FRACTIONAL INTEGRALS OF IMAGINARY ORDER SUPPORTED ON CONVEX CURVES, AND THE DOUBLING PROPERTY

JAMES MARSHALL

1. Introduction and statement of results. Let $\Gamma:[0,\infty)\to \mathbf{R}^n$ be a curve in $\mathbf{R}^n,\ n\geq 2,$ and define

$$H_{\varepsilon}f(x) = \int_{0}^{\infty} f(x - \Gamma(t)) \frac{dt}{(1 + t^2)^{1/2 + i\varepsilon}}$$

and

$$H_{\varepsilon,\delta}f(x) = \int_{\delta}^{\infty} f(x - \Gamma(t)) \frac{dt}{t^{1+i\varepsilon}},$$

for $x \in \mathbf{R}^n$, $f \in C_0^{\infty}(\mathbf{R}^n)$, $\varepsilon > 0$ and $\delta > 0$.

We seek conditions on Γ so that H_{ε} is a bounded linear operator on $L^2(\mathbf{R}^n)$ and the family of operators $\{H_{\varepsilon,\delta}\}$, for a fixed ε , is uniformly bounded on $L^2(\mathbf{R}^n)$.

The motivation for examining these operators is the work done by a number of researchers over the last 20 years in studying the L^p -boundedness of the Hilbert transform \mathbf{H}_{Γ} and the maximal operator \mathbf{M}_{Γ} , defined for $x \in \mathbf{R}^n$ and $f \in C_0^{\infty}(\mathbf{R}^n)$ as follows

$$\mathbf{H}_{\Gamma}f(x) = \text{p.v.} \int_{-\infty}^{\infty} f(x - \Gamma(t)) \frac{dt}{t}$$

(a principle value integral), and

$$\mathbf{M}_{\Gamma}f(x) = \sup_{h>0} \frac{1}{h} \int_0^h |f(x - \Gamma(t))| dt.$$

Early inquiries into the L^p -boundedness of these operators, by Nagel, Rivière, Stein and Wainger, considered well-curved and two-sided homogeneous curves. A curve Γ in \mathbb{R}^n is said to be well-curved if $\Gamma(0) = 0$

Copyright ©1998 Rocky Mountain Mathematics Consortium

Received by the editors on August 21, 1995, and in revised form on February 24, 1996.

and a segment of the curve containing the origin lies in the subspace of \mathbf{R}^n spanned by $\{\Gamma^{(j)}(0)\}_{j=1}^{\infty}$. We say Γ is a two-sided homogeneous curve if the following two conditions hold

$$\Gamma(t) = \begin{cases} \delta_t e & t > 0, \\ \delta_t f & t < 0, \\ 0 & t = 0, \end{cases}$$

(here δ_t is a one-parameter group of dilations and e and f are vectors in \mathbf{R}^n) and

$$\{\xi \mid \xi \cdot \Gamma(t) \equiv 0, t > 0\} = \{\xi \mid \xi \cdot \Gamma(t) \equiv 0, t < 0\}.$$

It was shown in [5] that for two-sided homogeneous curves \mathbf{H}_{Γ} and \mathbf{M}_{Γ} were bounded on $L^2(\mathbf{R}^n)$ and that, for well-curved curves there was L^2 -boundedness for their local variants, which are given by

$$H_{\Gamma}f(x) = \text{p.v.} \int_{-1}^{1} f(x - \Gamma(t)) \frac{dt}{t}$$

and

$$M_{\Gamma}f(x) = \sup_{1>h>0} \frac{1}{h} \int_{0}^{h} |f(x - \Gamma(t))| dt.$$

We note that these results also hold for H_{ε} and $H_{\varepsilon,\delta}$, with the proofs proceeding exactly as for the Hilbert transform in [5], except that integration over dyadic intervals is replaced by integration over intervals of the form $[\delta_j, \delta_{j+1}]$, where $\delta_j = e^{2\pi j/\varepsilon}$.

In the 1980's attention was turned to convex curves Γ . We present theorems for H_{ε} and $H_{\varepsilon,\delta}$ analogous to those obtained for the Hilbert transform and maximal operator by Nagel, Vance, Wainger and Weinberg in [2, 3, 4]. Let us first restrict the setting to \mathbb{R}^2 .

Theorem 1. Suppose $\Gamma:[0,\infty)\to \mathbf{R}^2$ is of the form $\Gamma(t)=(t,\gamma(t)),$ where

(1.1)
$$\gamma: [0, \infty) \longrightarrow \mathbf{R} \quad is \ convex,$$

$$\gamma \in C^2(0, \infty) \quad and \quad \gamma(0) = \gamma'(0) = 0.$$

Suppose also that the function h given by

$$(1.2) h(t) = t\gamma'(t) - \gamma(t), t > 0,$$

satisfies the "doubling property"

(1.3) there exists a constant C, $1 < C < \infty$, so that for each t > 0,

$$h(Ct) \geq 2h(t)$$
.

Then

$$||H_{\varepsilon}f||_2 \leq A||f||_2$$

and

$$||H_{\varepsilon,\delta}||_2 \leq B||f||_2$$
, for $f \in C_0^{\infty}(\mathbf{R}^2)$,

where A and B are positive constants which depend only on ε . H_{ε} and $H_{\varepsilon,\delta}$ then extend by continuity to all of $L^2(\mathbf{R}^2)$.

