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ABSTRACT. We prove that the equation (p—1)!+aP~1 =
p* in p, a, k € Zso with p > 2 and prime has only three
solutions (p,a,k) = (3,1,1),(3,5,3),(5,1,2).

1. Introduction. In the book of Erdds and Graham [4], it is asked:
Is it true that the equation

(1) (p— D! +aP~t = pF

in p,a,k € Z-o with p > 2 and prime, has only a finite number of
solutions? In 1856 Liouville [6] proved that (1) has only two solutions
with a = 1:

2) (p,a, k) = (3,1,1),(5,1,2).

(See also Bachmann [2].) By Apéry [1], (1) has only two solutions with
p=3:

(3) (p,a, k) = (3,1,1), (3,5,3).

Brindza and Erdds [3] noted that the equation (n — 1)! +a™ ! = n*
has no solution in n, a, k € Z~( with n composite. They proved in 1991
the following

Theorem 1 (Brindza and Erdds [3]). There exists an effectively
computable absolute constant C' such that all solutions of equation (1)
satisfy max{p,a,k} < C.

In the present paper we shall prove
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Theorem 2. Equation (1) has no solution other than the three given
by (2) and (3).

2. Preliminaries. We need the following lemmata.

Lemma 1. Equation (1) has no solution (p,a,k) with p > 5 and k
odd.

Proof. Suppose equation (1) has a solution (p, a, k) with p > 5 and k
odd. We proceed to deduce a contradiction from this assumption. Now
(1) gives

pF—a?P'=(p—-1)!=0 (mod q)

for every odd prime ¢ < p. Obviously, (a,q) = 1. Thus,
&)y -6
q a)

(4) <]—3> =1 for every odd prime ¢ < p,
q

whence

since p,k are odd, where (p/q) and (a/q) are Legendre symbols.
(Damien Roy suggested this simple proof of (4). Our original proof
is slightly more complicated.) We now deal with the following two
cases separately.

(i) p=1 (mod 4). Then
q

(5) (—) =1 for every odd prime ¢ < p
p

by (4) and the law of quadratic reciprocity, whence
20 -1
<—> =1, 1=1,2...,(p—1)/2.
p

Further, ((p — 1)/p) = (=1/p) = (=1)/2@~1) = 1. So there are at
least (1/2)(p— 1) + 1 quadratic residues: 1,3,... ,p—2,p—1 (mod p).
This is absurd.
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(ii) p=3 (mod 4). Then

+1 for every prime ¢ < p

q\ with ¢ =1 (mod 4),
p) | —1 for every prime ¢ < p
with ¢ =3 (mod 4),

(6)

by (4) and the law of quadratic reciprocity. Now (p/3) = 1 (by (4))
and p = 3 (mod 4) imply p = 7 (mod 12). Further, p = 7 does not
satisfy (4), since (7/5) = —1. So p > 19 and p — 12 has an odd number
of prime divisors which are = 3 (mod 4). Hence, ((p —12)/p) = —1 by
(6). But (6) also yields

(52)-()- () --cn-s

contradicting ((p — 12)/p) = —1. The proof of Lemma 1 is thus
complete. ]

For any real 6 write {6} for its fractional part.

Lemma 2. If (p,a,k) is a solution to equation (1), which is distinct
from the three solutions given by (2) and (3), then

p>5, a>p+2, 2|k,

L'(p)

7 1
7) prl<k<28 W)
logp

< 2p—6,

and, in addition, if p =1 (mod 4), then

log'(p) — (p — 1)log2 +log(p — 1)

2
(8) k< logp

Furthermore, we have for p > 11,

~1.02- (p— 1)
pk

(9) <(p—1)loga —klogp <0

and

(10) [pH/ DY < 1.02- (p — 2)lp~PHIE=D/(-1),
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Proof. By Liouville [6], Apéry [1] and Lemma 1, we have
a>1, p>5, 2|k.

By (1), the least prime divisor of a is greater than p, whence a is odd
and a > p + 2. Now (1) implies p* > a?! > pP ! so k > p+ 1.
Further, from

(11) (P*? + P V) (p*? — o V%) = (p— 1)

and the fact that pF/2 — a(P~1)/2 js a positive integer, we see that
pF/2 < (p—1)! < pP~3 (since 2-3 -4 < p?). So (7) is proved.

