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ESTIMATES FOR L-FUNCTIONS ASSOCIATED
WITH SOME ELLIPTIC CURVES

FERNANDO CHAMIZO AND HENRYK IWANIEC

1. Introduction. Among the elliptic curves over Q written in the
canonical form y? = 23+ Az + B, only two families have automorphisms
different from the identity and the hyperelliptic involution, namely (see

[1, p. 93])
(1) E:y*=2°—-Dx
(2) E:y? =2+ D.

All of these curves have complex multiplication, and it follows from
the work of M. Deuring (see [3]) that they are modular. Consequently,
there are various Dirichlet series naturally associated with them. In this
note we examine the Hasse-Weil L-function and its symmetric square
and obtain, by quite familiar means, estimates of their special values
which are explicit with respect to the conductor. The analogue of these
results for the Dirichlet L-functions is considered to be out of reach by
current methods.

For simplicity we assume D is squarefree and 2, 3 { D. Hence the
conductor, N, is a multiple of D? (see Appendix C of [12]).

In the next three sections we shall deal with the curve (1) and later we
show how to modify the result for the curve (2). In the aforementioned
sections, p and ¢ will denote prime numbers satisfying p = 1 (mod 4)
and ¢ =3 (mod 4).

2. The Hasse-Weil L-function and its symmetric square. The
Hasse-Weil L-function of (1) is defined by (see [5, Chapter 18])

L(s)=Lg(s+1/2) = Za(n)n_s

n

=[[a+g ) [Ja-ap+p )",

N ptN
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where
3) olp) = (%)% ! (%)%
with p=p@, p € Z[i.

From the modularity of FE, it follows that L is entire and satisfies the
functional equation

A(s) = £A(1 - s),
where
A(s) = (VN /2m)*T(s + 1/2) L(s).
The symmetric square of L(s) is

B(s) = A(s)/¢(s),

where A(s) is the Rankin-Selberg convolution
A(s) = ¢(28) ) la(n)*n .

Note that we have introduced ((2s) in the usual definition (see [8])
in order to clear up the functional equation and the definition of the
symmetric square. Also .A(s) has a simple pole at s = 1 and satisfies
[8, Theorem 2.2]

A(s) = A(1 — s),
where

A(s) = (VNM /4x*)"D(s)D(s + 1/2) A(s),

and M is the greatest squarefree number dividing N. In our case

Mx\/ﬁ.
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G. Shimura [11] proved the remarkable fact that B(s) is entire. From
the functional equations for A(s) and ¢(s) one concludes that

A(s) = Al —s),
where

A(s) = (NM/27%/%)*T(s/2 + 1/2)T(s + 1/2) B(s).

3. Results. If p factors in Z[i] as p = p@, it is plain that one of the
complex numbers +gp, +ip, £p, +ip has argument, say oy, belonging
to (0,7/4). We define

2
FN:H<1_2COSQP>7 GN:H<1_4COS ap>,

p|N P pIN P

4 sin?
- T (1= 1),

pIN p

Note that these quantities are bounded from above and from below by
a constant if NV has a fixed number of prime factors; in any case we
have the sharp inequalities

N 4
(loglog N)™* < <%> < F{,Gn,Hy < 1.

Following these definitions we can state our results.

Proposition 1. If N is the conductor of (1)

(A) L(1) < Fylog® N
(B) B(1) < Gylog" N
(C) B(1) > Hylog N

where a = 2\/5/71', b = 2/m. Moreover, the implied constants are
absolute and effective.
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Remark. In general, if an elliptic curve is modular, B(1) is closely
related to the L?-norm of a newform ¢ for I'o(N); H. Iwaniec [6] proved
[|#ll2 < N¢ for every newform ¢ for I'o(N) and recently J. Hoffstein
and P. Lockhart [4] proved [|¢|]2 > N~°. Our result allows one to
replace N¢ and N~—¢ by a power of logarithm when ¢ corresponds to
an elliptic curve of the type (1).

