SOME REMARKABLE CONGRUENCES ON COMPLETELY REGULAR SEMIGROUPS

MARIO PETRICH

ABSTRACT. We express a completely regular semigroup S as $(Y;S_{\alpha})$, that is, a semilattice of completely simple semigroups. For each pair $\alpha>\beta$, we consider the congruence $\kappa_{\alpha,\beta}$ on S generated by the set of pairs (a,b) where $a\in S_{\alpha}$, $b\in S_{\beta}$ and a>b. These congruences play an important role in finding conditions which ensure that the kernel relation K on the congruence lattice of S be a congruence. In particular, the meet and the join of these congruences provide interesting congruences in this context. Another class of congruences constructed as follows, occurs naturally in this study. Given a congruence ρ on S and ideals $I\subseteq J$ of S, we generalize the Rees congruence relative to I by constructing a congruence which involves ρ , I and J; here ρ must saturate I and I or J may be empty.

1. Introduction and summary. The consideration of necessary and sufficient conditions on a completely regular semigroup S in order that the kernel relation K on the congruence lattice C(S) be a congruence in [5] gives rise to the following class of congruences. We write $S = (Y; S_{\alpha})$ thereby indicating that S is a semilattice S of completely simple semigroups S_{α} . For each pair S_{α} , S_{α} such that S_{α} is a that S_{α} be the congruence on S_{α} generated by the pairs S_{α} such that S_{α} is a congruence evoked study. Besides the conditions on S_{α} which ensure that S_{α} be a congruence, it is of interest to find some lattices S_{α} of congruences on an arbitrary completely regular semigroup S_{α} with the property that S_{α} is a congruence.

Section 2 contains the minimum of necessary preliminaries. We establish in Section 3 that K restricted to the filter of $\mathcal{C}(S)$ generated by the join of congruences $\kappa_{\alpha,\beta}$ is a congruence and the corresponding

Received by the editors on November 17, 1995, and in revised form on November 12, 1996.

¹⁹⁸⁰ AMS Mathematics Subject Classification. Primary 20M10. Key words and phrases. Completely regular semigroups, congruences, congruence generated by a set, lattice of congruences, join and meet, K-relation, Rees congruence.

quotient is a modular lattice. The main result in Section 4 asserts that, when Y has at least three elements and the restriction of K to the filter generated by the intersection of congruences $\kappa_{\alpha,\beta}$ is a congruence, then K is a congruence on all of $\mathcal{C}(S)$. Several other results in the section supplement this statement. Section 5 has a different flavor. We introduce a generalization of Rees congruences by involving two ideals of S and a congruence on S. For a fixed congruence, this produces a lattice of congruences on S with several interesting properties.

2. Preliminaries. Throughout the paper we fix an arbitrary completely regular semigroup S. When the need arises, we assume implicitly that $S = (Y; S_{\alpha})$, that is, S is a semilattice Y of completely simple semigroups S_{α} . For $a \in S$, we denote by a^0 the identity of the maximal subgroup of S containing S. The set of idempotents of S is denoted by S. The natural partial order on S is given by

$$a \le b \iff a = eb = bf \text{ for some } e, f \in E(S).$$

The lattice of all congruences on S is denoted by C(S). Its greatest and least elements are denoted by ω and ε , respectively. We shall also use the latter notation for the universal and equality relations on any set. A set A saturates a congruence ρ if A is the union of some ρ -classes. For $\rho \in C(S)$,

$$\ker \rho = \{a \in S \mid a\rho e \text{ for some } e \in E(S)\}\$$

is the kernel of ρ . The kernel relation K on $\mathcal{C}(S)$ is given by

$$\lambda K \rho \iff \ker \lambda = \ker \rho \quad (\lambda, \rho \in \mathcal{C}(S)).$$

In a lattice L, for $\alpha \in L$ let $[\alpha) = \{\beta \in L \mid \beta \geq \alpha\}$, the filter of L generated by α . For any sets A and B, $A \setminus B = \{a \in A \mid a \notin B\}$. The cardinality of a set X is denoted by |X|.

If I is an ideal of a semigroup T, then T is an (ideal) extension of I by the quotient semigroup T/I. If also there exists a retraction ψ of T onto I, then T is a retract extension of I determined by the partial homomorphism $\psi|_{T\setminus I}$. If T has an identity, we write $T = T^1$; otherwise, T^1 is the semigroup T with an identity adjoined.

3. The join of congruences $\kappa_{\alpha,\beta}$. For $S = (Y; S_{\alpha})$ and $\alpha > \beta$, we define $\kappa_{\alpha,\beta}$ as the congruence generated by the set

$$\{(a,b) \mid a \in S_{\alpha}, b \in S_{\beta}, a > b\}.$$

That this set is not empty is guaranteed by [4, Lemma 2.1(ii)].

