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SOME REMARKABLE CONGRUENCES ON
COMPLETELY REGULAR SEMIGROUPS

MARIO PETRICH

ABSTRACT. We express a completely regular semigroup
S as (Y ; Sα), that is, a semilattice of completely simple
semigroups. For each pair α > β, we consider the congruence
κα,β on S generated by the set of pairs (a, b) where a ∈ Sα,
b ∈ Sβ and a > b. These congruences play an important role
in finding conditions which ensure that the kernel relation K
on the congruence lattice of S be a congruence. In particular,
the meet and the join of these congruences provide interesting
congruences in this context. Another class of congruences,
constructed as follows, occurs naturally in this study. Given
a congruence ρ on S and ideals I ⊆ J of S, we generalize the
Rees congruence relative to I by constructing a congruence
which involves ρ, I and J ; here ρ must saturate I and I or J
may be empty.

1. Introduction and summary. The consideration of necessary
and sufficient conditions on a completely regular semigroup S in order
that the kernel relation K on the congruence lattice C(S) be a congru-
ence in [5] gives rise to the following class of congruences. We write
S = (Y ;Sα) thereby indicating that S is a semilattice Y of completely
simple semigroups Sα. For each pair α, β ∈ Y such that α > β, let
κα,β be the congruence on S generated by the pairs (a, b) such that
a ∈ Sα, b ∈ Sβ, a > b. These congruences play a crucial role in the
above evoked study. Besides the conditions on S which ensure that K
be a congruence, it is of interest to find some lattices Λ of congruences
on an arbitrary completely regular semigroup S with the property that
K|Λ is a congruence.

Section 2 contains the minimum of necessary preliminaries. We
establish in Section 3 that K restricted to the filter of C(S) generated
by the join of congruences κα,β is a congruence and the corresponding
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quotient is a modular lattice. The main result in Section 4 asserts
that, when Y has at least three elements and the restriction of K to the
filter generated by the intersection of congruences κα,β is a congruence,
then K is a congruence on all of C(S). Several other results in the
section supplement this statement. Section 5 has a different flavor. We
introduce a generalization of Rees congruences by involving two ideals
of S and a congruence on S. For a fixed congruence, this produces a
lattice of congruences on S with several interesting properties.

2. Preliminaries. Throughout the paper we fix an arbitrary
completely regular semigroup S. When the need arises, we assume
implicitly that S = (Y ;Sα), that is, S is a semilattice Y of completely
simple semigroups Sα. For a ∈ S, we denote by a0 the identity of the
maximal subgroup of S containing a. The set of idempotents of S is
denoted by E(S). The natural partial order on S is given by

a ≤ b ⇐⇒ a = eb = bf for some e, f ∈ E(S).

The lattice of all congruences on S is denoted by C(S). Its greatest
and least elements are denoted by ω and ε, respectively. We shall also
use the latter notation for the universal and equality relations on any
set. A set A saturates a congruence ρ if A is the union of some ρ-classes.
For ρ ∈ C(S),

ker ρ = {a ∈ S | aρe for some e ∈ E(S)}

is the kernel of ρ. The kernel relation K on C(S) is given by

λKρ ⇐⇒ kerλ = ker ρ (λ, ρ ∈ C(S)).

In a lattice L, for α ∈ L let [α) = {β ∈ L | β ≥ α}, the filter of L
generated by α. For any sets A and B, A\B = {a ∈ A | a /∈ B}. The
cardinality of a set X is denoted by |X|.

If I is an ideal of a semigroup T , then T is an (ideal) extension of I
by the quotient semigroup T/I. If also there exists a retraction ψ of
T onto I, then T is a retract extension of I determined by the partial
homomorphism ψ|T\I . If T has an identity, we write T = T 1; otherwise,
T 1 is the semigroup T with an identity adjoined.
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3. The join of congruences κα,β. For S = (Y ;Sα) and α > β, we
define κα,β as the congruence generated by the set

{(a, b) | a ∈ Sα, b ∈ Sβ, a > b}.

That this set is not empty is guaranteed by [4, Lemma 2.1(ii)].

We establish here some simple properties of the join of all congruences
κα,β ; in the next section we shall consider their meet.

Proposition 3.1. The relation θ = ∨α>βκα,β is the least completely
simple congruence on S. Let K ′ = K|[θ). Then K ′ is a congruence and
[θ)/K ′ is a modular lattice.