4. Proofs. We shall use two lemmas that can be found in the
literature. For convenience, we quote them here.

Lemma 1. With the notation of Section 3, for any 0 < a < 7/4, we

have
Z 2
l: ar +OQ<L2>
mlogx log” z

p<z
0<ap<a

This lemma can be proved using standard arguments from the theory
of Hecke L-functions. A proof of a more general and stronger result
was given by LP. Kubilius [7] and T. Mitsui [9]. I.V. Chulanovski [2]
gave an elementary proof but with a worse error term.

Lemma 2. Let f be a multiplicative function such that f(¢*) =0,
0< f(p*) <2 and

X X
> 1) =i +0(10g2x)-

p<z

Then
T
g ~(C——m————,
/(@) log' ™"z

n<x g

where C is a positive constant depending on f.

This result was proved by E. Wirsing [13] in a more general case,
using elementary methods.

Now we proceed to prove Proposition 1.
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Proof. Firstly we observe that
2sina, < a(p)| <2cosap, ifpfN.

By Lemma 1 and partial summation, if 1 < o < 2,

2
> 290 _ qloglo - 1)+ O().

p<z

Hence
L(o +it) < [[(1 = la(p)lp™ +p~*) "

ptN
2cosa,)
)
ptN P
:FNH<1_2cosap)l
p p”

< FN(O' — 1)7‘1.

Hence, by the functional equation,
Ll-o+it) < FN(\/N(M +1))7(c—1)"

Then the Praghmen-Lindeléf principle for —6 < o < 1 4+ §, with
6=t =log(N(|t| + 1)), proves

L(o +it) < Fy(VN(Jt| + 1))~ log® (N (|t| + 1)),
0<o <1,

and (A) follows by choosing o + it = 1.

The proof of (B) is similar; one uses the bound

B(o+it) < (0 —1) ) la(n)]>n 7

pO’

dcos?a,\
< (a—l)GNH(l— P) ,
p
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and

4 2
S (14 b)log(o — 1) + O(1).
p<zx p

By the functional equation and the Praghmen-Lindelf principle as
before (note that M =< +/N), one concludes that

B(o +it) < Gn(VN([t]| + 1))*F/210g" (N (|| + 1)),

and this proves (B) by choosing o + it = 1.

For the proof of (C) we define the multiplicative function, f, given
by f(p) = 4sina,, f(p*) =0 if k > 2, and f(¢*) = 0 if k > 1. Note
that |a(p)| > f(p) if pt N, and by Lemma 1 and partial summation,

X
(1-10) +0 .
Zf logm <]0g2$>

p<z

Using that A(s) is holomorphic except for a simple pole at s = 1
with residue B(1), one proves by standard complex integration methods
(compare with [10])

Z| (2]-)) +O(NA 1- 5),

n<x

for some A, § > 0.
On the other hand, by Lemma 2,

Z\G(H)PZ Z f(n) >HNZ‘f >>HNﬁ.

n<z (n,N)=1 n<w
n<e

Combining both estimates for x = N with ¢ sufficiently large, (C)
follows. O

5. Modifications for the curve y?> = 23 + D. Our arguments for
the curve (2) are quite similar to that for (1). In this case, if we denote
by p and ¢ prime numbers satisfying p = 1(mod 3) and ¢ = 2(mod 3),
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the Hasse-Weil L-function has the same definition (see [5, Chapter 18]),

but

AD\ ¢ [4D\ ¢

ap=-(2) L () 2
© /6P o /6P
with p=pp, ¢ € Zlw],

where w = (1 + +/—3)/2. Observe that one of the complex numbers
wip, wip, j =0,1,...,5, has argument, say 3,, belonging to (0,7/6).
In this case

2sin(r/6 — 8,) < |a(p)| < 2cos B, ifpiN.

Consequently, we modify the definitions of Fy, Gy and Hy as

FN—H<1—72C(;SBP>, GN—H<1——4C082IBP>,

p
p|N p|N

iy~ [ <1 ~ 4sin2(7r/6/3p)>,

p|N p

and the proof of Proposition 1 follows along the same lines. The only
difference is that the constant in the main term of Lemma 1 changes
from 2/m to 3/7 (see the references mentioned there), which affects the
constants a and b. The result is:

Proposition 2. The estimates of Proposition 1 hold for the curve
(2) with a = 3/m and b = 3v/3/2~.

Remark. Note that in both propositions b < 1.
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