e.g., [6, p. 367]. If (3.6) fails to hold, then there is a sequence
{zn} C H converging to co such that ||P(z)||> + ||Q(x)||? is bounded;
passing to a subsequence we may assume that in the polynomials

P(z,t) =Y pa(@)t*,  Qz)=) galz)t*,
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the sequences {pa(zn)},{¢a(zn)} all converge as n — oco. Then, for
any nonzero ¢y € L*(R¥), 7(x,)do converges to a nonzero vector ¢;.
Hence,

(T (@) go,80) — ll6ll* # 0,

which contradicts the fact that matrix coefficients go to zero at co (see
Theorem 6.1 of [8]). O

For given P and @, the number § is effectively computable (see
[13]). However, any estimate for p that Theorem 3.1 gives is not easily
computable from the usual data for nilpotent Lie groups. We now get
such an estimate by examining the polynomials P and Q.

Let [ be an element in the Kirillov orbit of m so that @ = m;. Let m be
a polarizing subalgebra for [, and set M = expm. We can find a weak
Malcev basis Xy, ..., X, for g through m, where Xy spans 3; that is,
for each j, g; = span{Xo,...,X;} is a subalgebra, and m = g for
some j. We can then coordinatize G by using the diffeomorphism

(to,t1y--- ytn) —— (exptoXo)(expt1 Xy) - -+ (exptnXyn)

of R"*! with G and the image of all points (0,...,0,tjo11,--- ,tn),
where m = g, gives a cross-section to M that lets one realize 7 on
L*(R*), k = n — jo. As before, 7 is given in this realization by an
expression of the form (3.1).

Proposition 3.2. We can choose the weak Malcev basis so that
the polynomials P = Qo and Q = (Q1,...,Qk) have the following
property. for every j with 1 < j < n, there is a multi-index 8 and an
integer i, 0 < i < r, such that if we write Q;(x,t) =Y., ¢&(z)t*, then
q’ﬂ(a:) =z;+ a polynomial in Tji1,...,T, without a constant term.

Assume the proposition for the moment; we show how it implies
Theorem 1.1. Suppose that the ¢’, are all of degree < m and that
R(z) = >, ¢i (x)? < K? for some K. Assume further that all
coefficients appearing in R are < A. Since some ¢!, is equal to
T,, we have |z,| < K. Another ¢’ is x, ;+ a polynomial in z,,
and the polynomial in z, certainly has absolute value < AmK™.
Hence |z, 1| < 2AmK™ for large K. Continuing inductively, we get
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|z;| < CK™ for some constant C. That is, R(z) < K2|z| < C'K™",
or R(z)Y/? > C"|z|*™". Since m < n, this gives a matrix coefficient
in LP for some p depending only on n = dim (G) — 1.

Proof of Proposition 3.2. We use induction on n = dim (G) — 1,
the result being obvious for n small. As before, we may assume that
Ker 7 is discrete. Let [ be a functional in the orbit of w. Induce =«
from 7y on a subgroup Gy of codimension 1 and let ly = I|g,. Let
Ky be the connected component of Ker g, and write Gy = Go/Ko;
similarly, write §, = go/€0, X = X mod &g, etc. Then [ is trivial
on £g, and thus gives Iy on g,. The representation 7 yields 7y on
Gy, and we can, by the inductive hypothesis, find a weak Malcev
basis Xo, X1,...,X, 1 for Gy (with X central), passing through a
polarizing subalgebra i for Iy and such that if we realize my on R*¥~!
by means of this basis, we have

(7o(Z0)do) (to) = e*FolFoto) g o R(Zy, 1),

where Ry and R = (Ry,...,Rk_1) are polynomials such that the
proposition holds for Go. Lift these elements back to pre-images
Xo,...,Xr_1 in g with X{ central, and let X, be an element of g
not in go. We look for a weak Malcev basis Y7,...,Ys of £( such that
the weak Malcev basis of g given by Xg,Y7,...,Y,, X1,..., X, gives
polynomials with the required property. Note that the preimage m of
m is polarizing for [ and that the above basis passes through m.