We establish here some simple properties of the join of all congruences $\kappa_{\alpha,\beta}$; in the next section we shall consider their meet.

Proposition 3.1. The relation $\theta = \bigvee_{\alpha > \beta} \kappa_{\alpha,\beta}$ is the least completely simple congruence on S. Let $K' = K|_{[\theta)}$. Then K' is a congruence and $[\theta)/K'$ is a modular lattice.

Proof. That θ is the least completely simple congruence on S follows from: [6, Lemma 6.4], [2, Notation 4.8] and [3, Lemma 3].

It is well known that the mapping

$$\rho \longrightarrow \rho/\theta \quad (\rho \in [\theta))$$

is an isomorphism of $[\theta]$ onto $\mathcal{C}(S/\theta)$. By [5, Lemma 7.5(ii)], we have

(1)
$$\lambda K \rho \iff \lambda / \theta K \rho / \theta \quad (\lambda, \rho \in [\theta)).$$

Let $\lambda, \rho, \sigma \in [\theta)$ with $\lambda K \rho$. By (1), we have $\lambda/\theta K \rho/\theta$ which, by [5, Theorem 5.1], yields $\lambda/\theta \vee \sigma/\theta K \rho/\theta \vee \sigma/\theta$ since S/θ is completely simple. Hence $(\lambda \vee \sigma)/\theta K (\rho \vee \sigma)/\theta$ which by (1) gives $\lambda \vee \sigma K \rho \vee \sigma$. Therefore K' is a congruence. It also follows from (1) that $[\theta)/K' \cong \mathcal{C}(S/\theta)/K$ which, by [5, Corollary 5.2], finally gives that $[\theta)/K'$ is a modular lattice. \square

In order to ensure that the above proposition is not vacuous, that is, that $\theta \neq \omega$ may occur, we prove the following simple statement.

Lemma 3.2. Let S be a retract extension of a completely simple semigroup S_0 by a completely simple semigroup S_1 with a zero adjoined determined by a homomorphism $\varphi: S_1 \to S_0$. Then $\theta = \omega$ for S if and only if S_0 is trivial.

Proof. First note that $\theta = \kappa_{1,0}$ if we consider S as a semilattice of semigroups S_0 and S_1 . The corresponding retraction $\psi : S \to S_0$ is given by: $\psi|S_0 = \iota_{S_0}, \, \psi|_{S_1} = \varphi$. Let $a,b \in S_0$ be such that $a\theta b$. Then there exists a sequence

$$a = x_1 u y_1,$$
 $x_1 v_1 y_1 = x_2 u_2 y_2,$ \cdots $x_n v_n y_n = b,$

for some $x_i, y_i \in S^1$ and $u_i, v_i \in S$ such that either $u_i \leq v_i$ or $v_i \leq u_i$, i = 1, 2, ..., n. Hence

$$a = x_1(u_1\psi)y_1,$$
 $x_1(v_1\psi)y_1 = x_2(u_2\psi)y_2,$ \cdots $x_n(v_n\psi)y_n = b,$

and since $u_i\psi = v_i\psi$ for i = 1, 2, ..., n, we get a = b. Therefore $\theta|_{S_0} = \varepsilon$. It follows that, if $\theta = \omega$, we must have S_0 trivial.

Conversely, assume that S_0 is trivial. Then φ is a constant map so that the induced congruence $\bar{\varphi}$ equals ω on S_1 . By [6, Lemma 5.4], $\theta|_{S_1} = \bar{\varphi}$ and thus $\theta|_{S_1} = \omega$. Since then any element of S_1 is θ -related to the single element in S_0 , it follows that $\theta = \omega$.

4. The meet of congruences $\kappa_{\alpha\beta}$. Besides the notation $\kappa_{\alpha,\beta}$ introduced in the preceding section, for $\alpha > \beta$ in Y, we let $\zeta_{\alpha,\beta}$ be the congruence on Y generated by the singleton $\{(\alpha,\beta)\}$. We also let

$$\kappa = \bigwedge_{\alpha > \beta} \kappa_{\alpha,\beta}, \qquad \zeta = \bigwedge_{\alpha > \beta} \zeta_{\alpha,\beta}.$$

For the main result of this section, we shall need the following simple statement of independent interest.

Lemma 4.1. Let Y be a semilattice with at least three elements. Then $\zeta = \varepsilon$.

