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FRACTIONAL INTEGRALS OF IMAGINARY ORDER
SUPPORTED ON CONVEX CURVES, AND THE
DOUBLING PROPERTY

JAMES MARSHALL

1. Introduction and statement of results. Let I': [0,00) — R™
be a curve in R™, n > 2, and define

H.f(z) = /Ooo flz— F(t))(lﬁgﬁ

and
e d
Hsf@) = [ fa=TO)

forx e R, f € C§°(R"™), e > 0and d > 0.

We seek conditions on I' so that H. is a bounded linear operator on
L?*(R") and the family of operators {H. s}, for a fixed ¢, is uniformly
bounded on L%*(R™).

The motivation for examining these operators is the work done by
a number of researchers over the last 20 years in studying the LP-
boundedness of the Hilbert transform Hp and the maximal operator
Mr, defined for z € R™ and f € C§°(R"™) as follows

dt

Hef(o) =pv. [ L)Y

(a principle value integral), and

My f(z) = sup / @ —T(0)] dt.

h>0

Early inquiries into the LP-boundedness of these operators, by Nagel,
Riviere, Stein and Wainger, considered well-curved and two-sided ho-
mogeneous curves. A curve I' in R" is said to be well-curved if I'(0) = 0
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and a segment of the curve containing the origin lies in the subspace
of R” spanned by {T'()(0) 721 Wesay I is a two-sided homogeneous
curve if the following two conditions hold

(5te t> 0,
0 t=0,

(here §; is a one-parameter group of dilations and e and f are vectors
in R™) and

{616 I'(#)=0,t>0} ={£[£-T'(¢) =0, <0}

It was shown in [5] that for two-sided homogeneous curves Hr and
My were bounded on L?(R™) and that, for well-curved curves there
was L?-boundedness for their local variants, which are given by

dt

1
Hef@) =pv. [ fa-Te)F

and

h

Mef(@) = sw 4 [ If@-T(@)/dt
1>h>0 N Jo

We note that these results also hold for H. and H. s, with the proofs

proceeding exactly as for the Hilbert transform in [5], except that

integration over dyadic intervals is replaced by integration over intervals

of the form [6;,0;41], where &; = e2™/.

In the 1980’s attention was turned to convex curves I'. We present
theorems for H. and H, s analogous to those obtained for the Hilbert
transform and maximal operator by Nagel, Vance, Wainger and Wein-
berg in [2, 3, 4]. Let us first restrict the setting to R2.

Theorem 1. Suppose I : [0,00) — R? is of the form I'(t) = (t,~(t)),
where

v:[0,00) — R is convex,

(1) v € C*0,00) and ~(0)=+'(0)=0.
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Suppose also that the function h given by
(1.2) h(t) = ty'(t) — y(t), t>0,
satisfies the “doubling property”
(1.3) there exists a constant C, 1 < C < oo, so that for each t > 0,
h(Ct) > 2h(t).
Then
[Hefll2 < All£]]2

and

HHE,6 |2 S B||f||27 fOT‘ f € CSO(R2)7

where A and B are positive constants which depend only on €. H. and
H. 5 then extend by continuity to all of L*(R?).

Nagel, Vance, Wainger and Weinberg [4] have shown that, under the
hypotheses of Theorem 1, the maximal operator Mr is bounded on
L?(R) and [2] that, for the Hilbert transform, the doubling property
(1.3), where v is now an odd curve, is both a necessary and sufficient
condition for the boundedness of Hr on L?(R?).

Next we extend the notion of convexity to R™ in the following manner,
see [3, p. 486]. Suppose

(1.4) L(t) = (t,72(L), - - -, n(t)),
where v, € C™[0,00) and I'(0) = 0. For 1 < j < n and ¢ > 0, define
Looy(t) - ()
0 () - ()
0 70 7 (1)
and DO (t) =1.
Also set
t ya(t) 73 (t)
L () 7;(t)
Nj (t) = det )
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Our convexity assumption is that D;(¢t) > 0if ¢ > 0, for 2 < j < n.
We then define the auxiliary functions

N;(t)

hi(t) = ———— t 1<53<n.
J() Djfl(t), 0< <OO, SJ=n

Given these definitions we can extend the result of Theorem 1 to R".

Theorem 2. Assume that I'(t) satisfies (1.4), and suppose that
Dij(t)>0, 1<j<n, t>0

and
(1.5) there is a C' > 1 so that for 2 < j < mn,

hj (Ot) > Zhj(t) fort>0.