Write a typical element of G (mod the center exp RX)) as (z,y, w),
where the = coordinates refer to X;,...,X,_1, the y coordinates to
Yy,...,Y;, and w to X,; write the coordinates of R* as (tg,u) where
to € R*~! and v € R. We have

(ﬂ'(x7 y7 w)(izs) (tO, u) = eiQO(z7yYW7tO7U)¢ o Q(x7 y7 w’ tO’ u)7

where Q, Qp are related to R, Ry as follows: let H(x,y,u) be the result
of conjugating (z,y,0) € Go by expuX, and projecting to Go. (In
particular, H(z,y,0) = z.) Then

Qo(x,y,U),tO,u) = (F(JJ y,u )7 )7
Qj(mvyawatoau): (H( ZyY,u )7 )7 1<5<k~-1,
Qr(xayawat(hu) =u+ w,
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as a straightforward calculation shows. (In realizing the induced
representation, we deal with functions which are covariant under a left
Go-action, and 7 acts by right translation.)

The above formulas give
Qj(m,y,w,to,O):Rj(I,to) fOI‘lS‘]Skfl

This, plus the formula for @i, shows that the inductive step holds for
Z1,...,%q—1,w regardless of how we choose the Y;. The real work lies
in choosing the Y} so that the inductive step holds for the y;.

Let jo be the largest g-ideal contained in m, Jo = expjo. It is easy
to see that an element X of g is in j¢ if and only if R(exp X, to),
viewed as a vector in R*~!, is equal to #y. Set

le{XEjO:[XﬂX] Ejo}:{XEjO : [gaX] ejD}a
and inductively define
Jiv1 ={X €j1:[Xs, X] €]i}.

One checks easily that the j; are ideals in go. Let sy = dim (¢ N €q),
and note that €, is an ideal in m, so that dim (¢o Njo) = s. Let

Ys,41,-..,Ys span a complement in £y to €5 Nj; in such a way that
€0Nj1, Ys,41,--.,Y; span an ideal in g for all j. For j = s;+1,...,s,
we have

D/jaXr] ¢J0

Hence F(m, y,u) has a component in which the coefficient of w is linear
in ys. By adding multiples of the Y}, j < s, to Y5, we may assume
that no other y; appear in this component. The inductive hypothesis,
applied to this component, says that for some j, Q;(z,y,w,to,u) =

R;(H(z,y,u),to) has a term of the form
(csys + F(zy,... ,z.1))uty, F a polynomial and ¢s € R.

By scaling Y, we may make ¢; = 1. Now the proposition is true for
Ys, and the same procedure can be applied to prove the proposition for
all Y; with 7 > s;. We proceed similarly with a basis extending from
j2NEo toj1NEp, this time looking at terms in u?. If we let n = N ,j;,
we see by an easy inductive argument that we can construct a basis
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Yoi1,...,Ys (where s’ = dim (n N€yp)) from n N€g toj Ny such that
the proposition holds for this basis (attached to X;,...,X,).

We are left with the problem of finding an appropriate basis for
ng=nnNtg. (Note that Xo € n, but Xg € n, but X, ¢ Tlo.) Let

n; = {X Eng: [X,XT] € 110},
and inductively define
Njy1 = {X enj: [X,XT] S Ilj}.

Then X € NZn; < expsX € Kerm for all s € R, so that
ﬂ;?';lnj = {0}

The procedure we follow is similar to the procedure given above.
Since n is an ideal, we see that if Y € ng — ny, then [Y, X,] must
be a multiple of X;. If the multiple is 0, then expsY € Kerr for all
s € R. Hence dimng/n; = 0 or 1. If it is zero, then ny = {0} and
we are done. If not, then let Y; € ng — n;. A similar argument gives
us vectors Ya,...,Yy withn; = nj4q1 + RYjyq for 0 < j < s, We
may assume by scaling and by adding appropriate linear combinations
of Yl,. .. ,}/}_1 to Y; that [XT,Yl]XO and [XT,}/J] = (] + 1)'}/]_1 for
j > 1. Then

H(0,(y1,.-.,Ys,0,...,0)u) = (y1u+y2u2+---+y3:usl,0,... ,0).