Proof. Let $\alpha, \beta, \gamma \in Y$ be such that $\alpha > \beta$, $\gamma \neq \alpha$ and $\gamma \neq \beta$. Then exactly one of the following occurs: $\alpha > \gamma$, $\alpha < \gamma$ or α and γ are incomparable; the same type of situation occurs with β versus γ . Now,

pairing these cases, we arrive at the following possibilities:

Let θ be the congruence on Y with classes $[\alpha]$ and $Y\setminus [\alpha]$. Then α and β are not θ -related. By the cases enunciated above, we have

1.
$$\zeta_{\beta,\gamma} \subseteq \theta$$
;

2.
$$\zeta_{\gamma,\beta} \subseteq \theta$$
;

1.
$$\zeta_{\beta,\gamma} \subseteq \theta$$
; 2. $\zeta_{\gamma,\beta} \subseteq \theta$; 3. $\zeta_{\beta,\beta\gamma} \subseteq \theta$;
4. $\zeta_{\gamma,\alpha} \subseteq \theta$; 5. $\zeta_{\gamma,\beta} \subseteq \theta$; 6. $\zeta_{\gamma,\beta\gamma} \subseteq \theta$.

4.
$$\zeta_{\gamma,\alpha} \subseteq \theta$$
;

5.
$$\zeta_{\gamma,\beta} \subseteq \theta$$
;

6.
$$\zeta_{\gamma,\beta\gamma} \subseteq \theta$$
.

Since α and β are not θ -related, this shows that in all cases there exists $\zeta_{\delta,\eta}$ such that α and β are not $\zeta_{\delta,\eta}$ -related. It follows that α and β are not ζ -related.

Now let $\alpha, \beta \in Y$ with $\alpha \neq \beta$. If they are comparable, by the above, they are not ζ -related. If they are not comparable, then $\alpha > \alpha\beta$ and thus α and $\alpha\beta$ are not ζ -related. But this obviously implies that also α and β are not ζ -related. Therefore $\zeta = \varepsilon$.

Theorem 4.2. Let $S = (Y; S_{\alpha})$ be a completely regular semigroup and Y have at least three elements. Assume that K restricted to $[\kappa]$ is a congruence. Then K is a congruence on all of C(S).

Proof. According to [5, Theorem 5.1], it suffices to show that, for any $\alpha > \beta$ in Y, we have $S_{\alpha} \subseteq \ker \kappa_{\alpha,\beta}$. We represent $\kappa_{\alpha,\beta}$ by means of its congruence aggregate as in [4], to wit $\kappa_{\alpha,b} \sim (\zeta_{\alpha,\beta}; \eta_{\gamma})$ in view of [5, Lemma 4.4] which asserts that $\kappa_{\alpha,\beta}$ induces on Y the congruence $\zeta_{\alpha,\beta}$ for some $\eta_{\gamma} \in \mathcal{C}(S_{\gamma})$ for each $\gamma \in Y$. By [4, Corollary 5.5(i)], the mapping $\kappa_{\alpha,\beta} \to \zeta_{\alpha,\beta}$ is a complete homomorphism. Since κ has its congruence aggregate of the form $\wedge_{\alpha>\beta}(\zeta_{\alpha,\beta};)$, it follows that $\kappa\sim(\zeta;)$. But Lemma 4.1 gives that $\zeta = \varepsilon$. Therefore $\kappa \subseteq \mathcal{D}$.

Now fix $\alpha > \beta$, and let $\rho = \kappa_{\alpha,\beta} \wedge \mathcal{D}$. Then

$$\ker \kappa_{\alpha,\beta} = \ker \kappa_{\alpha,\beta} \cap \ker \mathcal{D} = \ker (\kappa_{\alpha,\beta} \wedge \mathcal{D}) = \ker \rho$$

and, by the preceding paragraph, we have $\kappa \subseteq \rho$. Define a relation λ on S by

$$\begin{array}{ccc} x\lambda y & \Longleftrightarrow & x,y \in S_{\gamma} \\ \text{for some } \gamma \in Y & \text{and} & x\kappa_{\alpha,\beta}y & \text{if } \gamma \not \leq \beta. \end{array}$$

Clearly λ is an equivalence relation. Let $x\lambda y$ with $x,y\in S_{\gamma}$ and $a\in S_{\delta}$. If $\gamma\delta\leq\beta$, then $xa\mathcal{D}ya$ implies that $xa\lambda ya$. If $\gamma\delta\not\leq\beta$, then $\gamma\not\leq\beta$, and thus $x\kappa_{\alpha,\beta}y$ which implies that $xa\kappa_{\alpha,\beta}ya$ which, together with $xa\mathcal{D}ya$ yields $xa\lambda ya$. Similarly $ax\lambda ay$ in all cases. Therefore $\lambda\in\mathcal{C}(S)$ and, in fact, $\kappa\subseteq\rho\subseteq\lambda$. Since $\kappa_{\alpha,\beta}K\rho$, the hypothesis implies that $\kappa_{\alpha,\beta}\vee\lambda K\rho\vee\lambda$.

