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ABSTRACT. Some arithmetic of elliptic curves and theory
of elliptic surfaces is used to find all rational solutions (7, s, t)
in the function field Q(m,n) of the pair of equations

r(r+1)/2=ms(s+1)/2
r(r+1)/2 =nt(t+1)/2.

It turns out that infinitely many solutions exist. Several
examples will be given.

1. Introduction. A triangular number A, is by definition the sum
14+24--+r=r(r+1)/2

of the first r natural numbers. Many properties of the triangular
numbers
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...

have been discovered by Legendre, Gauss, Euler and others. For
example, Legendre proved that a triangular number A, > 1 cannot
be a cube, nor a fourth power. Gauss showed that every natural
number is a sum of at most three triangular numbers. Euler proved
that there are infinitely many squares among the triangular numbers,
and he determined all of them. Euler also showed that infinitely many
pairs (A, A,) exist for which A, = 3A;. In fact, using the well-known
theory of the Pell-Fermat equation X2 — dY? = 1, it is not hard to
show that for any natural number m there are infinitely many pairs
(A, Ay) satisfying A, = mA; (cf. [2]). On the other hand, using a
result of Mordell on integral points on curves of genus 1 [4] it is shown

Received by the editors on September 27, 1994, and in revised form on July 6,
1995.

Copyright ©1996 Rocky Mountain Mathematics Consortium

937



938 J.S. CHAHAL AND J. TOP

in [2] that for fixed natural numbers m > n > 1 the two simultaneous
equations
A, = mA,

(1) _
Ar = TLAt

have only finitely many solutions in natural numbers (r, s, t).

In this paper we change perspective and seek rational solutions of
(1). In other words, we define A, = r(r+1)/2 for any rational number
r and then consider (1) for fixed n and m. There exist eight obvious
solutions to these equations, namely, those corresponding to » = 0 and
to 7 = —1. The two equations in the three variables r,s,t define a
curve. It turns out that, in general, this curve is of genus 1. Taking
any of the eight given points on this curve as a neutral element, it is
then known that all rational points on the curve constitute an abelian
group. We will show that, for generic n and m, this group is isomorphic
to ZxZ/2Z xZ /27 and is generated by the eight trivial points. Adding
points in this group then yields as many nontrivial solutions to (1) as
desired; a few will be listed here.

2. Generalities on space quartic curves. On completing squares,
the equations in (1) can be written as

@ { (2r + 1) + (m — 1) = m(2s + 1)*
(2r+1)2+ (n—1) =n(2t +1)%

Changing variables and homogenizing, this becomes
2 2 2
g+ (m—1)z] —ma; =0

(3) { 0 ( ) 1 2

z2 + (n— Da? —nx3 = 0.

Note that the eight trivial solutions are given by (zg, 21,22, 23) =
(1,£1,+1,+£1) in these coordinates. From the description (3), it is
easy to deduce that these equations define a smooth irreducible quartic
curve in projective 3-space P2, provided n # m, n # 0,1 and m # 0, 1.
Moreover, under these conditions the genus of the curve is 1: this
follows, e.g., from the adjunction formula (compare [3], Chapter II,
Proposition 8.20 and Exercise 8.4) which, for the case of a smooth
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intersection of two surfaces of degrees d; and dy in P3, says that the
genus g satisfies 29 — 2 = dyds(dy + d2 — 4). Hence, fixing a rational
point (e.g., one of the points coming from a trivial solution), one has
an elliptic curve. For generalities about such curves we refer to [8],
especially Chapter II1, Section 3. The points on our curve constitute an
abelian group, with the chosen fixed point as zero element. Moreover,
the curve can be transformed into a Weierstrass form

y> + arzy + agy = 2° + a2z® + a4z + ag,

in such a way that the fixed point corresponds to the point at infinity
on the Weierstrass model.