Proof. That θ is the least completely simple congruence on S follows
from: [6, Lemma 6.4], [2, Notation 4.8] and [3, Lemma 3].

It is well known that the mapping

ρ −→ ρ/θ (ρ ∈ [θ))

is an isomorphism of [θ) onto C(S/θ). By [5, Lemma 7.5(ii)], we have

(1) λKρ ⇐⇒ λ/θKρ/θ (λ, ρ ∈ [θ)).

Let λ, ρ, σ ∈ [θ) with λKρ. By (1), we have λ/θKρ/θ which, by [5,
Theorem 5.1], yields λ/θ ∨ σ/θKρ/θ ∨ σ/θ since S/θ is completely
simple. Hence (λ ∨ σ)/θK(ρ ∨ σ)/θ which by (1) gives λ ∨ σKρ ∨ σ.
Therefore K ′ is a congruence. It also follows from (1) that [θ)/K ′ ∼=
C(S/θ)/K which, by [5, Corollary 5.2], finally gives that [θ)/K ′ is a
modular lattice.

In order to ensure that the above proposition is not vacuous, that is,
that θ 	= ω may occur, we prove the following simple statement.

Lemma 3.2. Let S be a retract extension of a completely simple
semigroup S0 by a completely simple semigroup S1 with a zero adjoined
determined by a homomorphism ϕ : S1 → S0. Then θ = ω for S if and
only if S0 is trivial.
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Proof. First note that θ = κ1,0 if we consider S as a semilattice of
semigroups S0 and S1. The corresponding retraction ψ : S → S0 is
given by: ψ|S0 = ιS0 , ψ|S1 = ϕ. Let a, b ∈ S0 be such that aθb. Then
there exists a sequence

a = x1uy1, x1v1y1 = x2u2y2, · · · xnvnyn = b,

for some xi, yi ∈ S1 and ui, vi ∈ S such that either ui ≤ vi or vi ≤ ui,
i = 1, 2, . . . , n. Hence

a = x1(u1ψ)y1, x1(v1ψ)y1 = x2(u2ψ)y2, · · · xn(vnψ)yn = b,

and since uiψ = viψ for i = 1, 2, . . . , n, we get a = b. Therefore
θ|S0 = ε. It follows that, if θ = ω, we must have S0 trivial.

Conversely, assume that S0 is trivial. Then ϕ is a constant map so
that the induced congruence ϕ̄ equals ω on S1. By [6, Lemma 5.4],
θ|S1 = ϕ̄ and thus θ|S1 = ω. Since then any element of S1 is θ-related
to the single element in S0, it follows that θ = ω.

4. The meet of congruences καβ. Besides the notation κα,β

introduced in the preceding section, for α > β in Y , we let ζα,β be the
congruence on Y generated by the singleton {(α, β)}. We also let

κ =
∧

α>β

κα,β , ζ =
∧

α>β

ζα,β .

For the main result of this section, we shall need the following simple
statement of independent interest.

Lemma 4.1. Let Y be a semilattice with at least three elements.
Then ζ = ε.

Proof. Let α, β, γ ∈ Y be such that α > β, γ 	= α and γ 	= β. Then
exactly one of the following occurs: α > γ, α < γ or α and γ are
incomparable; the same type of situation occurs with β versus γ. Now,
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pairing these cases, we arrive at the following possibilities:

1. 2. 4. 6.3. 5.

Let θ be the congruence on Y with classes [α) and Y \[α). Then α and
β are not θ-related. By the cases enunciated above, we have

1. ζβ,γ ⊆ θ; 2. ζγ,β ⊆ θ; 3. ζβ,βγ ⊆ θ;
4. ζγ,α ⊆ θ; 5. ζγ,β ⊆ θ; 6. ζγ,βγ ⊆ θ.

Since α and β are not θ-related, this shows that in all cases there exists
ζδ,η such that α and β are not ζδ,η-related. It follows that α and β are
not ζ-related.

Now let α, β ∈ Y with α 	= β. If they are comparable, by the above,
they are not ζ-related. If they are not comparable, then α > αβ and
thus α and αβ are not ζ-related. But this obviously implies that also
α and β are not ζ-related. Therefore ζ = ε.

Theorem 4.2. Let S = (Y ;Sα) be a completely regular semigroup
and Y have at least three elements. Assume that K restricted to [κ) is
a congruence. Then K is a congruence on all of C(S).