Nagel, Vance, Wainger and Weinberg [4] have shown that, under the hypotheses of Theorem 1, the maximal operator \mathbf{M}_{Γ} is bounded on $L^2(\mathbf{R})$ and [2] that, for the Hilbert transform, the doubling property (1.3), where γ is now an odd curve, is both a necessary and sufficient condition for the boundedness of \mathbf{H}_{Γ} on $L^2(\mathbf{R}^2)$.

Next we extend the notion of convexity to \mathbb{R}^n in the following manner, see [3, p. 486]. Suppose

(1.4)
$$\Gamma(t) = (t, \gamma_2(t), \dots, \gamma_n(t)),$$

where $\gamma_k \in C^n[0,\infty)$ and $\Gamma(0) = 0$. For $1 \leq j \leq n$ and t > 0, define

$$D_{j}(t) = \det \begin{pmatrix} 1 & \gamma_{2}'(t) & \cdots & \gamma_{j}'(t) \\ 0 & \gamma_{2}''(t) & \cdots & \gamma_{j}''(t) \\ \vdots & \vdots & & \vdots \\ 0 & \gamma_{2}^{(j)}(t) & \cdots & \gamma_{j}^{(j)}(t) \end{pmatrix}$$

and $D_0(t) = 1$.

Also set

$$N_{j}(t) = \det \begin{pmatrix} t & \gamma_{2}(t) & \cdots & \gamma_{j}(t) \\ 1 & \gamma'_{2}(t) & \cdots & \gamma'_{j}(t) \\ \vdots & \vdots & \vdots \\ 0 & \gamma_{2}^{(j-1)}(t) & \cdots & \gamma_{j}^{(j-1)}(t) \end{pmatrix}.$$

Our convexity assumption is that $D_j(t) > 0$ if t > 0, for $2 \le j \le n$. We then define the auxiliary functions

$$h_j(t) = \frac{N_j(t)}{D_{j-1}(t)}, \quad 0 < t < \infty, \ 1 \le j \le n.$$

Given these definitions we can extend the result of Theorem 1 to \mathbb{R}^n .

Theorem 2. Assume that $\Gamma(t)$ satisfies (1.4), and suppose that

$$D_j(t) > 0, \qquad 1 \le j \le n, \qquad t > 0$$

and

(1.5) there is a C > 1 so that for $2 \le j \le n$,

$$h_i(Ct) \geq 2h_i(t)$$
 for $t > 0$.

Then

$$||H_{\varepsilon}f||_2 \leq A||f||_2$$

and

$$||H_{\varepsilon,\delta}f||_2 \leq B||f||_2$$

where A and B depend only on n and ε .

We note that, if n=2, Theorem 2 yields the result only for strictly convex curves, i.e., curves with $\gamma''(t) > 0$ for t > 0, while Theorem 1 admits curves which may have $\gamma''(t) = 0$ for some values of t.

In this setting, Nagel, Vance, Wainger and Weinberg considered the local version of the Hilbert transform and showed [3] that, under the hypotheses of Theorem 2, with γ_k an odd function in $C^n[-1,1]$, that H_{Γ} is bounded on $L^2(\mathbf{R}^n)$ if and only if condition (1.5) holds. This result, with $\gamma_k \in C^n(-\infty,\infty)$, is also valid for the global Hilbert transform \mathbf{H}_{Γ} . As for the maximal operator, in this case the question of L^2 -boundedness remains unanswered.

Finally, define a piecewise linear curve γ by

(1.6)
$$\gamma(t) = 0$$
 for $0 \le t \le 1$ and $\gamma(t) = t - 1$ for $1 < t$,

and then smooth out γ by replacing it with an appropriately chosen polynomial for $1/2 \le t \le 3/2$. Specifically, define γ^* by

(1.7)
$$\gamma^*(t) = \begin{cases} 0 & 0 \le t \le 1/2, \\ -t^4/2 + 2t^3 - 9/4t^2 + t - 5/32 & 1/2 \le t \le 3/2, \\ t - 1 & t > 3/2. \end{cases}$$

Then, for t > 3/2, $h^*(t) = 1$ where $h^*(t) = t(\gamma^*)'(t) - \gamma^*(t)$. Thus, h^* does not possess the doubling property, while γ^* satisfies all of the other hypotheses of Theorem 1. Thus, for $\Gamma(t) = (t, \gamma^*(t))$, \mathbf{H}_{Γ} is not bounded on $L^2(\mathbf{R}^2)$. From this, it follows, by the method employed below in Section 5 for $H_{\varepsilon,\delta}$, that \mathbf{H}_{Γ} is also not bounded on $L^2(\mathbf{R}^2)$ if $\Gamma(t) = (t, \gamma(t))$, with γ as in (1.6). However, for these two curves, both H_{ε} and $H_{\varepsilon,\delta}$ are bounded on $L^2(\mathbf{R}^2)$, as is the maximal operator, although this is not the first instance in which the results for the maximal operator are known to differ from those of the Hilbert transform; see [1]. Furthermore, for fixed ε the boundedness of $H_{\varepsilon,\delta}$ is uniform in δ .