A somewhat more direct explanation how such a smooth space quartic
curve is related to a plane one (not necessarily given by a Weierstrass
form) can be found in [9, pp. 135-139]. We recall this briefly, focusing
on the present situation. Using the standard bilinear form in 2 x 4
variables (z,y) = > x;y;, one can write the equations (3) as

(4) (z,Az) = 0 = (z, Bz)

in which A and B are diagonal 4 x 4 matrices with entries 1, m — 1,
—m, 0 and 1, n — 1, 0, —n on the diagonal, respectively. Any choice of
a point on this curve now defines a birational map to the curve given
by

n? = det (A — €B) = mné(€ — 1)(m — 1 — (n - 1)¢).

In fact, when (1,1,1,1) is chosen as a fixed point, then ¢ corresponds
to (zg + (m — 1)zy — mas)/(xzo + (n — 1)z; — nxy). If one computes
the £-coordinates corresponding to the eight trivial points on the space
quartic, one finds that four of these correspond to points (£,7) in which
n # 0,00. Thus, by changing the sign of 7, one obtains four new points,
hence new solutions to the original equations (1). Although he did
not phrase it in the language used here, this is basically how Fermat
constructed solutions to many of his ‘double equations’ (compare [9,
pp. 105-106]). To be able to translate back and forth between a
Weierstrass equation and the equations (1), we will construct a very
explicit isomorphism in the next section.

Yet another, more geometric, way to transform a space quartic into
a plane cubic works as follows. Take any point on the quartic, and
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consider the projection from this point to a hyperplane P2 C P3. One
readily verifies that the image of the space quartic is a cubic curve, and
that actually the two curves are isomorphic (compare [6]). It is now
a routine matter, starting with the cubic plus the image of the point
we projected from, to transform it into a curve given by Weierstrass
equation.

Remark 2.1. An analogous case of a space quartic is given for

0£a#b#0by

(5)

2 2 _ 2
{m0+am1:x2

z3 + bri = a3

If one chooses (zg, 21,22, z3) = (1,0,1,1) as origin, the group law can
be given in a very explicit form as a consequence of the addition formula
for Jacobi’s four theta functions. This is described in [6, Section 14].
In the special case a = 1, b = —1 these formulas can be found in [1, p.
36].

3. Transforming the space quartic into Weierstrass form.
Translating between the equations (1) and a Weierstrass equation may
be done as follows.

Proposition 3.1. Suppose n £ m and n # 0,1 and m # 0,1. Then
there exists a birational isomorphism between the curve given by (1) and
the elliptic curve defined by y?> = z(z — mn(1 — m))(z — mn(1 — n)).
This correspondence is given by

mn(nr?t +r? — mns?t — msr)
2 ?

€Tr =
r
2

m2n?(mns3t + r3t + ms?r +r3 — nr2st — mrs*t — mr?

B s — sr?)
y= 3 :

The inverse transformation is
mn((m —n)z — y)(z — m*(1 —n))
d
(mz —y +m’n(n —1))((m —n)z —y)
d

r =
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and

(22 + mnz(m — 1))(z — m?(1 — n))

t =
d ?

in which
d = (mn® — m*)z? — y? + 2maxy
+ (2m*n® — 4m?n® — 2m*n)z
+ (2m?*n? — 2m?n)y + m®n?
2 2

—2m®n® — m*n* + m°n? + 2m*n3® — m2n2.

It is hardly illuminating to verify that the two maps given above are
each other’s inverse, and that they map one curve to the other. Hence
we omit this. Instead, we will briefly explain how one finds such maps.

First of all, one may start with the equations (3) instead of (1), and
even with an inhomogeneous form of (3). Each of these equations
defines a cylinder on a quadratic plane curve, with a rational point on
it. It is easy to parametrize such a curve, e.g., by intersecting the curve
with a variable line through the rational point. In this way, one can
express Tg and o in terms of a new variable, say u. The other equation
is then easily transformed into one of the type v? = quartic in u. Since
we have a rational point on this quartic (corresponding to any of the
trivial solutions of the original equations), it is now a routine matter (as
explained, e.g., in [1, pp. 35-36]) to exhibit an explicit transformation
to a Weierstrass model.