Let $a \in S_{\alpha}$. By [4, Lemma 2.1(ii)], there exists $b \in S_{\beta}$ such that a > b. Hence $a\kappa_{\alpha,\beta}b$. Also $b\lambda e$ for any $e \in E(S_{\beta})$ and thus $a\kappa_{\alpha,\beta}b\lambda e$ whence $a \in \ker(\kappa_{\alpha,\beta} \vee \lambda) = \ker(\rho \vee \lambda)$. Hence there exists a sequence

$$a\rho x_1\lambda x_2\rho\cdots x_n\lambda a^0$$

for some $x_1, x_2, \ldots, x_n \in S$. Since both ρ and λ are under \mathcal{D} , we must have $x_1, x_2, \cdots x_n \in S_{\alpha}$. But then $a\kappa_{\alpha,\beta}x_1, x_1\kappa_{\alpha,\beta}x_2, \ldots$ by the definitions of ρ and λ , which yields $a\kappa_{\alpha,\beta}a^0$ so that $a \in \ker \kappa_{\alpha,\beta}$. We have proved that $S_{\alpha} \subseteq \ker \kappa_{\alpha,\beta}$, as required. \square

Theorem 4.2 does not extend to the case when Y has only two elements.

Example 4.3. Let $S = Y_2 \times Z_2$ where $Y_2 = \{0, 1\}$ and $Z_2 = Z/(2)$. Then $= \mathcal{C}(Y)$ has the form

where $\sigma = \kappa_{\alpha,\beta}$ with $S_{\alpha} = \{1\} \times Z_2$, $S_{\beta} = \{0\} \times Z_2$ and ρ is the Rees congruence. Then $[\kappa_{\alpha,\beta},\omega] = \{\sigma,\omega\}$ and $K|_{\{\sigma,\omega\}} = \varepsilon$ so it is a congruence. But K is not a congruence.

Theorem 4.2 is vacuous for |Y| = 1, for $\kappa_{\alpha,\beta}$ is not defined and K is a congruence. In general, $\kappa = \wedge_{\alpha > \beta} \kappa_{\alpha,\beta}$ is different from the equality relation as we shall see below.

A completely regular semigroup which is a chain Y of completely simple semigroups S_{α} in which every element acts as the zero of any element in a higher completely simple component is called the *mutually annihilating sum* (of semigroups S_{α} , $\alpha \in Y$), see [1].

Lemma 4.4. Let S be a mutually annihilating sum of completely simple semigroups. Then K is a congruence for S.

Proof. Let $a \in S_{\alpha}$ and $b \in S_{\beta}$ where $\alpha > \beta$. We have, by hypothesis, that b = ab = ba whence $b^0 = ab^0 = b^0a$ so that $a > b^0$. It follows, by [4, Lemma 2.1(iv)], that $a\kappa_{\alpha,\beta}b^0$ and thus $a \in \ker \kappa_{\alpha,\beta}$. By [5, Theorem 5.1], we conclude that K is a congruence for S.

We exhibit in the following example that, in a completely simple semigroup S for which K is a congruence, $\kappa = \wedge_{\alpha>\beta} \kappa_{\alpha,\beta}$ need not be the equality relation.

Lemma 4.5. Let S be a mutually annihilating sum of the completely simple semigroups S_{α} , S_{β} and S_{γ} where $\alpha > \beta > \gamma$. Then $\kappa \subseteq \mathcal{D}$, $\kappa|_{S_{\alpha}} = \varepsilon$, $\kappa|_{S_{\beta}}$ is a group congruence and $\kappa|_{S_{\gamma}} = \varepsilon$.

Proof. We have seen in the proof of Theorem 4.2 that $\kappa \subseteq \mathcal{D}$. The following verification will take care of the remaining assertions of the lemma.