Proof. According to [5, Theorem 5.1], it suffices to show that, for any
α > β in Y , we have Sα ⊆ kerκα,β . We represent κα,β by means of
its congruence aggregate as in [4], to wit κα,b ∼ (ζα,β ; ηγ) in view of
[5, Lemma 4.4] which asserts that κα,β induces on Y the congruence
ζα,β for some ηγ ∈ C(Sγ) for each γ ∈ Y . By [4, Corollary 5.5(i)],
the mapping κα,β → ζα,β is a complete homomorphism. Since κ has its
congruence aggregate of the form ∧α>β(ζα,β ; ), it follows that κ ∼ (ζ; ).
But Lemma 4.1 gives that ζ = ε. Therefore κ ⊆ D.

Now fix α > β, and let ρ = κα,β ∧ D. Then

kerκα,β = kerκα,β ∩ kerD = ker(κα,β ∧ D) = ker ρ
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and, by the preceding paragraph, we have κ ⊆ ρ. Define a relation λ
on S by

xλy ⇐⇒ x, y ∈ Sγ

for some γ ∈ Y and xκα,βy if γ 	≤ β.

Clearly λ is an equivalence relation. Let xλy with x, y ∈ Sγ and a ∈ Sδ.
If γδ ≤ β, then xaDya implies that xaλya. If γδ 	≤ β, then γ 	≤ β,
and thus xκα,βy which implies that xaκα,βya which, together with
xaDya yields xaλya. Similarly axλay in all cases. Therefore λ ∈ C(S)
and, in fact, κ ⊆ ρ ⊆ λ. Since κα,βKρ, the hypothesis implies that
κα,β ∨ λKρ ∨ λ.

Let a ∈ Sα. By [4, Lemma 2.1(ii)], there exists b ∈ Sβ such that
a > b. Hence aκα,βb. Also bλe for any e ∈ E(Sβ) and thus aκα,βbλe
whence a ∈ ker(κα,β ∨ λ) = ker(ρ ∨ λ). Hence there exists a sequence

aρx1λx2ρ · · ·xnλa
0

for some x1, x2, . . . , xn ∈ S. Since both ρ and λ are under D, we
must have x1, x2, · · ·xn ∈ Sα. But then aκα,βx1, x1κα,βx2, . . . by the
definitions of ρ and λ, which yields aκα,βa

0 so that a ∈ kerκα,β. We
have proved that Sα ⊆ kerκα,β , as required.

Theorem 4.2 does not extend to the case when Y has only two
elements.

Example 4.3. Let S = Y2 × Z2 where Y2 = {0, 1} and Z2 = Z/(2).
Then = C(Y ) has the form
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where σ = κα,β with Sα = {1} × Z2, Sβ = {0} × Z2 and ρ is the
Rees congruence. Then [κα,β , ω] = {σ, ω} and K|{σ,ω} = ε so it is a
congruence. But K is not a congruence.

Theorem 4.2 is vacuous for |Y | = 1, for κα,β is not defined and K is
a congruence. In general, κ = ∧α>βκα,β is different from the equality
relation as we shall see below.

A completely regular semigroup which is a chain Y of completely
simple semigroups Sα in which every element acts as the zero of any
element in a higher completely simple component is called the mutually
annihilating sum (of semigroups Sα, α ∈ Y ), see [1].

Lemma 4.4. Let S be a mutually annihilating sum of completely
simple semigroups. Then K is a congruence for S.

Proof. Let a ∈ Sα and b ∈ Sβ where α > β. We have, by hypothesis,
that b = ab = ba whence b0 = ab0 = b0a so that a > b0. It follows, by
[4, Lemma 2.1(iv)], that aκα,βb

0 and thus a ∈ kerκα,β . By [5, Theorem
5.1], we conclude that K is a congruence for S.

We exhibit in the following example that, in a completely simple
semigroup S for which K is a congruence, κ = ∧α>βκα,β need not be
the equality relation.

Lemma 4.5. Let S be a mutually annihilating sum of the completely
simple semigroups Sα, Sβ and Sγ where α > β > γ. Then κ ⊆ D,
κ|Sα

= ε, κ|Sβ
is a group congruence and κ|Sγ

= ε.

Proof. We have seen in the proof of Theorem 4.2 that κ ⊆ D. The
following verification will take care of the remaining assertions of the
lemma.