Then
|Hfll2 < Allf]l2

and
|He5fll2 < Bl fll2

where A and B depend only on n and .

We note that, if n = 2, Theorem 2 yields the result only for strictly
convex curves, i.e., curves with 7"/ (¢) > 0 for ¢ > 0, while Theorem 1
admits curves which may have 7" (t) = 0 for some values of ¢.

In this setting, Nagel, Vance, Wainger and Weinberg considered the
local version of the Hilbert transform and showed [3] that, under the
hypotheses of Theorem 2, with 74 an odd function in C™[—1, 1], that Hp
is bounded on L?(R") if and only if condition (1.5) holds. This result,
with 7, € C™(—00,00), is also valid for the global Hilbert transform
Hp. As for the maximal operator, in this case the question of L2-
boundedness remains unanswered.

Finally, define a piecewise linear curve y by

(1.6) y#)=0 for0<t<1 and 7()=¢—-1 forl<t,
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and then smooth out 7 by replacing it with an appropriately chosen
polynomial for 1/2 <t < 3/2. Specifically, define v* by

0 0<t<1/2,
(L7)  ~*(t) =< —t*/2+2t> —9/4t> +t - 5/32 1/2<t<3/2,
t—1 t>3/2.

Then, for ¢ > 3/2, h*(t) = 1 where h*(t) = t(v*)'(t) — v*(¢t). Thus,
h* does not possess the doubling property, while v* satisfies all of
the other hypotheses of Theorem 1. Thus, for I'(t) = (¢,v*(t)), Hr
is not bounded on L?(R?). From this, it follows, by the method
employed below in Section 5 for H. s, that Hr is also not bounded
on L2(R?) if '(t) = (¢,7(t)), with ~y as in (1.6). However, for these two
curves, both H. and H, s are bounded on L?(R?), as is the maximal
operator, although this is not the first instance in which the results
for the maximal operator are known to differ from those of the Hilbert
transform; see [1]. Furthermore, for fixed ¢ the boundedness of H. ; is
uniform in §.

2. The L?-boundedness of H, follows from that of H, 5. Since
H.f(&) = m(€)f(&) where m. is given by

_ 1€-T'(t) n
ms(g) - A e (1 + t2)1/2+i5’ E € R )

and @(f) = msvg(f)f(f), where m, 5 is given by

ms,5(£) = A et T tl+ie? §ER,

the boundedness on L?(R™) of these operators can be established by
showing that m. and m. s are bounded functions on R".

In the proofs of Theorems 1 and 2, we will show that, for all § > 0,
there exists a positive constant B, depending only on n and ¢, such
that

° rw dt
(2.1) /5 esf(”m < B.




292 J. MARSHALL

Then the estimate
(2.2) |(1 4 ¢2)7Y/27% 172 < (14 2e)t73%, fort >0

shows that

. dt e dt
i€-1(2) _ _ () 2
(2.3) ‘/1 € (1+ ¢2)1/2+is /1 € 1+ 2ie

< / |(1 +t2)—1/2—2is _ t—1—2is| dt <
1

14 2¢
5
Thus, (2.1) and the triangle inequality yield

<, dt
i6-T'(t)
(2.4) ‘/1 € (1 + t2)1/2+ie

Since | fol el (1 4 ¢2)=(1/2+) g¢| < log(v/2/2 + 1), combining this
with (2.5) and the triangle inequality then shows that m. is a bounded
function.

1+ 2¢

B.
2+

The estimate in (2.3) can be shown by splitting the function g(s) =
s~1/2- into its real and imaginary parts and applying the mean value
theorem to each of them.

3. Proof of Theorem 1.

Case (i). Set g(t) = &-T'(t) = zt+ yvy(t), where £ = (z,y) with z > 0
and y > 0. Note that

gt)=z+yy () >0
and

g"(t) =y"(t) > 0.

It follows that we can find 7 > 0 such that ng'(n) = 1. Thus, for any
large N,

N N
: dt o dt ; dt
1g(t o 1g(t 1g(t
/5 eg()ﬂ—m‘/geg()ﬂ—m+/77 eg()tl—qLia_A—i_B'
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Integration by parts then shows

ig(n) ig(6) 1 /M o dt
‘A| = e, — — e— — g/(t)ezg(t)f
—iens  —igd® € Js te
(3.1)
2 1/, 3
<Z4- [gwars=.
e ¢eJo €

A different integration by parts gives

ig(N) cig(n)
Bl < |— -
= g/ (N) N1t g’(n)nl“s
1 N eig(t) p
- t
(32) + 7 /7 2t1+zs ‘
1+ e eta(t)
dt
+ ‘ i /T; g (t)t2+za
<b5+e.