1. For any $a \in S_{\alpha}$ and $e \in E(S_{\beta})$, we have e < a which, by [4, Lemma 2.1(iv)], implies that $e\kappa_{\alpha,\beta}a$ so that $a \in \ker \kappa_{\alpha,\beta}$. Therefore $\kappa_{\alpha,\beta}|_{S_{\alpha}} = \omega$. The same type of argument shows that $e\kappa_{\alpha,\beta}f$ for any $e, f \in E(S_{\beta})$ so that $\kappa_{\alpha,\beta}|_{S_{\beta}}$ is a group congruence. Next let $a, b \in S_{\gamma}$

be such that $a\kappa_{\alpha,\beta}b$. Then there exists a sequence

(2)
$$a = x_1 u_1 y_1, \quad x_1 v_1 y_1 = x_2 u_2 y_2, \quad \cdots \quad x_n v_n y_n = b$$

for some $x_i, y_i \in S^1$, $u_i, v_i \in S$ such that either $u_i \in S_{\alpha}$, $v_i \in S_{\beta}$ or $u_i \in S_{\beta}$, $v_i \in S_{\alpha}$ for i = 1, 2, ..., n. Since $a \in S_{\gamma}$ and $u_1 \in S_{\alpha} \cup S_{\beta}$, we must have either $x_1 \in S_{\gamma}$ or $y_1 \in S_{\gamma}$. This implies that $x_1v_1y_1 \in S_{\gamma}$ and thus, either $x_2 \in S_{\gamma}$ or $y_2 \in S_{\gamma}$. Continuing this reasoning, we conclude, from the peculiarity of the multiplication in S, that

$$a = x_1 y_1, \quad x_1 y_1 = x_2 y_2, \quad \cdots \quad x_n y_n = b$$

so that a = b. Therefore $\kappa_{\alpha,\beta}|_{S_{\gamma}} = \varepsilon$.

- 2. Next $\kappa_{\beta,\gamma}|_{S_{\alpha}} = \varepsilon$ since the system of equations (2) with $x_i, y_i \in S^1$ and $u_i, v_i \in S_{\alpha} \cup S_{\beta}$ cannot hold if $a, b \in S_{\gamma}$. Similar reasoning as the one above shows that $\kappa_{\beta,\gamma}|_{S_{\beta}} = \omega$ and that $\kappa_{\beta,\gamma}|_{S_{\gamma}}$ is a group congruence.
- 3. Again $\kappa_{\alpha,\gamma}|_{S_{\alpha}} = \omega$ and $\kappa_{\alpha,\gamma}|_{S_{\gamma}}$ is a group congruence similarly as above. Let $a,b \in S_{\beta}$. For any $u \in S_{\alpha}$ and $v \in S_{\gamma}$, we have u > v, a = au, av = bv, bu = b so that $a\kappa_{\alpha,\gamma}b$. Therefore $\kappa_{\alpha,\gamma}|_{S_{\beta}} = \omega$.

The desired conclusions now follow from the definition of κ , namely, $\kappa = \kappa_{\alpha,\beta} \wedge \kappa_{\beta,\gamma} \wedge \kappa_{\alpha,\gamma}$.

5. A generalization of Rees congruence. Again S denotes an arbitrary completely regular semigroup. Let \mathcal{I} be the set of all ideals of S together with the empty set ordered by inclusion.

Let $\rho \in \mathcal{C}(S)$. For $I \in \mathcal{I}$, let

$$I_o = \{a \in S \mid a \rho b \text{ for some } b \in I\}$$

be the saturation of I by ρ . For $I, J \in \mathcal{I}$ such that $I\rho = I \subseteq J$, define a relation $\rho_{I,J}$ on S by

$$a\rho_{I,J}b \iff \begin{cases} \text{either} & a=b \notin J \\ \text{or} & a,b \in J \setminus I, a\rho b \\ \text{or} & a,b \in I. \end{cases}$$

It follows without difficulty that $\rho_{I,J} \in \mathcal{C}(S)$. In particular, for any ideal I of S which saturates ρ , we have that $\rho_{I,I}$ is the Rees congruence on S relative to I.

In the representation $\rho_{I,J}$ none of the ingredients ρ , I and J need be unique. We are interested in all congruences of this form for a fixed ρ . For $\rho \in \mathcal{C}(S)$, let

$$\Gamma_{\rho} = \{ \rho_{I,J} \mid I, J \in \mathcal{I}, I = I \rho \subseteq J \}.$$

The next proposition and its corollary determine the level of uniqueness of the parameters I and J in $\rho_{I,J}$.

Proposition 5.1. For $\rho_{I,J}$, $\rho_{K,L} \in \Gamma_{\rho}$, we have

$$\begin{split} \rho_{I,J} &\subseteq \rho_{K,L} \iff \rho|_{J \setminus L} = \varepsilon, \qquad (J \setminus L) \rho \cap J = J \setminus L, \\ I &\subseteq L \quad \text{if } |I| > 1, \quad I = x \rho \quad \text{for some } x \in S, \\ I &\subseteq K \quad \text{if } |I| > 1, \quad I \neq x \rho \quad \text{for all } x \in S. \end{split}$$

Proof. Necessity. Let $a,b\in J\backslash L$ be such that $a\rho b$. If $a\in I$, then $b\in I$ since $a\rho b$ and $I=I\rho$. If $a\notin I$, then also $b\notin I$ so that $a,b\in J\backslash I$. Thus $a\rho_{I,J}b$ whence $a\rho_{K,L}b$. Since $a,b\notin L$, we get a=b. Therefore $\rho|_{J\backslash L}=\varepsilon$.