Proof of (8). For m € Z\{0} denote by ordam the exponent to which
2 divides m. Since p =1 (mod 4), we have

p—1l=ay 22+ - Fap_q 2071 420,
ajE{O,l}, 2<j<t-1,

1 -1
S(pfl)::az+"'+at_1+1§t71§Mil
log 2

Now p*/2 = a(P=1)/2 = 1 (mod 4), whence ordy(p*/? 4+ aP=1)/2) = 1.
By (11) we obtain

ordy (p*/? — aP~Y/2) = ordy(p — 1)! — 1
=p—-1-s(p—-1)-1
>p—1-1log(p—1)/log2,

whence .
-
P2 g2 s 2
p—1
Again, by (11),
-1
k/2 1P
P < (p - D

Now (8) follows at once.
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Proof of (9). Write A = (p — 1)loga — klogp. From (1), (7) and
p > 11, we get
(p—1)! 10!

pk S 1112'

l—er=1-aPlp~F=

This inequality and A < 0 yield —0.01 < A < 0. Now consider the
function

f(z) =1.02(1 — ¢°) + =

on (—0.01,0), where f'(z) = —1.02¢* +1 < 0. So f(z) > f(0) =0 for
z € (—0.01,0). In particular, f(A) > 0, that is,

— 1)1
A>—1.02(1—et) = —1.02- %,
P

as required.

Proof of (10). Write d = p*/(=1) and ¢ = d-exp(—1.02- (p—2)!/p").
By (9) and (1),

(12) c<a<d.
Note that d ¢ Z, since

1 k 20— 6
<p+ < <2
p—1"p—-1 p-1

1 <2

by (7). Now (12), the fact that a € Z and (7) imply

{d} <d—c-d(1—exp<—1.02- (pk2)!>>

p
< 1.02. p*/ =1 %
=1.02- (p—2)lp~kr=2/=1)
<1.02-(p-— 2)!p_(17+1)(p—2)/(p_1).

This proves (10). The proof of Lemma 2 is complete. o
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In the sequel, h(a) denotes the logarithmic absolute height of an
algebraic number o and logy signifies the natural logarithm for all
y € R<. Note that, by definition, we have h(m) = logm for m € Z+.

Lemma 3. Let aj,as > 1 be multiplicatively independent real
algebraic numbers. Set

A= b2 IOgOég — b1 logal,
where by, by are positive integers,
D = [Q(CY]_,OZZ) : Q]7
b1 bo
b =
Dlog A, + Dlog Ay’

where Ay and Ay denote real numbers greater than 1 such that

1 i 1 .
logAiZmax{h(ai),%,B}, 7,:]_,2.

Then

2
10 1
log |A| > —32.31D4<max { logd’ + 0.71, D' }) log A; log As.

Proof. This is Corollary 2 of Theorem 2 of [5] with numerical values
given by (hg,p,Cs) = (10,4.9,32.31) in Section 8, Tableau 2 of [5].
O

3. Proof of Theorem 2. Suppose that (1) has a solution (p, a, k)
other than those given by (2) and (3). We proceed to prove that

(13) p < 823309.

On noting that a and p are multiplicatively independent, we may apply
Lemma 3 to

1 1
A= -klogp— =(p—1)1
5k logp 2(p )loga
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with oy = a, ag =p, by = (p—1)/2, by = k/2. Now D =1 and we can
choose

k
log A; = 1 logp > max{h(a),loga,1},
D
log A> = log p = max{h(p), logp, 1},
/ bl b2 p— 1

- Dlog A, + Dlog A, - logp "

In order to prove (13) we may assume that p > 2 - 105, whence
logd’ +0.71 > 10. So by Lemma 3 and (9), we obtain

1 2
—3231( log (2==) + 071 (log p)*
log p p—1
< log|A|

< log0.51 + log(p — 1)! — klog p.

That is,

1 -1 2
(1a) Kol 1 3931(10g (EL) 4 0.71) logp
1 logp

p—

—logI'(p) — log 0.51 < 0.