We note that the same result holds if we replace g(t) with —g(¢).

Case (ii). Set g(t) = zt —yvy(t), with z > 0 and y > 0. Nagel, Vance,
Wainger and Weinberg [2, Lemma 1] have shown that, for a curve
satisfying (1.1) the doubling property is equivalent to the following
condition:

(3.3) there exists C' > 1 such that A(t) < Ct(y'(s) — v'(t)) whenever
0<t<s/C.

Using this constant C, write

o at N &/C O 5
/ e :/ +/ +/ +/ e
5 t g n &1/C Cé&2 ¢

where g(n) =1 and ¢'(t) =0 for & <t < &. (Following this proof we
will demonstrate how to proceed if ¢'(t) # 0 for ¢t > 0.)

To begin, observe that ¢g"”(t) = —yvy"”(t) < 0, so it follows that for
t > Cé&y, we can find A > 0 with A - |g'(C&z + A)| = 1. Next, write

oo Céx+A oo
/ iom 9t / T e At / gign 4t
Cts t1+zs Jor t1+zs CéatA t1+zs
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Then the integration by parts from (3.1) gives

C A
‘/EﬁgWLﬂ;
Céa

) 1 Cé+A 3
< -+ -9 (C& + Q) dt < —
€ € Cés €

For any N > C¢&; + A, the integration by parts from (3.2) shows

CtatA titie| = (Cé + A)|g'(C& + A))|
(5+¢)
5 .
SC&ra0TE

Next, we observe that h'(t) = ty"(¢). Thus, if y"/(¢t) = 0fora <t < b,
then h(t) = a for a < ¢t < b, where a is a positive constant. But
h(Ct) > 2h(t) for t > 0, so h(Ca) > 2h(a). Thus, we must have
Ca > b.

Since ¢’ (t) = 0 for & < t < &y, it follows from the preceding comments
that we must have & /& < C. Then

c
/§%wmiﬁ_
51/0 t1+is

Recalling that g(n) = 1, we use the method of (3.1) to show

gio(n At
5 tlt+ie

Finally, to bound | ffl/c 9~ (1+i) dt| we note that (3.3) shows that
if0<t<¢&/C, then

<log <C"2§—2) <3logC.
1

2 1 /"
§—+—/ gt dt =2
0 g

9 19

_ (&) —9(8)
G =CH L e — )

so that

1 Ch

B e 7)) = @) -0

0<t<&/C
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But g(t) = y(ty'(&1) — 7(¢)) and ¢'(t) = y(7'(&) — 7' (t)), so (3.4) is
equivalent to

1 Ch

Thus, the method of (3.2) shows

(3.5)

/51/0 ia(t) dt ei9(£1/C) B etg(n)
n thtie 9’(51/0)(51/6’)1*“ g (m)nt+ie
&1/C (
e,
(3.6) n
{1/c dt
1
+ ( —i—e)/ﬁ ()
=1+11I+1I1.
But, by (3.5),
C C
+ — <20
9(€/C) " gln) =
and c
L0

IIIng(Hs)/ dt < Ci(1+e¢).

n o (9(0)?

As for I1, another integration by parts gives

- 1 _ 1 &1/C g'(t) ,
M= @ow@o)  wm " /ﬂ (o) 1< Ot Ot

Now, if 0 < ¢'(t) =  — y7/(¢t) for t > 0, then x/y > ~/(t) for all ¢ > 0.

Observe also that g(t) = y((z/y)t — (1)) and ¢'(2) = y(x/y — 7' (£)).
Then, for N > n, where f(n) = 1, (3.3) shows that, for 0 < ¢t < N =

CN/C, we have
1
< & 0<t<N.

tg'(t) ~ g(t)’

Thus, an e9()¢=(1+i) gt may be handled as ffl/c et9(t)=(1+ie) gt was
above, and [}’ €9t~ (14i€) gt is handled as before.
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Finally, we note that, as in case (i), the proof of case (ii) goes through
without difficulty if we replace g(t) with —g(¢). This completes the
proof of Theorem 1. o

4. Proof of Theorem 2. Recall that we are now considering
a curve I'(t) = (¢,72(t),... ,7(t)). For x = (z1,29,...,z,), set
g(t) = >p_; zkyk(t), where v1(t) = t. Then, for a curve I' satisfying
the hypotheses of Theorem 2, Nagel, Vance, Wainger and Weinberg
have proven the following result.