3.2. Using Proposition 3.1 one computes that the eight trivial
solutions of (1) correspond to points (z,y) on the model

(6) v = z(z — mn(l —m))(z — mn(l —n))

as given in the following table.

Using the group law on the elliptic curve given by (6), the above
points are related as follows. The point O is the zero element in this
group. Also, 2Q1 = 2Q2 = 2Q3 = O and Q1 + Q2 + Q3 = O. Finally,
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(ryst) | (z,y)

(0’070) Q1 :( )
(—=1,-1,0) | Q2 = (mn(1—m),0)
(—1,0,-1) | Q3 = (mn(1—n),0)
(0,-1,-1) | O = (00, 0)
(~1,0,0) | P, =(
(0,0,—1) | Py = (n*(1—m),n?*(m —n)(1 —m))
(0,-1,0) | Py = (m2(1 —n),m?(n—m)(1 —n))
(=1,-1,-1) | Py = (mn(1 —m)(1 —n),—-m?n?(1 —m)(1 —n))

P1 + Ql = P4, P1 + Q2 = P2 and P1 + Qg = Pg. By taking other
linear combinations of these points, one easily finds more solutions to
(1). We used the computer algebra packages PARI for the group law
on the curve defined by (6), and MAPLE for transforming points back
to the original equation. In terms of the points P;, P> in the above
table, this provides, for instance, the following examples.

_ (mn+m—n)(mn —m+n)
_2 i) )
P ls= n(mn—i—m—n)7
tiQm(mn—m—i—n)
_ D
—2mn(mn —m —n)
r =
D )
_p, S:2n(mn+m—n)’
—(mn —m —n)(mn+m —n)
t= .
D
—2mn(mn —m —n)
r= )
2P, S:f(mnfmfn)(mnfm—f—n),
b 2mn? — n? — m?n? + m?
_ D

Here D = m? — 2m?2n — 2mn? + m?n? — 2mn + n2.
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Remark 3.3. On the curve described the equations (1) it is easy
to find some involutions: they correspond to changing the sign of
any of xg, s, 3 in (3). We write these involutions as o, s, 0y, with
or(r,s,t) = (—r — 1, s,t) and the others defined similarly. Note that
they all commute. To determine what the corresponding involutions
on the model given by (6) are, recall that any isomorphism of an
elliptic curve to itself that fixes the zero element necessarily gives an
isomorphism for the group law. Furthermore, the only involutions that
fix the zero element are 1. Hence, it follows that any involution is
either of the type P — Py — P (in which Py is an arbitrary point on
the curve), or of the form P — Qg + P (in which Qo is a point of
order 2). In our situation, o,(0,—1,—1) = (—1,—1,—1). Hence the
corresponding involution on the model defined by (6) maps O to Pj.
Since this is not a point of order 2, it follows that o,. corresponds to the
involution P — P, — P. The corresponding involutions for o5 and oy
are found analogously. Composing them one finds the following table.

involution on (1) | corresponding involution on (6)
o, PP P
Os P—P;—P
o P—P,—P
0,05 P— Q@+ P
0,0¢ P—Q3+P
050t P—Q,+P
OrOs0¢ P— P —P.

This explains why the ‘new’ solutions given above appear so similar:
2P, is the image of —P; under the involution corresponding to o,050;.
Similarly, — P, is the image of —P; under the involution corresponding
to 0,05. Hence, it is easy to relate the corresponding solutions of (1).

4. The main result. We will now describe all the solutions to (6)
for generic m and n. By this we mean that one considers m and n
as algebraically independent variables over Q. By definition, Q(n, m)
denotes the field of all rational functions in the variables n and m
which have coefficients in Q. The object of interest is the set (group,
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in fact, if the point at infinity is included) of solutions to (6) in functions
z,y € Q(n,m). This group can be described as follows.