Next let $a \in (J \setminus L)\rho \cap J$, say $a\rho b$ and $b \in J \setminus L$. Hence $a, b \in J$ and $a\rho b$ which implies that either $a, b \in I$ or $a, b \in J \setminus L$ since $I\rho = I$ whence $a\rho_{I,J}b$. It follows that $a\rho_{K,L}b$. Since $b \notin L$, also $a \notin L$ and a = b so that $a \in J \setminus L$. Therefore $(J \setminus L)\rho \cap J \subseteq J \setminus L$ and the opposite inclusion is trivial.

Assume that |I| > 1 and $I = x\rho$ for some $x \in S$, and let $a \in I$. There exists $b \in I$ such that $a \neq b$. Hence $a\rho_{I,J}b$ so that $a\rho_{K,L}b$. Since $a \neq b$, we get $a,b \in L$. Therefore $I \subseteq L$. Assume that |I| > 1 and $I \neq x\rho$ for all $x \in S$, and let $a \in I$. There exists $b \in I$ such that a and b are not ρ -related. Hence $a\rho_{I,J}b$ whence $a_{\rho_{K,L}}b$. Since a and b are not ρ -related, it follows that $a,b \in K$. Therefore $I \subseteq K$.

Sufficiency. It suffices to consider $a, b \in S$ such that $a \neq b$ and $a\rho_{I,J}b$. Then either $a, b \in I$ or $a, b \in J \setminus I$, $a\rho b$.

Consider the case $a, b \in I$. Since $a \neq b$, we must have |I| > 1. If $I = x\rho$ for some $x \in S$, then $I \subseteq L$ so that $a, b \in L$ and $a\rho b$ whence

either $a, b \in K$ or $a, b \in L \setminus K$, $a\rho b$ and in either case $a\rho_{K,L}b$. If $I \neq x\rho$ for all $x \in S$, then $I \subseteq K$ so that $a, b \in K$ whence $a\rho_{K,L}b$.

Finally consider the case $a,b\in J\backslash I, a\rho b$. By the hypothesis $\rho|_{J\backslash L}=\varepsilon$, we cannot have $a,b\in J\backslash L$. Thus, either $a,b\in L$, in which case $a,b\in K$ or $a,b\in L\backslash K$ so that $a\rho_{K,L}b$, or $a\in J\backslash L,\ b\in J\cap L$ or $b\in J\backslash L,\ a\in J\cap L$. The last two cases being symmetric, we assume that $a\in J\backslash L$ and $b\in J\cap L$. Since $a\rho b$, we get $b\in (J\backslash L)\rho\cap J$ which, by hypothesis, yields $b\in J\backslash L$. Hence $a,b\in J\backslash L$ which, as we have seen, is impossible. Therefore, this case cannot occur.

Corollary 5.2. For $\rho_{I,j}, \rho_{K,L} \in \Gamma_{\rho}$, we have

$$\begin{split} \rho_{I,J} &= \rho_{K,L} \iff \rho|_{(J \setminus L) \cup (L \setminus J)} = \varepsilon, \\ (J \setminus L)\rho \cap J &= J \setminus L, \qquad (L \setminus J)\rho \cap L = L \setminus J, \\ if |I| &> 1, \quad I = x\rho \ for \ some \ s \in S, \quad then \ I \subseteq L, \\ if |K| &> 1, \quad K = x\rho \ for \ some \ x \in S, \quad then \ K \subseteq J, \\ if |I| &> 1, \quad I \neq x\rho \ for \ some \ x \in S \ or \ |K| > 1, \\ K \neq x\rho \ for \ all \ x \in S, \quad then \ I = K. \end{split}$$

Proof. Comparing this with the result in Proposition 5.1, it suffices to consider the case |I| > 1, $I \neq x\rho$ for all $x \in S$. With the condition in that proposition, $I \subseteq K$ so |K| > 1 and $K \neq x\rho$ for all $x \in S$ and thus also $K \subseteq I$ and therefore I = K. \square

For the proof of the main result of this section we need some preparation.

Lemma 5.3. Let
$$\rho \in \mathcal{C}(S)$$
, $\rho_{I_{\alpha},J_{\alpha}} \in \Gamma_{\rho}$ for $\alpha \in A, I = \bigcup_{\alpha \in A} I_{\alpha}$ and $J = \bigcup_{\alpha \in A} J_{\alpha}$. Then $\bigvee_{\alpha \in A} \rho_{J_{\alpha},I_{\alpha}} = \rho_{I,J}$.