Lemma [3, p. 498]. There exist constants C and D so that, for

every x = (z1,%2,...,%,) € R™ with z, # 0 and associated function
g(t) =Y r i ey (t), we have
(4.1) lg(t)| < C-t-1g'(t)| for every t € [0,00)\,

where the exceptional set Q = Q, = UM_, (¢, dy) satisfies M < 2n—2
and dp, /e < D for all m. (Moreover, neither g' nor g" is ever 0 on
[0, 00)\2.)

Note that, since g’ and ¢" are never zero on [0,00)\f2, they must be
of constant sign on each of the 2n — 1 nonoverlapping intervals which
comprise this set. We further subdivide these intervals at the solutions
of |g(t)| = 1, of which there can be at most 2n, since ¢’ has no more
than n — 1 zeros, see [3, p. 493]. Thus, [0,00)\Q can be written as
the union of at most 4n — 1 intervals, on each of which we either have
lg(t)] = Lor |g(t)] < L.

If [a,b] is one of the intervals on which |g(¢)] < 1, then the method
of (3.1) leads to

b b
o dt 2 1
‘/ e’g“)m §—+—‘/ g'(t)dt

& 9

IA

2+ Zlgb) - g(a)]

+ 2 (lg®) + (@)

IA

IA
MR OND®
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If we instead have |g(t) > 1 on [a,b], then the method of (3.2) shows

et9(b) eig(a)

/ e9(® _| + .
t1+za — l'gl(b)bl—i-zs ig’(a)al‘“a

1 rb g//(t)eig(t)
i ‘/ (o/(1))20 e

l . b ig(t)

n —}jzs/ e @

i J. g@eTe

=1+ 1I+1II.

Using (4.1), we then proceed as we did following (3.6) to conclude that
‘/ ’g(t) ‘ <20 +2C?

if |g(t)| > 1 for a < t < b. Furthermore,

dt ™ dt
‘/ )t1+z€ Z/ —< (2n — 2)log D.

Thus, for x,, # 0, m. s is bounded uniformly in § for fixed €. Since the
set where x,, = 0 is of measure zero in R", the proof of Theorem 2 is
complete. u]

5. The L?>-boundedness of H. s and the maximal operator
supported on the curves I'(t) = (¢,7(t)), with v as in (1.6) and
r*(t) = (t,v*(t)) with ~* as in (1.7). We first show the result for
H. 5. With v as in (1.6), set

H— xt 0<t<1,
9(t) = zt—yt—1) t>1,y>xz>0.

Choose 7 such that n(yf:v) = 1. First assume 1 > 1. Then, for N > 7,

et9(N) etg(m)
g(t) _ _
‘/ o e e e Thi

. N ig(t
(5.1) n 1+zs/ et9(t)
n
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and

‘ / Gia() _dt
(52) 1 t1+15

_etg(n) ig(1) 1 /" o dt
4y .—/ i(z—y)e'dt) —
ene 1€ 1€ Jq te

2 — n 3
_+M/ dat = 3.
€ € 0 €

IN

Now, still with n > 1, suppose z < 1. Then, integration by parts as in

(5.2) gives

dt | _2 = ! 3
5.3 et _—_ —/ dt = 2.
(5:3) ‘/ titie]| = e Jo €

If, on the other hand, x > 1, choose 8 such that Sz = 1 so that 8 < 1.
Then the method of (5.2) gives

P gy dt | 3
5.4 ) _—_| <2
( ) ‘A € tltie | — ¢’
while the method of (5.1) gives

i dt
(5.5) ‘ / o | <3+

Now suppose n < 1. Then le et ¢—(1+i€) gt is dealt with by the
method of (5.1). If z > 1, f; e ¢=(+ie) dt is split as in (5.4) and
(5.5), while if < 1, the method of (5.3) is used.

We note that, in the case where

) = at 0<t<1,
9= zt—yt—1) t>1,z>y>0,

choosing n such that n(z — y) = 1 leads to essentially the same proof,
as does the case with

o= 0<t<l,
I = Vat+y(t—1) t>1,2>0,y>0,

with n(z +y) = 1.
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Now, with v* as in (1.7), we have