Theorem 4.1. The group E(Q(n,m)) of all solutions to (6)
(including the one at infinity) is isomorphic to Z x Z/2Z x Z/2Z.

It is generated by the elements Py = (mn,m?n?) of infinite order,

and Q1 = (0,0) and Q2 = (mn(1 —m),0) which each have order 2.

Proof. The proof to be presented here relies on some theory of elliptic
surfaces. A useful general reference for this is [7]. First of all, fix an
inclusion of fields Q(m) C C. Using this, one may regard Q(m,n) as
a subfield of the field K = C(n) of rational functions in the variable
n with complex coefficients. The equation (6) then defines an elliptic
curve E over Q(m,n), which for the moment will be regarded as an
elliptic curve over K. The group E(K) of K-rational points on E
is a finitely generated abelian group (compare [7, Theorem 1.1]). To
compute the rank and a set of generators of this group, one starts
by regarding (6) as an equation which defines a surface over C. The
surface comes equipped with the map (z,y,n) — n, and for all but
finitely many n € C the fiber of this map over n is an elliptic curve over
C. The theory of elliptic surfaces now allows one to slightly modify this
surface, giving a surface S which is projective, smooth and minimal,
and which comes with a surjective morphism f : § — P!, with the
property that all but finitely many fibers of f are elliptic curves (in
fact, they are the curves we already had in our original surface).

The fibers of f which are not elliptic curves can be found using an
algorithm due to Tate, which can be found in [5, pp. 46-52]. Using the
notation of loc. cit., one finds a fiber of type I at n = 0, and fibers of
type I at both n = 1 and n = m. To find the fiber over n = co € P!,
one changes coordinates by writing £ = z/n?, n = y/n® and t = 1/n.
This transforms the equation (6) into

(7) n* = E(€ —mt(1 —m))(§ —m(t - 1)).
From this, it is easy to deduce that over n = co (which corresponds to
t = 0), one has another fiber of type Is.

The next important property of the surface S is that it is a rational
surface. This is immediate from the criterion given in [7]. Since the
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surface is rational, a formula for the rank of the free part of E(K) is
given by (cf. [7, Theorem 10.3])

rank F(K) =8 — Z(mv - 1),

where the sum is taken over all singular fibers of f : S — P! and
where m, denotes the number of irreducible components of such a
fiber. A fiber of type I has two components, and one of type I§ has
five components, so one concludes rank F(K) =8 -4—-1-1-1=1
in our case.

There are several methods for finding the torsion subgroup of E(K).
We follow a method in the spirit of the remainder of this proof. Write
k for the number of elements of the torsion subgroup of E(K). Using
again [7, Theorem 10.3], it follows that k2| [[ m/, where the product
is taken over all singular fibers of f, and where now m! denotes
the number of simple irreducible components of such a fiber. This
number is 2 for a fiber of type I, and 4 for a fiber of type I5. Hence,
k%|4-2-2-2 = 32, hence k|4. Since we already know that the torsion
subgroup consists of at least four elements, the conclusion is that we
have found all the torsion points.

What remains to be done is to find a generator of E(K) modulo
torsion. For this, a canonical height on F(K) modulo torsion will be
used. Recall that we already proved that E(K) has rank 1. By a
canonical height in this case one simply means a function

h:E(K)— R

with the properties A(P) = 0 whenever P is a torsion point, h(P+Q) =
h(P) whenever @ is a torsion point, and h(IP) = [2h(P) > 0 whenever
P is a point of infinite order. Such a function P +— h(P) indeed exists;
using [7, Lemma 10.1] a formula for it can be found in [7, Theorem
8.6]. It has the form

h(P) =2+ 2(PO) — contry(P)
— contry (P) — contry, (P) — contre, (P).