2. The L^2 -boundedness of H_{ε} follows from that of $H_{\varepsilon,\delta}$. Since $\widehat{H_{\varepsilon}f}(\xi) = m_{\varepsilon}(\xi)\widehat{f}(\xi)$ where m_{ε} is given by

$$m_{\varepsilon}(\xi) = \int_{0}^{\infty} e^{i\xi \cdot \Gamma(t)} \frac{dt}{(1+t^2)^{1/2+i\varepsilon}}, \quad \xi \in \mathbf{R}^n,$$

and $\widehat{H_{\varepsilon,\delta}f}(\xi) = m_{\varepsilon,\delta}(\xi)\widehat{f}(\xi)$, where $m_{\varepsilon,\delta}$ is given by

$$m_{arepsilon,\delta}(\xi) = \int_{\delta}^{\infty} e^{i\xi\cdot\Gamma(t)} rac{dt}{t^{1+iarepsilon}}, \quad \xi\in\mathbf{R}^n,$$

the boundedness on $L^2(\mathbf{R}^n)$ of these operators can be established by showing that m_{ε} and $m_{\varepsilon,\delta}$ are bounded functions on \mathbf{R}^n .

In the proofs of Theorems 1 and 2, we will show that, for all $\delta > 0$, there exists a positive constant B, depending only on n and ε , such that

(2.1)
$$\left| \int_{\delta}^{\infty} e^{i\varepsilon \cdot \Gamma(t)} \frac{dt}{t^{1+i\varepsilon}} \right| \le B.$$

Then the estimate

$$(2.2) |(1+t^2)^{-1/2-i\varepsilon} - t^{1-2i\varepsilon}| \le (1+2\varepsilon)t^{-3}, for t > 0$$

shows that

$$(2.3) \quad \left| \int_{1}^{\infty} e^{i\xi \cdot \Gamma(t)} \frac{dt}{(1+t^2)^{1/2+i\varepsilon}} - \int_{1}^{\infty} e^{i\xi \cdot \Gamma(t)} \frac{dt}{t^{1+2i\varepsilon}} \right|$$

$$\leq \int_{1}^{\infty} \left| (1+t^2)^{-1/2-2i\varepsilon} - t^{-1-2i\varepsilon} \right| dt \leq \frac{1+2\varepsilon}{2}.$$

Thus, (2.1) and the triangle inequality yield

(2.4)
$$\left| \int_{1}^{\infty} e^{i\xi \cdot \Gamma(t)} \frac{dt}{(1+t^2)^{1/2+i\varepsilon}} \right| \leq \frac{1+2\varepsilon}{2} + B.$$

Since $|\int_0^1 e^{i\xi\cdot\Gamma(t)}(1+t^2)^{-(1/2+i\varepsilon)}\,dt| \leq \log(\sqrt{2}/2+1)$, combining this with (2.5) and the triangle inequality then shows that m_ε is a bounded function.

The estimate in (2.3) can be shown by splitting the function $g(s) = s^{-1/2-i\varepsilon}$ into its real and imaginary parts and applying the mean value theorem to each of them.

3. Proof of Theorem 1.

Case (i). Set $g(t)=\xi\cdot\Gamma(t)=xt+y\gamma(t),$ where $\xi=(x,y)$ with x>0 and y>0. Note that

$$g'(t) = x + y\gamma'(t) > 0$$

and

$$g''(t) = y\gamma''(t) \ge 0.$$

It follows that we can find $\eta > 0$ such that $\eta g'(\eta) = 1$. Thus, for any large N,

$$\int_{\delta}^{N} e^{ig(t)} \frac{dt}{t^{1+i\varepsilon}} = \int_{\delta}^{\eta} e^{ig(t)} \frac{dt}{t^{1+i\varepsilon}} + \int_{\eta}^{N} e^{ig(t)} \frac{dt}{t^{1+i\varepsilon}} = A + B.$$

Integration by parts then shows

(3.1)
$$|A| = \left| \frac{e^{ig(\eta)}}{-i\varepsilon\eta^{i\varepsilon}} - \frac{e^{ig(\delta)}}{-i\varepsilon\delta^{i\varepsilon}} + \frac{1}{\varepsilon} \int_{\delta}^{\eta} g'(t)e^{ig(t)} \frac{dt}{t^{i\varepsilon}} \right| \\ \leq \frac{2}{\varepsilon} + \frac{1}{\varepsilon} \int_{0}^{\eta} g'(t) dt \leq \frac{3}{\varepsilon}.$$

A different integration by parts gives

$$|B| \leq \left| \frac{e^{ig(N)}}{ig'(N)N^{1+i\varepsilon}} - \frac{e^{ig(\eta)}}{g'(\eta)\eta^{1+i\varepsilon}} \right|$$

$$+ \left| \frac{1}{i} \int_{\eta}^{N} \frac{g''(t)e^{ig(t)}}{(g'(t))^{2}t^{1+i\varepsilon}} dt \right|$$

$$+ \left| \frac{1+i\varepsilon}{i} \int_{\eta}^{N} \frac{e^{ig(t)}}{g'(t)t^{2+i\varepsilon}} dt \right|$$

$$\leq 5 + \varepsilon.$$

We note that the same result holds if we replace g(t) with -g(t).