1. For any a ∈ Sα and e ∈ E(Sβ), we have e < a which, by [4,
Lemma 2.1(iv)], implies that eκα,βa so that a ∈ kerκα,β . Therefore
κα,β |Sα

= ω. The same type of argument shows that eκα,βf for any
e, f ∈ E(Sβ) so that κα,β |Sβ

is a group congruence. Next let a, b ∈ Sγ
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be such that aκα,βb. Then there exists a sequence

(2) a = x1u1y1, x1v1y1 = x2u2y2, · · · xnvnyn = b

for some xi, yi ∈ S1, ui, vi ∈ S such that either ui ∈ Sα, vi ∈ Sβ or
ui ∈ Sβ , vi ∈ Sα for i = 1, 2, . . . , n. Since a ∈ Sγ and u1 ∈ Sα ∪Sβ, we
must have either x1 ∈ Sγ or y1 ∈ Sγ . This implies that x1v1y1 ∈ Sγ

and thus, either x2 ∈ Sγ or y2 ∈ Sγ . Continuing this reasoning, we
conclude, from the peculiarity of the multiplication in S, that

a = x1y1, x1y1 = x2y2, · · · xnyn = b

so that a = b. Therefore κα,β |Sγ
= ε.

2. Next κβ,γ |Sα
= ε since the system of equations (2) with xi, yi ∈ S1

and ui, vi ∈ Sα ∪ Sβ cannot hold if a, b ∈ Sγ . Similar reasoning as
the one above shows that κβ,γ |Sβ

= ω and that κβ,γ |Sγ
is a group

congruence.

3. Again κα,γ |Sα
= ω and κα,γ |Sγ

is a group congruence similarly as
above. Let a, b ∈ Sβ. For any u ∈ Sα and v ∈ Sγ , we have u > v,
a = au, av = bv, bu = b so that aκα,γb. Therefore κα,γ |Sβ

= ω.

The desired conclusions now follow from the definition of κ, namely,
κ = κα,β ∧ κβ,γ ∧ κα,γ .

5. A generalization of Rees congruence. Again S denotes an
arbitrary completely regular semigroup. Let I be the set of all ideals
of S together with the empty set ordered by inclusion.

Let ρ ∈ C(S). For I ∈ I, let

Iρ = {a ∈ S | aρb for some b ∈ I}
be the saturation of I by ρ. For I, J ∈ I such that Iρ = I ⊆ J , define
a relation ρI,J on S by

aρI,Jb ⇐⇒
⎧⎨
⎩

either a = b /∈ J

or a, b ∈ J\I, aρb
or a, b ∈ I.

It follows without difficulty that ρI,J ∈ C(S). In particular, for any
ideal I of S which saturates ρ, we have that ρI,I is the Rees congruence
on S relative to I.
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In the representation ρI,J none of the ingredients ρ, I and J need be
unique. We are interested in all congruences of this form for a fixed ρ.
For ρ ∈ C(S), let

Γρ = {ρI,J | I, J ∈ I, I = Iρ ⊆ J}.

The next proposition and its corollary determine the level of unique-
ness of the parameters I and J in ρI,J .

Proposition 5.1. For ρI,J , ρK,L ∈ Γρ, we have

ρI,J ⊆ ρK,L ⇐⇒ ρ|J\L = ε, (J\L)ρ ∩ J = J\L,
I ⊆ L if |I| > 1, I = xρ for some x ∈ S,

I ⊆ K if |I| > 1, I 	= xρ for all x ∈ S.

Proof. Necessity. Let a, b ∈ J\L be such that aρb. If a ∈ I, then
b ∈ I since aρb and I = Iρ. If a /∈ I, then also b /∈ I so that a, b ∈ J\I.
Thus aρI,Jb whence aρK,Lb. Since a, b /∈ L, we get a = b. Therefore
ρ|J\L = ε.

Next let a ∈ (J\L)ρ ∩ J , say aρb and b ∈ J\L. Hence a, b ∈ J and
aρb which implies that either a, b ∈ I or a, b ∈ J\L since Iρ = I whence
aρI,Jb. It follows that aρK,Lb. Since b /∈ L, also a /∈ L and a = b so
that a ∈ J\L. Therefore (J\L)ρ∩ J ⊆ J\L and the opposite inclusion
is trivial.