(8)

Here (PO) denotes an intersection number (of the sections in S defined
by the points P and O); this is an integer which for P # O is
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nonnegative. If the surface S has a singular fiber over n = v, then
one may also have a contribution contr, (P) to the height of P. In our
case, this contribution is easy to compute using [7, p. 229]:

1. For n = 0, if by substituting n = 0 into the coordinates of P one
obtains the singular point (0,0) of the curve with defining equation
y? = 2 (obtained by substituting n = 0 in (6)), then contro(P) = 1
and otherwise contrg(P) = 0.

2. Similarly, if by substituting n = 1 into the coordinates of P
one obtains the singular point (0,0) of the curve given by y*> =
z?(x — m(1 —m)), then contr; (P) = 1/2 and otherwise contr; (P) = 0.

3. If by substituting » = m into the coordinates of P one obtains the
singular point (m?(1 —m),0) of the curve given by y? = z(z — m?(1 —
m))?, then contr,,(P) = 1/2 and otherwise contr,,(P) = 0.

4. Finally, for n = oo one first rewrites P and the equation (6) in
terms of the coordinates £ = x/n?, n = y/n® and t = 1/n. This leads
to the equation (7). If substituting ¢ = 0 into the new coordinates of P
leads to the singular point (0, 0) of the curve given by n? = £2(£ + m),
then contry, (P) = 1/2, and otherwise contr,(P) = 0.

From this and (8) it is clear that any point P € E(K) has h(P)
€ (1/2)Z. Furthermore, the point P; = (mn, m?n?), which is written
as (mt,m?t) in (&,n,t)-coordinates, does not coincide with the point
(00, 00) for any value of n (or t). Hence the intersection number (OP;)
equals 0. One concludes that the point P; has height 2+0—-1—-0—
0 —1/2 = 1/2. Since this is the minimal positive value a function to
(1/2)Z can possibly attain, it follows that P; generates F(K) modulo
torsion. Hence E(K) is generated by P;,Q; and Q2. Moreover, since
these points are all in the subgroup EF(Q(m,n)) C E(K), it follows
that E(Q(m,n)) = E(K). This proves the theorem. O

5. Examples. Although Theorem 4.1 shows that the rank of the
curve defined by (6) is 1 when m and n are treated as independent
variables, it may be larger for special values of m and n. Using
Tan Connell’s MAPLE-program ‘apecs,” we computed this rank for all
natural numbers m and n with 1 < m < n < 12. Of these 55 pairs,
41 give rank 1 and 14 give rank 2. One finds rank 2 for the following
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values of (m,n):

(3,8) (4,10) (4,11) (5,7) (5,8) (5,12) (6,11)
(6,12) (7,9) (7,11) (7,12) (8,12) (10,12) (11,12).

By transforming rational points on these curves back to the original
equations (1), the following examples of solutions are found.

1. In the case (m,n) = (3,8), generators of the rational points on
the curve given by (6) modulo torsion are provided by (—84,504) and
(—56,224). These points add up to (3-8, 3%-82), so by Remark 3.3 they
basically lead to the same solution of (1), which is (r,s,t) = (2,1,1/2).

2. For (m,n) = (4,10) one finds generators (—200,1600) and
(—144,864). Plus and minus the second one of these leads to the triv-
ial solution with » = 0 of (1). Hence, from Remark 3.3, these points
must be related to (40,1600) via involutions. The point (—200, 1600)
corresponds up to such involutions to (r,s,t) = (35/13,15/13,8/13).
Its negative (—200, —1600) yields (5/3,2/3,1/3).

3. If one takes (m,n) = (5,7), a basis modulo torsion for the
corresponding group of rational points is given by (—150,300) and
(—160,400). While the first of these only leads to a trivial solution of
(1), the second one yields (r,s,t) = (14,6, —6). With our involutions,
this is transformed into the solution in positive integers (14, 6,5). This
expresses the easily verifiable fact that Ay = 5Ag = 7TAs5.