Case (ii). Set $g(t) = xt - y\gamma(t)$, with x > 0 and y > 0. Nagel, Vance, Wainger and Weinberg [2, Lemma 1] have shown that, for a curve satisfying (1.1) the doubling property is equivalent to the following condition:

(3.3) there exists C > 1 such that $h(t) \leq Ct(\gamma'(s) - \gamma'(t))$ whenever $0 < t \leq s/C$.

Using this constant C, write

$$\int_{\delta}^{\infty}e^{ig(t)}\frac{dt}{t^{1+i\varepsilon}}=\int_{\delta}^{\eta}+\int_{\eta}^{\xi_1/C}+\int_{\xi_1/C}^{C\xi_2}+\int_{C\xi_2}^{\infty}e^{ig(t)}\frac{dt}{t^{1+i\varepsilon}},$$

where $g(\eta) = 1$ and g'(t) = 0 for $\xi_1 \le t \le \xi_2$. (Following this proof we will demonstrate how to proceed if $g'(t) \ne 0$ for t > 0.)

To begin, observe that $g''(t) = -y\gamma''(t) \le 0$, so it follows that for $t > C\xi_2$, we can find $\Delta > 0$ with $\Delta \cdot |g'(C\xi_2 + \Delta)| = 1$. Next, write

$$\int_{C\xi_2}^{\infty}e^{ig(t)}\frac{dt}{t^{1+i\varepsilon}}=\int_{C\xi_2}^{C\xi_2+\Delta}e^{ig(t)}\frac{dt}{t^{1+i\varepsilon}}+\int_{C\xi_2+\Delta}^{\infty}e^{ig(t)}\frac{dt}{t^{1+i\varepsilon}}.$$

Then the integration by parts from (3.1) gives

$$\left| \int_{C\xi_2}^{C\xi_2 + \Delta} e^{ig(t)} \frac{dt}{t^{1+i\varepsilon}} \right| \le \frac{2}{\varepsilon} + \frac{1}{\varepsilon} |g'(C\xi_2 + \Delta)| \int_{C\xi_2}^{C\xi_2 + \Delta} dt \le \frac{3}{\varepsilon}.$$

For any $N > C\xi_2 + \Delta$, the integration by parts from (3.2) shows

$$\left| \int_{C\xi_2 + \Delta}^{N} e^{ig(t)} \frac{dt}{t^{1+i\varepsilon}} \right| \le \frac{5 + \varepsilon}{(C\xi_2 + \Delta)|g'(C\xi_2 + \Delta)|}$$

$$\le \frac{(5 + \varepsilon)\Delta}{C\xi_2 + \Delta} \le 5 + \varepsilon.$$

Next, we observe that $h'(t) = t\gamma''(t)$. Thus, if $\gamma''(t) = 0$ for $a \le t \le b$, then $h(t) = \alpha$ for $a \le t \le b$, where α is a positive constant. But $h(Ct) \ge 2h(t)$ for t > 0, so $h(Ca) \ge 2h(a)$. Thus, we must have Ca > b.

Since g'(t) = 0 for $\xi_1 \le t \le \xi_2$, it follows from the preceding comments that we must have $\xi_2/\xi_1 < C$. Then

$$\left| \int_{\xi_1/C}^{C\xi_2} e^{ig(t)} \frac{dt}{t^{1+i\varepsilon}} \right| \le \log\left(C^2 \frac{\xi_2}{\xi_1}\right) \le 3 \log C.$$

Recalling that $g(\eta) = 1$, we use the method of (3.1) to show

$$\left| \int_{\delta}^{n} e^{ig(t)} \frac{dt}{t^{1+i\varepsilon}} \right| \leq \frac{2}{\varepsilon} + \frac{1}{\varepsilon} \int_{0}^{\eta} g'(t) dt = \frac{3}{\varepsilon}.$$

Finally, to bound $|\int_{\eta}^{\xi_1/C} e^{ig(t)} t^{-(1+i\varepsilon)} dt|$, we note that (3.3) shows that if $0 < t \le \xi_1/C$, then

$$C_1 = C + 1 \ge \frac{t\gamma'(\xi_1) - \gamma(t)}{t(\gamma'(\xi_1) - \gamma'(t))},$$

so that

(3.4)
$$\frac{1}{t(\gamma'(\xi_1) - \gamma'(t))} \le \frac{C_1}{t\gamma'(\xi_1) - \gamma(t)}, \quad 0 < t \le \xi_1/C.$$

But $g(t) = y(t\gamma'(\xi_1) - \gamma(t))$ and $g'(t) = y(\gamma'(\xi_1) - \gamma'(t))$, so (3.4) is equivalent to