So if [(Xp) = 1 (as we may plainly assume), then

QO(Oa (yla"' 7ys’a07"' ,0),0,0,u) :y1u+y2u2+"'+ys’u81-

This proves the proposition for the y;, since the coefficient of w in
Qo is obviously of the desired type. This also completes the proof of
Proposition 3.2. u]

Remarks. 1. 1t is easy to check that fr(g)pw = fo,w * ¢~, Where
¢~ (x) = ¢(x™ ). Thus fr(gye,w is in LP if f,,, is. In view of Theorem
3.4 of [7], this means that we can arrange for v to be an arbitrary C'*°
vector. A similar argument applies to w. In the proof of Theorem 1.1,
however, we needed to work with vectors that were not C'*°.
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2. If 7 is induced from a character on a normal subgroup M of G, we
can get a much better estimate for p. The technical difference is this:
let M be normal and write coordinates in G as (2/,z"), where ' € M
and 2 is in a cross-section for M\G (the same one used to produce
the representation space, for instance). Then we have, as before,

(@', ") f)(t) = ¢"0Q (! 2" 1),

but @ is in fact independent of z’, while P(z',z",t) can be written as
Py (z',t) + Py(z",t), where P is linear in 2’. This makes the analysis
much easier. A simple estimate shows that p can be any number > n2s,
where dimG =n + 1 and dimG/M = s.

4. We turn now to the proof of Theorem 1.2. We may assume
that G has a one-dimensional center Z with Lie algebra 3, and that
7w is nontrivial on Z. Write 7 = m, | € g*, and let Xy € 3
satisfy [(Xp) = 1. Then dimG is odd. Let Xjy,...,Xs, be a strong
Malcev basis for g (this means that Xg,...,X; span an ideal of g
for every j). We then know that X; is in the second center of g
(i.e., its image is central in g /3); we may assume that [X;, X;] =0
for j < 2n. Hence an arbitrary element of G can be written as
(z,y, w,x) = expzXoexpyXj .. .exp(Z?Zgl wj_1X;)expxzXy; here,
w = (wy,...,ws,—2). We need to prove that, for C*° vectors v and
v', the matrix coefficient f,, . is in S(R*"), the Schwartz space, as a
function of y, w, and z. For notational convenience we write (y, z, w)
for (0,y,z,w).

We prove the theorem by induction on n, the case n = 0 (or
dim G = 1) being trivial. In the general case, m on G is induced from
mo on Gy = exp g, where g is spanned by Xo,...,X2,-1. We may
assume that 7o is associated with [y = I|4, and that [(X;) = 0. Write

7rt(zv y,w, O)f = ’/T()(O, 07 07 t)(Z, Yy, w, 0) (07 07 07 _t)7 f7 t € Rﬂ
(07 07 07 t)(07 07 w’ 0)(07 07 O’ _t) = a(w7 t)’ IB(w7 t)’ ’Y(w7 t)’ 0)'

Then from the usual way of realizing induced representations we get
(m(y, w,2)$) (1) = WD (mo (y(w, 1)) (¢ + 1)),

where ¢ : expRX5,(2 R) — H(m). Both a and v are polynomial
maps and, for fixed ¢, w — 7(w,t) has polynomial inverse. It is
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therefore clear that if f : R — S(R"2) is C*°, then
g:R— SR"?),  g(t)(w) =D f(t)(v(w,1))

is C*° (and rapidly vanishing in w for fixed t); also if f vanishes rapidly
at 0o, then so does g.

Let ¢, € S(R™) = H2, the space of C* vectors for m. We regard
¢, as elements of S(R,S(R"!)). By the inductive hypothesis the
map Tp on S(R" 1) x S(R™ 1) defined by Ty(h, k)(w) = (mo(w), h, k)
is a continuous map into S(R*"~2). Now let ¢,9 € S(R") = HX,
the space of C'° vectors for m. We regard ¢, as elements of
S(R,S" }(R" 1)), and we want to examine

A1) w2 w) = [ w6+, v(0) d

R

Define A : S(R") x S(R") - R" 2 x R x R by

A9, ¥)(w, 2,t) = (mi(w)d(@ + 1), 9 (2))-

As remarked above, A(¢,v) is Schwartz in w, ¢ for fixed x. It is also
C® in all variables, since differentiating in x presents no problem. Fur-
thermore, all derivatives vanish rapidly at oo with = as easy estimates
show (since ¢(x + t) and ¥(t) decay rapidly at co). Thus A maps into
R 2 xR xR.

We need to prove that
1@ ¥y w,2) = /R A(9, ) (w, z, )" dt

is in S(R?"). It is clearly C™ in w, x and y, and it still vanishes rapidly
in w and z. Differentiate the integrand with respect to ¢ (and note that
the integrand is still in S(R?") to see that it vanishes rapidly in y as
well.

To complete the proof we need to prove that T is continuous. The
Closed Graph theorem shows that it is separately continuous in ¢ and
15 it is also bilinear. A standard application of the Banach-Steinhaus
theorem (see, e.g., [14, p. 54]) gives continuity.
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