Proof. Let $\lambda = \vee_{\alpha \in A} \rho_{I_{\alpha}, J_{\alpha}}$. First note that

$$I\rho = \{x \in S \mid x\rho y \text{ for some } y \in I\}$$

= \{x \in S \| x\rho y \text{ for some } y \in I_\gamma \text{ for some } \gamma \in A\}

$$= \bigcup_{\alpha \in A} \{ x \in S \mid x \rho y \text{ for some } y \in I_{\alpha} \}$$
$$= \bigcup_{\alpha \in A} I_{\alpha} = I.$$

Now let $\beta \in A$, $a\rho_{I_{\beta},J_{\beta}}b$ and $a \neq b$. First assume that $a\rho b$. Then $a,b \in J_{\beta}$ so that $a,b \in J$. Since $a\rho b$, by the above we have either $a,b \in I$ or $a,b \notin I$. In the first case $a\rho_{I,J}b$ and in the second case $a,b \in J \setminus I$ and $a\rho b$ so that again $a\rho_{I,J}b$. Next assume that a and b are not ρ -related. Then $a,b \in I_{\beta}$ and thus $a,b \in I$ and $a\rho_{I,J}b$. Therefore $\rho_{I_{\beta},J_{\beta}} \subseteq \rho_{I,J}$ and $\lambda \subseteq \rho_{I,J}$.

Conversely let $a\rho_{I,J}b$ and $a \neq b$. First let $a\rho b$. Then $a, b \in J$, say $a \in J_{\alpha}$ and $b \in J_{\beta}$. Hence $a\rho a^0b\rho b^0a\rho b$, where

either
$$a, a^0b \in I_\alpha$$
 or $a, a^0b \in J_\alpha \setminus I_\alpha$,
either $a^0b, b^0a \in I_\alpha$ or $a^0b, b^0a \in J_\alpha \setminus I_\alpha$,
either $b^0a, b \in I_\beta$ or $b^0a, b \in J_\beta \setminus I_\beta$

since both I_{α} and I_{β} are ρ -saturated. Therefore

$$a\rho_{I_{a},I_{a}}a^{0}b\rho_{I_{a},I_{a}}b^{0}a\rho_{I_{a},I_{a}}b,$$

so that $a\lambda b$. Finally let a and b not be ρ -related. Then $a, b \in I$, say $a \in I_{\alpha}$ and $b \in I_{\beta}$. Hence $a, ab \in I_{\alpha}$ and $ab, b \in I_{\beta}$ which implies that $a\rho_{I_{\alpha},J_{\alpha}}ab\rho_{I_{\beta},J_{\beta}}b$. Consequently $a\lambda b$ which completes the proof that $\rho_{I,J} \subseteq \lambda$ and equality prevails.

Lemma 5.4. Let $\rho \in \mathcal{C}(S)$, $\rho_{I_{\alpha},J_{\alpha}} \in \Gamma_{\rho}$ for $\alpha \in A$, $I = \bigcap_{\alpha \in A} I_{\alpha}$ and $J = \bigcap_{\alpha \in A} J_{\alpha}$. Then $\bigwedge_{\alpha \in A} \rho_{I_{\alpha},J_{\alpha}} = \rho_{I,J}$.

Proof. Let $\lambda = \wedge_{\alpha \in A} \rho_{I_{\alpha}, J_{\alpha}}$ and $a \in I_{\rho}$. Then $a \rho b$ for some $b \in I$. Hence $b \in I_{\alpha}$ and thus $a \in I_{\alpha} \rho = I_{\alpha}$ for every $\alpha \in A$ so that $a \in I$.

Therefore $I\rho = I$. Let $a, b \in S$. Then

$$a\lambda b \iff a\rho_{I_{\alpha},J_{\alpha}}b \text{ for all } \alpha \in A$$

$$\Leftrightarrow \left\{ \begin{array}{l} \text{either } a=b \notin J_{\alpha} \\ \text{or } a,b \in J_{\alpha}\backslash I_{\alpha},a\rho b \end{array} \right\} \quad \text{for all } \alpha \in A,$$

$$\text{or } a,b \in I_{\alpha} \\ \text{or } a,b \in J\backslash I,a\rho b,$$

$$\text{or } a,b \in J\backslash I,a\rho b,$$

$$\text{or } a,b \in I.$$

It suffices to consider the case $a \neq b$. If $a\rho b$, then

$$\begin{array}{ccc} a\lambda b & \Longleftrightarrow & a,b \in J_{\alpha} \\ \text{for all} & \alpha \in A & \Longleftrightarrow & a,b \in J & \Longleftrightarrow & a\rho_{I,J}b. \end{array}$$

If a and b are not ρ -related, then

$$a\lambda b \iff a, b \in I_{\alpha}$$
 for all $\alpha \in A \iff a, b \in I \iff a\rho_{I,J}b$.