Assume that |I| > 1 and I = xρ for some x ∈ S, and let a ∈ I. There
exists b ∈ I such that a 	= b. Hence aρI,Jb so that aρK,Lb. Since a 	= b,
we get a, b ∈ L. Therefore I ⊆ L. Assume that |I| > 1 and I 	= xρ for
all x ∈ S, and let a ∈ I. There exists b ∈ I such that a and b are not
ρ-related. Hence aρI,Jb whence aρK,L

b. Since a and b are not ρ-related,
it follows that a, b ∈ K. Therefore I ⊆ K.

Sufficiency. It suffices to consider a, b ∈ S such that a 	= b and aρI,Jb.
Then either a, b ∈ I or a, b ∈ J\I, aρb.

Consider the case a, b ∈ I. Since a 	= b, we must have |I| > 1. If
I = xρ for some x ∈ S, then I ⊆ L so that a, b ∈ L and aρb whence
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either a, b ∈ K or a, b ∈ L\K, aρb and in either case aρK,Lb. If I 	= xρ
for all x ∈ S, then I ⊆ K so that a, b ∈ K whence aρK,Lb.

Finally consider the case a, b ∈ J\I, aρb. By the hypothesis ρ|J\L = ε,
we cannot have a, b ∈ J\L. Thus, either a, b ∈ L, in which case
a, b ∈ K or a, b ∈ L\K so that aρK,Lb, or a ∈ J\L, b ∈ J ∩ L or
b ∈ J\L, a ∈ J ∩ L. The last two cases being symmetric, we assume
that a ∈ J\L and b ∈ J ∩ L. Since aρb, we get b ∈ (J\L)ρ ∩ J which,
by hypothesis, yields b ∈ J\L. Hence a, b ∈ J\L which, as we have
seen, is impossible. Therefore, this case cannot occur.

Corollary 5.2. For ρI,j , ρK,L ∈ Γρ, we have

ρI,J = ρK,L ⇐⇒ ρ|(J\L)∪(L\J) = ε,

(J\L)ρ ∩ J = J\L, (L\J)ρ ∩ L = L\J,
if |I| > 1, I = xρ for some s ∈ S, then I ⊆ L,

if |K| > 1, K = xρ for some x ∈ S, then K ⊆ J,

if |I| > 1, I 	= xρ for some x ∈ S or |K| > 1,
K 	= xρ for all x ∈ S, then I = K.

Proof. Comparing this with the result in Proposition 5.1, it suffices
to consider the case |I| > 1, I 	= xρ for all x ∈ S. With the condition
in that proposition, I ⊆ K so |K| > 1 and K 	= xρ for all x ∈ S and
thus also K ⊆ I and therefore I = K.

For the proof of the main result of this section we need some prepa-
ration.

Lemma 5.3. Let ρ ∈ C(S), ρIα,Jα
∈ Γρ for α ∈ A, I = ∪α∈AIα and

J = ∪α∈AJα. Then ∨α∈AρJα,Iα
= ρI,J .

Proof. Let λ = ∨α∈AρIα,Jα
. First note that

Iρ = {x ∈ S | xρy for some y ∈ I}
= {x ∈ S | xρy for some y ∈ Iγ for some γ ∈ A}
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=
⋃

α∈A

{x ∈ S | xρy for some y ∈ Iα}

=
⋃

α∈A

Iα = I.

Now let β ∈ A, aρIβ ,Jβ
b and a 	= b. First assume that aρb. Then

a, b ∈ Jβ so that a, b ∈ J . Since aρb, by the above we have either
a, b ∈ I or a, b /∈ I. In the first case aρI,Jb and in the second case
a, b ∈ J\I and aρb so that again aρI,Jb. Next assume that a and b are
not ρ-related. Then a, b ∈ Iβ and thus a, b ∈ I and aρI,Jb. Therefore
ρIβ ,Jβ

⊆ ρI,J and λ ⊆ ρI,J .