(3.5)
$$\frac{1}{tg'(t)} \le \frac{C_1}{g(t)}, \quad 0 < t \le \xi_1/C.$$

Thus, the method of (3.2) shows

$$\left| \int_{\eta}^{\xi_{1}/C} e^{ig(t)} \frac{dt}{t^{1+i\varepsilon}} \right| \leq \left| \frac{e^{ig(\xi_{1}/C)}}{g'(\xi_{1}/C)(\xi_{1}/C)^{1+i\varepsilon}} - \frac{e^{ig(\eta)}}{g'(\eta)\eta^{1+i\varepsilon}} \right| + \int_{\eta}^{\xi_{1}/C} \frac{(-g''(t))}{(g'(t))^{2}t} dt + (1+\varepsilon) \int_{\eta}^{\xi_{1}/C} \frac{dt}{t^{2}g'(t)} = I + II + III.$$

But, by (3.5), $I \le \frac{C_1}{g(\xi_1/C)} + \frac{C_1}{g(\eta)} \le 2C_1$

and

$$III \le C_1^2(1+\varepsilon) \int_n^{\xi_1/C} \frac{g'(t)}{(g(t))^2} dt \le C_1^2(1+\varepsilon).$$

As for II, another integration by parts gives

$$II = \frac{1}{(\xi_1/C)g'(\xi_1/C)} - \frac{1}{\eta g'(\eta)} + \int_{\eta}^{\xi_1/C} \frac{g'(t)}{(tg'(t))^2} dt \le C_1 + C_1^2.$$

Now, if $0 < g'(t) = x - y\gamma'(t)$ for t > 0, then $x/y > \gamma'(t)$ for all t > 0. Observe also that $g(t) = y((x/y)t - \gamma(t))$ and $g'(t) = y(x/y - \gamma'(t))$. Then, for $N > \eta$, where $f(\eta) = 1$, (3.3) shows that, for $0 < t \le N = CN/C$, we have

$$\frac{1}{tq'(t)} \le \frac{C_1}{q(t)}, \quad 0 < t \le N.$$

Thus, $\int_{\eta}^{N}e^{ig(t)}t^{-(1+i\varepsilon)}\,dt$ may be handled as $\int_{\eta}^{\xi_{1}/C}e^{ig(t)}t^{-(1+i\varepsilon)}\,dt$ was above, and $\int_{\delta}^{\eta}e^{ig(t)}t^{-(1+i\varepsilon)}\,dt$ is handled as before.

Finally, we note that, as in case (i), the proof of case (ii) goes through without difficulty if we replace g(t) with -g(t). This completes the proof of Theorem 1. \square

4. Proof of Theorem 2. Recall that we are now considering a curve $\Gamma(t) = (t, \gamma_2(t), \dots, \gamma_n(t))$. For $x = (x_1, x_2, \dots, x_n)$, set $g(t) = \sum_{k=1}^n x_k \gamma_k(t)$, where $\gamma_1(t) = t$. Then, for a curve Γ satisfying the hypotheses of Theorem 2, Nagel, Vance, Wainger and Weinberg have proven the following result.

Lemma [3, p. 498]. There exist constants C and D so that, for every $x = (x_1, x_2, \ldots, x_n) \in \mathbf{R}^n$ with $x_n \neq 0$ and associated function $g(t) = \sum_{k=1}^n x_k \gamma_k(t)$, we have

$$(4.1) |g(t)| \le C \cdot t \cdot |g'(t)| for every t \in [0, \infty) \setminus \Omega,$$

where the exceptional set $\Omega = \Omega_x = \bigcup_{m=1}^M (c_m, d_m)$ satisfies $M \leq 2n-2$ and $d_m/c_m \leq D$ for all m. (Moreover, neither g' nor g'' is ever 0 on $[0,\infty)\backslash\Omega$.)

Note that, since g' and g'' are never zero on $[0,\infty)\backslash\Omega$, they must be of constant sign on each of the 2n-1 nonoverlapping intervals which comprise this set. We further subdivide these intervals at the solutions of |g(t)|=1, of which there can be at most 2n, since g' has no more than n-1 zeros, see $[\mathbf{3},\ \mathbf{p},\ 493]$. Thus, $[0,\infty)\backslash\Omega$ can be written as the union of at most 4n-1 intervals, on each of which we either have $|g(t)| \geq 1$ or $|g(t)| \leq 1$.

If [a, b] is one of the intervals on which $|g(t)| \leq 1$, then the method of (3.1) leads to

$$\left| \int_{a}^{b} e^{ig(t)} \frac{dt}{t^{1+i\varepsilon}} \right| \leq \frac{2}{\varepsilon} + \frac{1}{\varepsilon} \left| \int_{a}^{b} g'(t) dt \right|$$

$$\leq \frac{2}{\varepsilon} + \frac{1}{\varepsilon} |g(b) - g(a)|$$

$$\leq \frac{2}{\varepsilon} + \frac{1}{\varepsilon} (|g(b)| + |g(a)|)$$

$$\leq \frac{4}{\varepsilon}.$$

If we instead have $|g(t)| \ge 1$ on [a, b], then the method of (3.2) shows

$$\begin{split} \left| \int_a^b e^{ig(t)} \frac{dt}{t^{1+i\varepsilon}} \right| &\leq \left(\left| \frac{e^{ig(b)}}{ig'(b)b^{1+i\varepsilon}} \right| + \left| \frac{e^{ig(a)}}{ig'(a)a^{1+i\varepsilon}} \right| \right) \\ &+ \left| \frac{1}{i} \int_a^b \frac{g''(t)e^{ig(t)}}{(g'(t))^2 t^{1+i\varepsilon}} \right| \\ &+ \left| \frac{1+i\varepsilon}{i} \int_a^b \frac{e^{ig(t)}}{g'(t)t^{2+i\varepsilon}} \, dt \right| \\ &= I + II + III. \end{split}$$