7 gitatyy @) B [T eyt 9
t1+i€ tl—i—e
é é

(ei(wtﬂw(t)) N ei(wtﬂn*(t))) dt

tl—i—is
3/2 gy
< / — =log 3.
12t
It then follows that

e dt
etl@t+yy™ (1) =7
/ m ‘ <log3 + B,

‘ / giletyr() 4t
t1+zs

To see that Mrp- is bounded on L?(R?), first note that

where

Mr- f(z) = sup — / |f(z—T*(2))|dt
h>0 h
< sup / |f(z—T*(t))|dt
3/2>h>0
+ sup / |f(z —T7*(t))| dt.
h>3/2 b
Now consider a curve T'(t) = (t,7(t)), where
0 0<t<1/2,
F(t) = —tt/2+2t3 — (9/4)t2 +t—5/2 1/2<t<3/2,

3 —(9/2)t2 + (31/4)t —23/8  t >3/2.
Then, by the result of Nagel, Vance, Wainger and Weinberg [4], My is
bounded on L?(R?2). Note that, for 0 < ¢t < 3/2, 5(t) = v*(¢). Thus,
for 0 <t < 3/2,

1 h
sup —/ f(@ —T*(t)dt = sup /\fx— )l dt
3/2>h>0 P Jo 3/2>h>0 2
< sup+ /|fxf )l dt
h>0

_MFf
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For h > 3/2, with = = (£, 1),

3/2
F [ e -rwla= 1 [ e -roja

1 [ .
YOI

3/2 ~
i—A flo D) de

=30
1 3/24u
tamra, Mt

<'sup — / |f(z —T(t))|dt

Aoy

Thus,
sup —/ |f(z—~*(t))|dt
h>3/2 h
<sup — / |f(z—A(t))| dt
v>0V

wop [0 ((“‘)‘ (1-3) 1)
=Mff($)+Nf<£—%,n—%>-

But, as noted above, My is bounded on L*(R?), while it follows
from the theorem on the one-dimensional Hardy-Littlewood maximal

function that

ffn—sup /If —t,n—t)|dt

is a bounded operator on LP(R?) for 1 < p < co. Thus, M- is bounded
on L?(R?). The proof for M, with v as in (1.6), is similar.
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6. An extension of Theorem 1. We can extend the result
of Theorem 1 to certain piecewise linear convex curves. Suppose
I['(t) = (¢, v(t)), where v is piecewise linear on intervals of the form
[tjt+1,t;], where t;/tj11 < C for some constant C' > 1, t; / oo as
j— —ooandt; \,0asj— oo.

Set v(t;) = a;j. Then, on [t;ji1,t;], we have
(6.1) V() = ;(t) = myt + (a; — myt;) = myt +bj,
where m; is the slope of ;. Then, for ¢;41 <t < t;,
h(t) = hj(t) = mjt — (mjt 4+ b;) = —b; = mjt; — a;.
If we then require that we choose the a;’s so that

aj a;

> (C and mj_122mjft—,

(6.2)
aj+1 J

we guarantee that hA(Ct) > 2h(t) for all ¢ for which h is defined.

For each integer j we can then choose §; such that 0 < §; <
ti(1— e‘rm). Setting a;j = t; — d; and B = t; + 0, we then have

Bi dt , ti di ,
(6.3) 0 </ < < 27Ul and 0< / - < 2~ 11,
t a

J J

Furthermore, for each j we may find a fourth degree polynomial ¢;(t)
with

o;(ag) = vi(aj), 0i(B;) = v1i-1(8;);
pi(ay) = my, ¢5(B85) = mj_1;

and
i (aj) = 0=} (8)).

Then setting J(t) = v;(t), if B41 < t < o; and F(t) = @;(t), if
a;j <t < Bj_1, we have a curve 4 which satisfies the hypotheses of
Theorem 1.



302 J. MARSHALL

Setting I'(t) = (t,7;(t)) for t;41 < t < t;, and T'(t) = (¢,7(t)), we
note that the multiplier function for H, s supported on I is given by

tr dt dt
i(zt+yys(t)) _2Y et@t+yy; (1))
(6.4) /5 ‘ e Z T

j=—o0 tJ+1

for some J € Z.

Then (6.3) and the triangle inequality show

ty
(6.5) ‘/ i(wt+yvys(t)) @ dt / ei(wt+g“7(t))i
tltie tltie

tj
Y ittt B [T sy 4t
t1+is 41 t1+is

j=—o00 tj+1
Since | [5° et@ttyi()¢—(+i2) gt| < B, where B depends only on e, it
follows from this and (6.5) that the multiplier function given by (6.4)
has a bound which depends only on .

As a final comment, we note that Mr and H.s have both been
shown to be bounded when supported on a curve for which the Hilbert
transform is unbounded, but that there are no known examples of
curves for which the results for these two operators differ.
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