4. When (m,n) = (7,9) one finds especially many integral solutions
to (6), for instance when z = —486, x = —441, x = —432, z = 63,
=172, x = 1800, z = 2646 and x = 84672. However, the only ‘small’
values for (r,s,t) that correspond to such points are (7/3,2/3,5/9)
and (35/9,11/9,28/27). In particular, we found no nontrivial triples of
integers (r, s,t) in this way.

The referee of this paper pointed out to us that even a very modest
attempt to extend our list of examples reveals cases such as (m,n) =
(13,17) and (m,n) = (17,19) where the rank turns out to equal 3. We
have not tried to find cases with even higher rank by a more extensive
search.

Remark 5.1. Although the above list of examples gave us only one
solution in positive integers, it is in fact not hard at all using elementary
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considerations to find many more. Namely, what one looks for are
numbers 2A,, that is, products of two consecutive natural numbers,
which have at least two different factors which are themselves products
of two consecutive natural numbers. So, for instance, when r itself
contains a factor s(s+ 1) -t(¢ + 1) for arbitrary natural numbers s < ¢,
then A, = mA; = n/; for natural numbers m # n depending on r, s
and t. So, in particular, there exist infinitely many triples of natural
numbers (r, s,t) satisfying (1), when one allows m and n to vary.

Using similar considerations, it is not hard to find solutions to related
sets of equations. For instance, one has

Ags = 120A; = 40A5 = 20A; = 12A4 = 8As.

Using the symmetries r <> —r — 1, etc., as well as the trivial solutions,
this gives 26 + 26 = 128 integral points on a (smooth) curve given as
the intersection of five quadrics (such a curve has genus 49).

Acknowledgments. This research was initiated when both authors
were visiting the University of Colorado at Boulder in 1993. It is a
pleasure to thank the number theory group in Boulder, in particular
David Grant and Lynne Walling, for their support. We would also like
to thank Bill Lang for his help on this paper. The second author
expresses his gratitude to the many colleagues at Brigham Young
University who made his stay in Utah during the summer of 1994 a
very pleasant one; especially to Roger Baker, Jasbir Chahal, Bill Lang
and Andy Pollington.

REFERENCES

1. J.W.S. Cassels, Lectures on elliptic curves, Cambridge University Press,
Cambridge, 1991.

2. J.S. Chahal and H. D’Souza, Some remarks on triangular numbers, in Number
theory with an emphasis on the Markoff spectrum (A.D. Pollington and W. Moran,
eds.), Marcel Dekker, Inc., New York, 1993.

3. R. Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977.

4. L.J. Mordell, Note on the integer solutions of the equation Ey? = Ax®+ B2 +
Cz + D, Messenger Math. 51 (1922), 169-171.

5. B.J. Birch and W. Kuyk, eds., Modular functions of one variable IV, Springer-
Verlag, New York, 1975.

6. T. Ono, Variation on a theme of Euler, Jikkyo, Tokyo, 1980 (in Japanese).



TRIANGULAR NUMBERS 949

7. T. Shioda, On the Mordell- Weil lattices, Comm. Math.. Univ. Sancti Pauli 39
(1990), 211-240.

8. J.H. Silverman, The arithmetic of elliptic curves, Springer-Verlag, New York,
1986; Second Edition, 1992.

9. A. Weil, Number theory: An approach through history; from Hammurapi to
Legendre, Birkhauser, Boston, 1983.

DEPARTMENT OF MATHEMATICS, BRIGHAM YOUNG UNIVERSITY, Provo, UT
84602-6539
E-mail address: jasbir@math.byu.edu

VAKGROEP WISKUNDE, RuUG, P.O. Box 800, 9700 AV GRONINGEN, THE
NETHERLANDS
E-mail address: top@math.rug.nl