Using (4.1), we then proceed as we did following (3.6) to conclude that

$$\left| \int_{a}^{b} e^{ig(t)} \frac{dt}{t^{1+i\varepsilon}} \right| \le 2C + 2C^{2}$$

if $|g(t)| \ge 1$ for $a \le t \le b$. Furthermore,

$$\left| \int_{\Omega} e^{ig(t)} \frac{dt}{t^{1+i\varepsilon}} \right| \leq \sum_{m=1}^{M} \int_{c_m}^{d_m} \frac{dt}{t} \leq (2n-2) \log D.$$

Thus, for $x_n \neq 0$, $m_{\varepsilon,\delta}$ is bounded uniformly in δ for fixed ε . Since the set where $x_n = 0$ is of measure zero in \mathbf{R}^n , the proof of Theorem 2 is complete. \square

5. The L^2 -boundedness of $H_{\varepsilon,\delta}$ and the maximal operator supported on the curves $\Gamma(t)=(t,\gamma(t))$, with γ as in (1.6) and $\Gamma^*(t)=(t,\gamma^*(t))$ with γ^* as in (1.7). We first show the result for $H_{\varepsilon,\delta}$. With γ as in (1.6), set

$$g(t) = \begin{cases} xt & 0 \le t \le 1, \\ xt - y(t-1) & t > 1, \ y > x > 0. \end{cases}$$

Choose η such that $\eta(y-x)=1$. First assume $\eta \geq 1$. Then, for $N>\eta$,

(5.1)
$$\left| \int_{\eta}^{N} e^{ig(t)} \frac{dt}{t^{1+\varepsilon}} \right| = \left| \frac{e^{ig(N)}}{(x-y)N^{1+i\varepsilon}} - \frac{e^{ig(\eta)}}{(x-y)\eta^{1+i\varepsilon}} \right| + \frac{1+i\varepsilon}{i} \int_{\eta}^{N} \frac{e^{ig(t)}}{(x-y)t^{2+i\varepsilon}} dt \right| \leq \frac{2}{\eta(y-x)} + \frac{1+\varepsilon}{\eta(y-x)} = 3 + \varepsilon,$$

and

$$(5.2) \quad \left| \int_{1}^{\eta} e^{ig(t)} \frac{dt}{t^{1+i\varepsilon}} \right| = \left| \frac{-e^{ig(\eta)}}{i\varepsilon\eta^{i\varepsilon}} + \frac{e^{ig(1)}}{i\varepsilon} + \frac{1}{i\varepsilon} \int_{1}^{\eta} i(x-y)e^{ig(t)} \frac{dt}{t^{i\varepsilon}} \right| \\ \leq \frac{2}{\varepsilon} + \frac{(y-x)}{\varepsilon} \int_{0}^{\eta} dt = \frac{3}{\varepsilon}.$$

Now, still with $\eta \geq 1$, suppose x < 1. Then, integration by parts as in (5.2) gives

$$\left| \int_{\delta}^{1} e^{ig(t)} \frac{dt}{t^{1+i\varepsilon}} \right| \le \frac{2}{\varepsilon} + \frac{x}{\varepsilon} \int_{0}^{1} dt = \frac{3}{\varepsilon}.$$

If, on the other hand, $x \ge 1$, choose β such that $\beta x = 1$ so that $\beta \le 1$. Then the method of (5.2) gives

$$\left| \int_{\delta}^{\beta} e^{ig(t)} \frac{dt}{t^{1+i\varepsilon}} \right| \le \frac{3}{\varepsilon},$$

while the method of (5.1) gives

(5.5)
$$\left| \int_{\beta}^{1} e^{ig(t)} \frac{dt}{t^{1+i\varepsilon}} \right| \le 3 + \varepsilon.$$

Now suppose $\eta<1$. Then $\int_1^N e^{ig(t)}t^{-(1+i\varepsilon)}\,dt$ is dealt with by the method of (5.1). If $x\geq 1$, $\int_\delta^1 e^{ig(t)}t^{-(1+i\varepsilon)}\,dt$ is split as in (5.4) and (5.5), while if x<1, the method of (5.3) is used.

We note that, in the case where

$$g(t) = \begin{cases} xt & 0 \le t \le 1, \\ xt - y(t-1) & t > 1, \ x > y > 0, \end{cases}$$

choosing η such that $\eta(x-y)=1$ leads to essentially the same proof, as does the case with

$$g(t) = \begin{cases} xt & 0 \le t \le 1, \\ xt + y(t-1) & t > 1, \ x > 0, \ y > 0, \end{cases}$$

with $\eta(x+y)=1$.