Now on noting (7) and

2
—1
p—1-— 32.31<log <p—> T 0.71) logp >0
logp

for p > 2-10°,
we see that (14) holds for £ = p + 1. Observe that the lefthand side of
(14) with k = p + 1 is an increasing function of p for p > 2-10°. To

see this, replacing p by x in the indicated function of p, we obtain a
function

f(z) = (x+1)logz — 32.31 <1 + %)

{logz - (log(z — 1) — loglog z + 0.71)}?
—logT'(z) — log 0.51.

(15)
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By Whittaker and Watson [7, p. 241], we have for z > 2 - 10°,

d 1 -
2 logT(z) = —y — = —
dz 08 (@) T +wnz:1 n(x 4+ n)

(16)

+ 0.0001

1
< logz — — +0.0001,
x

where v is Euler’s constant:

n—oo

1 1
v = lim (1+—+---—|——logn>
2 n

1 1
I+=+4--+— -1 .
> +2+ +[$] oglz]

By (15) and (16) we have, for x > 2 - 10°,
(17)
2
f'(z) > 1—0.0001—64.62<1+—1> log z(log(x—1) —log log +0.71)
T

{z7'(log(z—1) — loglog £40.71)
+logz- ((x—1)"! — (zlogz) 1)}
> 0.1.
Now by (14) with k = p+ 1, (15), (17), the fact that p is a prime, and
the aid of PARI GP 1.38, we obtain (13).

We used PARI GP 1.38 on several Sun Sparc 10 workstations and
found out:
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(i) For p € {5,7} we have p+1 > 2p — 6. Thus, by Lemma 2,
equation (1) has no solution (p, a, k) with p € {5,7}, which is distinct
from those given by (2) and (3).

(ii) For every pair (p, k) with 11 < p < 100 and k satisfying (7), we
have
{pk/(pfl)} > 1.02- (p— 2)!p*(p+1)(p*2)/(p*1)‘

We conclude, by Lemma 2, that equation (1) has no solution (p, a, k)
with 11 < p < 100.

(iii) For every pair (p, k) with 100 < p < 823309, k satistying (7),
when p =3 (mod 4); k satisfying (7) and (8), when p =1 (mod 4), we
have

{pk/(P—l)} >107%2 > 1.02- (p — 2)!p—(p+1)(p—2)/(p—1)‘

Thus, by Lemma 2, equation (1) has no solution (p,a, k) with 100 <
p < 823309. This completes the proof of Theorem 2. a

Acknowledgments. We are indebted to Prof. M. Mignotte for
sending us the paper Laurent, Mignotte and Nesterenko [5] via e-mail.
The present paper was reported on at the Symposium on Diophantine
Problems in Honor of Wolfgang Schmidt’s 60th birthday, Boulder; and
the writing up of the paper was completed during the authors’ visit
to Boulder in July 1994. We are grateful to Prof. Wolfgang Schmidt
for his hospitality. We also thank Prof. A. Schinzel for supplying the
reference [2].

REFERENCES

1. R. Apéry, Sur une équation diophantienne, C.R. Acad. Sci. Paris 251 (1960),
1451-1452.

2. P. Bachmann, Niedere Zahlentheorie, Erster Teil, Druck und Verlag von B.G.
Teubner, Leipzig, 1902.

3. B. Brindza and P. Erdds, On some diophantine problems involving powers and
factorials, J. Austral. Math. Soc., Ser. A, 51 (1991), 1-7.

4. P. Erdds and R.L. Graham, Old and new problems and results in combinatorial
number theory, Monographie No. 28 de L’Enseignement Mathématique, Genéve,
1980.

5. M. Laurent, M. Mignotte and Y. Nesterenko, Formes linéaires en deuz
logarithmes et déterminants d’interpolation, J. Number Theory, to appear.



1244 K. YU AND D. LIU

6. M.J. Liouville, Sur l’équation 1-2-3---(p—1)+1 = p™, J. Math. Pures Appl.,
Ser. 2, 1 (1856), 351-352.

7. E.T. Whittaker and G.N. Watson, A course of modern analysis, 4th edition,
Cambridge University Press, 1958.

DEPARTMENT OF MATHEMATICS, HONG KONG UNIVERSITY OF SCIENCE AND
TECHNOLOGY, CLEAR WATER Bay, KowLooN, HoNnG KoNG.