Conversely let aρI,Jb and a 	= b. First let aρb. Then a, b ∈ J , say
a ∈ Jα and b ∈ Jβ. Hence aρa0bρb0aρb, where

either a, a0b ∈ Iα or a, a0b ∈ Jα\Iα,
either a0b, b0a ∈ Iα or a0b, b0a ∈ Jα\Iα,
either b0a, b ∈ Iβ or b0a, b ∈ Jβ\Iβ

since both Iα and Iβ are ρ-saturated. Therefore

aρIα,Jα
a0bρIα,Jα

b0aρIβ ,Jβ
b,

so that aλb. Finally let a and b not be ρ-related. Then a, b ∈ I, say
a ∈ Iα and b ∈ Iβ. Hence a, ab ∈ Iα and ab, b ∈ Iβ which implies that
aρIα,Jα

abρIβ ,Jβ
b. Consequently aλb which completes the proof that

ρI,J ⊆ λ and equality prevails.

Lemma 5.4. Let ρ ∈ C(S), ρIα,Jα
∈ Γρ for α ∈ A, I = ∩α∈AIα and

J = ∩α∈AJα. Then ∧α∈AρIα,Jα
= ρI,J .

Proof. Let λ = ∧α∈AρIα,Jα
and a ∈ Iρ. Then aρb for some b ∈ I.

Hence b ∈ Iα and thus a ∈ Iαρ = Iα for every α ∈ A so that a ∈ I.
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Therefore Iρ = I. Let a, b ∈ S. Then

aλb ⇐⇒ aρIα,Jα
b for all α ∈ A

⇐⇒

⎧⎪⎪⎨
⎪⎪⎩

either a = b /∈ Jα

or a, b ∈ Jα\Iα, aρb
or a, b ∈ Iα

⎫⎪⎪⎬
⎪⎪⎭

for all α ∈ A,

aρI,Jb ⇐⇒

⎧⎪⎨
⎪⎩

either a = b /∈ J

or a, b ∈ J\I, aρb,
or a, b ∈ I.

It suffices to consider the case a 	= b. If aρb, then

aλb ⇐⇒ a, b ∈ Jα

for all α ∈ A ⇐⇒ a, b ∈ J ⇐⇒ aρI,Jb.

If a and b are not ρ-related, then

aλb ⇐⇒ a, b ∈ Iα

for all α ∈ A ⇐⇒ a, b ∈ I ⇐⇒ aρI,Jb.

Therefore λ = ρI,J , as required.

For any set X, denote by P(X) the lattice of all subsets of X.

Theorem 5.5. Let ρ ∈ C(S) and

Γρ = {ρI,J | I, J ∈ I, I = Iρ ⊆ J}.

Then Γρ is a distributive complete sublattice of C(S) containing ρ with
greatest element ω and least element ε. The mapping

χ : λ −→ kerλ (λ ∈ Γρ)

is a complete homomorphism of Γρ into P(S). Hence K|Γρ
is a

complete congruence.
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Proof. Lemmas 5.3 and 5.4 show that Γρ is a complete sublattice of
C(S). Clearly ω = ρS,S , ρ = ρ∅,S and ε = ρ∅,∅ so that ω, ρ, ε ∈ Γρ.

Next let
Σ = {(I, J) ∈ I × I | I = Iρ ⊆ J}

under the operations of coordinatewise union and intersection. Now
Lemmas 5.3 and 5.4 show that the mapping

ϕ : (I, J) −→ ρI,J ((I, J) ∈ Σ)

is a homomorphism of σ onto Γρ. Observing that the operations in
I are set-theoretical union and intersection, we deduce that I is a
distributive lattice and thus so is I × I. Since Σ is a sublattice of
I × I, it also is distributive and therefore its homomorphic image Γρ

is distributive as well.

Now let {ρIα,Jα
| α ∈ A} be a subfamily of Γρ. Letting I = ∪α∈AIα

and J = ∪α∈AJα, by Lemma 5.3 we obtain

ker
( ∨

α∈A

ρIα,Jα

)
= ker ρI,J = I

⋃
(ker ρ ∩ J)

⋃
E(S),

⋃
α∈A

ker ρIα,Jα
=

⋃
α∈A

(Iα ∪ (ker ρ ∩ Jα) ∪E(S))

= I ∪
( ⋃

α∈A

(ker ρ ∩ Jα)
)
∪E(S)

= I ∪ (ker ρ ∩ J) ∪ E(S).

Since ϕ is always a complete ∧-homomorphism, the above evidently
shows that ϕ is a complete homomorphism of Γρ into P(S). As a
consequence, K|Γρ

is a complete congruence.
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Departamento de Matemática Pura, Faculdade de Ciências, Universi-
dade do Porto, 4050 Porto, Portugal