Now, with γ^* as in (1.7), we have

$$\left| \int_{\delta}^{\infty} e^{i(xt+y\gamma(t))} \frac{dt}{t^{1+i\varepsilon}} - \int_{\delta}^{\infty} e^{i(xt+y\gamma^*(t))} \frac{dt}{t^{1+\varepsilon}} \right|$$

$$= \left| \left(e^{i(xt+y\gamma(t))} - e^{i(xt+y\gamma^*(t))} \right) \frac{dt}{t^{1+i\varepsilon}} \right|$$

$$\leq \int_{1/2}^{3/2} \frac{dt}{t} = \log 3.$$

It then follows that

$$\left| \int_{\delta}^{\infty} e^{i(xt + y\gamma^*(t))} \frac{dt}{t^{1+i\varepsilon}} \right| \le \log 3 + B,$$

where

$$\left| \int_{\delta}^{\infty} e^{i(xt+y\gamma(t))} \frac{dt}{t^{1+i\varepsilon}} \right| \leq B.$$

To see that \mathbf{M}_{Γ^*} is bounded on $L^2(\mathbf{R}^2)$, first note that

$$\mathbf{M}_{\Gamma^*} f(x) = \sup_{h>0} \frac{1}{h} \int_0^h |f(x - \Gamma^*(t))| dt$$

$$\leq \sup_{3/2 \geq h>0} \frac{1}{h} \int_0^h |f(x - \Gamma^*(t))| dt$$

$$+ \sup_{h>3/2} \frac{1}{h} \int_0^h |f(x - \Gamma^*(t))| dt.$$

Now consider a curve $\tilde{\Gamma}(t) = (t, \tilde{\gamma}(t))$, where

$$\tilde{\gamma}(t) = \begin{cases} 0 & 0 \le t < 1/2, \\ -t^4/2 + 2t^3 - (9/4)t^2 + t - 5/2 & 1/2 \le t < 3/2, \\ t^3 - (9/2)t^2 + (31/4)t - 23/8 & t \ge 3/2. \end{cases}$$

Then, by the result of Nagel, Vance, Wainger and Weinberg [4], $\mathbf{M}_{\bar{\Gamma}}$ is bounded on $L^2(\mathbf{R}^2)$. Note that, for $0 \le t < 3/2$, $\tilde{\gamma}(t) = \gamma^*(t)$. Thus, for $0 \le t < 3/2$,

$$\sup_{3/2 \ge h > 0} \frac{1}{h} \int_0^h |f(x - \Gamma^*(t))| dt = \sup_{3/2 \ge h > 0} \frac{1}{2} \int_0^h |f(x - \tilde{\Gamma}(t))| dt$$

$$\leq \sup_{h > 0} \frac{1}{h} \int_0^h |f(x - \tilde{\Gamma}(t))| dt$$

$$= \mathbf{M}_{\bar{\Gamma}} f(x).$$

For h > 3/2, with $x = (\xi, \eta)$,

$$\frac{1}{h} \int_{0}^{h} |f(x - \Gamma^{*}(t))| dt = \frac{1}{h} \int_{0}^{3/2} |f(x - \Gamma^{*}(t))| dt
+ \frac{1}{h} \int_{3/2}^{h} |f(x - \Gamma^{*}(t))| dt
\leq \frac{1}{3/2} \int_{0}^{3/2} |f(x - \tilde{\Gamma}(t))| dt
+ \frac{1}{3/2 + \mu} \int_{3/2}^{3/2 + \mu} |f(\xi - t, \eta - (t - 1))| dt
\leq \sup_{\nu > 0} \frac{1}{\nu} \int_{0}^{\nu} |f(x - \tilde{\Gamma}(t))| dt
+ \frac{1}{\mu} \int_{0}^{\mu} |f(\xi - \frac{3}{2}) - t, (\eta - \frac{1}{2}) - t)| dt.$$

Thus,

$$\begin{split} \sup_{h>3/2} \frac{1}{h} \int_{0}^{h} |f(x - \gamma^{*}(t))| \, dt \\ &\leq \sup_{\nu>0} \frac{1}{\nu} \int_{0}^{\nu} |f(x - \tilde{\gamma}(t))| \, dt \\ &+ \sup_{\mu>0} \frac{1}{\mu} \int_{0}^{\mu} \left| f\left(\left(\xi - \frac{3}{2}\right) - t, \left(\eta - \frac{1}{2}\right) - t\right) \right| \, dt \\ &= \mathbf{M}_{\tilde{\Gamma}} f(x) + \mathbf{N} f\left(\xi - \frac{3}{2}, \eta - \frac{1}{2}\right). \end{split}$$

But, as noted above, $\mathbf{M}_{\bar{\Gamma}}$ is bounded on $L^2(\mathbf{R}^2)$, while it follows from the theorem on the one-dimensional Hardy-Littlewood maximal function that

$$\mathbf{N}f(\xi, \eta) = \sup_{\mu > 0} \frac{1}{\mu} \int_{0}^{\mu} |f(\xi - t, \eta - t)| dt$$

is a bounded operator on $L^p(\mathbf{R}^2)$ for $1 . Thus, <math>\mathbf{M}_{\Gamma^*}$ is bounded on $L^2(\mathbf{R}^2)$. The proof for \mathbf{M}_{Γ} , with γ as in (1.6), is similar.