Therefore $\lambda = \rho_{I,J}$, as required.

For any set X, denote by $\mathcal{P}(X)$ the lattice of all subsets of X.

Theorem 5.5. Let $\rho \in C(S)$ and

$$\Gamma_{\rho} = \{ \rho_{I,J} \mid I, J \in \mathcal{I}, I = I \rho \subseteq J \}.$$

Then Γ_{ρ} is a distributive complete sublattice of C(S) containing ρ with greatest element ω and least element ε . The mapping

$$\chi: \lambda \longrightarrow \ker \lambda \quad (\lambda \in \Gamma_{\rho})$$

is a complete homomorphism of Γ_{ρ} into $\mathcal{P}(S)$. Hence $K|_{\Gamma_{\rho}}$ is a complete congruence.

Proof. Lemmas 5.3 and 5.4 show that Γ_{ρ} is a complete sublattice of $\mathcal{C}(S)$. Clearly $\omega = \rho_{S,S}$, $\rho = \rho_{\varnothing,S}$ and $\varepsilon = \rho_{\varnothing,\varnothing}$ so that $\omega, \rho, \varepsilon \in \Gamma_{\rho}$.

Next let

$$\Sigma = \{(I, J) \in \mathcal{I} \times \mathcal{I} \mid I = I\rho \subseteq J\}$$

under the operations of coordinatewise union and intersection. Now Lemmas 5.3 and 5.4 show that the mapping

$$\varphi: (I, J) \longrightarrow \rho_{I,J} \quad ((I, J) \in \Sigma)$$

is a homomorphism of σ onto Γ_{ρ} . Observing that the operations in \mathcal{I} are set-theoretical union and intersection, we deduce that \mathcal{I} is a distributive lattice and thus so is $\mathcal{I} \times \mathcal{I}$. Since Σ is a sublattice of $\mathcal{I} \times \mathcal{I}$, it also is distributive and therefore its homomorphic image Γ_{ρ} is distributive as well.

Now let $\{\rho_{I_{\alpha},J_{\alpha}} \mid \alpha \in A\}$ be a subfamily of Γ_{ρ} . Letting $I = \bigcup_{\alpha \in A} I_{\alpha}$ and $J = \bigcup_{\alpha \in A} J_{\alpha}$, by Lemma 5.3 we obtain

$$\ker\left(\bigvee_{\alpha\in A}\rho_{I_{\alpha},J_{\alpha}}\right) = \ker\rho_{I,J} = I\bigcup(\ker\rho\cap J)\bigcup E(S),$$

$$\bigcup_{\alpha\in A}\ker\rho_{I_{\alpha},J_{\alpha}} = \bigcup_{\alpha\in A}(I_{\alpha}\cup(\ker\rho\cap J_{\alpha})\cup E(S))$$

$$= I\cup\left(\bigcup_{\alpha\in A}(\ker\rho\cap J_{\alpha})\right)\cup E(S)$$

$$= I\cup(\ker\rho\cap J)\cup E(S).$$

Since φ is always a complete \wedge -homomorphism, the above evidently shows that φ is a complete homomorphism of Γ_{ρ} into $\mathcal{P}(S)$. As a consequence, $K|_{\Gamma_{\rho}}$ is a complete congruence. \square

REFERENCES

- 1. E.S. Ljapin, *Semigroups*, Fizmatgiz, Moscow, 1960 (in Russian); American Math. Soc., 1968 (second edition), in English.
- 2. F. Pastijn and M. Petrich, *The congruence lattice of a regular semigroup*, J. Pure Appl. Algebra 53 (1988), 93–123.
- 3. ——, Congruence lattices on a regular semigroup associated with certain operators, Acta Sci. Math. (Szeged) 35 (1991), 229–247.

- ${\bf 4.}$ M. Petrich, Congruences on completely regular semigroups, Canad. J. Math. ${\bf 41}$ (1989), 439–461.
- 5. ——, The kernel relation for a completely regular semigroup, J. Algebra 172 (1995), 90–112.
- **6.** ———, Certain relations on the congruence lattice of a completely regular semigroup, preprint.

DEPARTAMENTO DE MATEMÁTICA PURA, FACULDADE DE CIÊNCIAS, UNIVERSIDADE DO PORTO, 4050 PORTO, PORTUGAL