6. An extension of Theorem 1. We can extend the result of Theorem 1 to certain piecewise linear convex curves. Suppose $\Gamma(t)=(t,\gamma(t))$, where γ is piecewise linear on intervals of the form $[t_{j+1},t_j]$, where $t_j/t_{j+1}\leq C$ for some constant $C>1,\ t_j\nearrow\infty$ as $j\to-\infty$ and $t_j\searrow 0$ as $j\to\infty$.

Set $\gamma(t_j) = a_j$. Then, on $[t_{j+1}, t_j]$, we have

(6.1)
$$\gamma(t) = \gamma_i(t) = m_i t + (a_i - m_i t_i) = m_i t + b_i,$$

where m_j is the slope of γ_j . Then, for $t_{j+1} < t < t_j$,

$$h(t) = h_j(t) = m_j t - (m_j t + b_j) = -b_j = m_j t_j - a_j.$$

If we then require that we choose the a_i 's so that

(6.2)
$$\frac{a_j}{a_{j+1}} > C \quad \text{and} \quad m_{j-1} \ge 2m_j - \frac{a_j}{t_j},$$

we guarantee that $h(Ct) \geq 2h(t)$ for all t for which h is defined.

For each integer j we can then choose δ_j such that $0 < \delta_j \le t_j (1 - e^{-2^{-|j|}})$. Setting $\alpha_j = t_j - \delta_j$ and $\beta_j = t_j + \delta_j$, we then have

(6.3)
$$0 < \int_{t_j}^{\beta_j} \frac{dt}{t} < 2^{-|j|} \quad \text{and} \quad 0 < \int_{\alpha_j}^{t_j} \frac{dt}{t} \le 2^{-|j|}.$$

Furthermore, for each j we may find a fourth degree polynomial $\varphi_j(t)$ with

$$\varphi_{j}(\alpha_{j}) = \gamma_{j}(\alpha_{j}), \varphi_{j}(\beta_{j}) = \gamma_{j-1}(\beta_{j});$$

$$\varphi'_{j}(\alpha_{j}) = m_{j}, \varphi'_{j}(\beta_{j}) = m_{j-1};$$

and

$$\varphi_j''(\alpha_j) = 0 = \varphi_j''(\beta_j).$$

Then setting $\tilde{\gamma}(t) = \gamma_j(t)$, if $\beta_{j+1} < t < \alpha_j$ and $\tilde{\gamma}(t) = \varphi_j(t)$, if $\alpha_j \leq t \leq \beta_{j-1}$, we have a curve $\tilde{\gamma}$ which satisfies the hypotheses of Theorem 1.

Setting $\Gamma(t) = (t, \gamma_j(t))$ for $t_{j+1} \leq t < t_j$, and $\tilde{\Gamma}(t) = (t, \tilde{\gamma}(t))$, we note that the multiplier function for $H_{\varepsilon,\delta}$ supported on Γ is given by

$$(6.4) \qquad \int_{\delta}^{t_J} e^{i(xt+y\gamma_J(t))} \frac{dt}{t^{1+i\varepsilon}} + \sum_{j=-\infty}^{J-1} \int_{t_{j+1}}^{t_j} e^{i(xt+y\gamma_j(t))} \frac{dt}{t^{1+i\varepsilon}},$$
 for some $J \in \mathbf{Z}$.

Then (6.3) and the triangle inequality show

$$\begin{split} (6.5) \quad & \left| \int_{\delta}^{t_J} e^{i(xt+y\gamma_J(t))} \frac{dt}{t^{1+i\varepsilon}} - \int_{\delta}^{t_J} e^{i(xt+g\bar{\gamma}(t))} \frac{dt}{t^{1+i\varepsilon}} \right| \\ & + \sum_{j=-\infty}^{J-1} \left| \int_{t_j+1}^{t_j} e^{i(xt+y\gamma_j(t))} \frac{dt}{t^{1+i\varepsilon}} - \int_{t_j+1}^{t_j} e^{i(xt+y\bar{\gamma}(t))} \frac{dt}{t^{1+i\varepsilon}} \right| \leq 6. \end{split}$$

Since $|\int_{\delta}^{\infty} e^{i(xt+y\bar{\gamma}(t))} t^{-(1+i\varepsilon)} dt| \leq B$, where B depends only on ε , it follows from this and (6.5) that the multiplier function given by (6.4) has a bound which depends only on ε .

As a final comment, we note that M_{Γ} and $H_{\varepsilon,\delta}$ have both been shown to be bounded when supported on a curve for which the Hilbert transform is unbounded, but that there are no known examples of curves for which the results for these two operators differ.

REFERENCES

- 1. H. Carlsson and S. Wainger, Maximal functions related to convex polygonal lines, Indiana Univ. Math. J. 34 (1985), 815–823.
- 2. A. Nagel, J. Vance, S. Wainger and D. Wainger, Hilbert transforms for convex curves, Duke Math. J. 50 (1983), 735–744.
- 3. , The Hilbert transform for convex curves in \mathbb{R}^n , Amer. J. Math. 108 (1986), 485–504.
- 4. ——, Maximal functions for convex curves, Duke Math. J. 52 (1985), 715–722
- 5. E.M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), 1239–1295.

Illinois College, Jacksonville, IL 62650