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SOME REMARKABLE CONGRUENCES ON
COMPLETELY REGULAR SEMIGROUPS

MARIO PETRICH

ABSTRACT. We express a completely regular semigroup
S as (Y;Sq), that is, a semilattice of completely simple
semigroups. For each pair o > 3, we consider the congruence
Ka,3 on S generated by the set of pairs (a,b) where a € Sq,
b € Sg and a > b. These congruences play an important role
in finding conditions which ensure that the kernel relation K
on the congruence lattice of S be a congruence. In particular,
the meet and the join of these congruences provide interesting
congruences in this context. Another class of congruences,
constructed as follows, occurs naturally in this study. Given
a congruence p on S and ideals I C J of S, we generalize the
Rees congruence relative to I by constructing a congruence
which involves p, I and J; here p must saturate I and I or J
may be empty.

1. Introduction and summary. The consideration of necessary
and sufficient conditions on a completely regular semigroup S in order
that the kernel relation K on the congruence lattice C(S) be a congru-
ence in [5] gives rise to the following class of congruences. We write
S = (Y; S,) thereby indicating that S is a semilattice Y of completely
simple semigroups S,. For each pair o, € Y such that a > 3, let
Ka,3 be the congruence on S generated by the pairs (a,b) such that
a € Sq, b € S3, a >b. These congruences play a crucial role in the
above evoked study. Besides the conditions on .S which ensure that K
be a congruence, it is of interest to find some lattices A of congruences
on an arbitrary completely regular semigroup S with the property that
K|, is a congruence.

Section 2 contains the minimum of necessary preliminaries. We
establish in Section 3 that K restricted to the filter of C(S) generated
by the join of congruences k4 g is a congruence and the corresponding
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quotient is a modular lattice. The main result in Section 4 asserts
that, when Y has at least three elements and the restriction of K to the
filter generated by the intersection of congruences kg is a congruence,
then K is a congruence on all of C(S). Several other results in the
section supplement this statement. Section 5 has a different flavor. We
introduce a generalization of Rees congruences by involving two ideals
of S and a congruence on S. For a fixed congruence, this produces a
lattice of congruences on S with several interesting properties.

2. Preliminaries. Throughout the paper we fix an arbitrary
completely regular semigroup S. When the need arises, we assume
implicitly that S = (Y7; S, ), that is, S is a semilattice Y of completely
simple semigroups S,. For a € S, we denote by a® the identity of the
maximal subgroup of S containing a. The set of idempotents of S is
denoted by E(S). The natural partial order on S is given by

a<b <= a=eb=0f forsome e, feE(S).

The lattice of all congruences on S is denoted by C(S). Its greatest
and least elements are denoted by w and €, respectively. We shall also
use the latter notation for the universal and equality relations on any
set. A set A saturates a congruence p if A is the union of some p-classes.
For p € C(95),

kerp = {a € S | ape for some e € E(S5)}
is the kernel of p. The kernel relation K on C(S) is given by
AKp <<= kerA=kerp (A peC(9)).

In a lattice L, for « € L let [a) = {8 € L | B > a}, the filter of L
generated by «. For any sets A and B, A\B ={a € A|a ¢ B}. The
cardinality of a set X is denoted by | X|.

If I is an ideal of a semigroup 7', then T is an (ideal) extension of T
by the quotient semigroup 7'/I. If also there exists a retraction ¢ of
T onto I, then T is a retract extension of I determined by the partial
homomorphism |7\ ;. If T has an identity, we write 7' = T': otherwise,
T' is the semigroup T with an identity adjoined.
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3. The join of congruences k. g. For S = (V;S,) and a > 3, we
define k4,3 as the congruence generated by the set

{(a,b) | a € Su,b € Sp,a > b}.

That this set is not empty is guaranteed by [4, Lemma 2.1(ii)].

We establish here some simple properties of the join of all congruences
Kq,3; in the next section we shall consider their meet.

Proposition 3.1. The relation § = Vo>pka,3 is the least completely
simple congruence on S. Let K' = K|jg). Then K' is a congruence and
[0)/K' is a modular lattice.

Proof. That 6 is the least completely simple congruence on S follows
from: [6, Lemma 6.4], [2, Notation 4.8] and [3, Lemma 3].

It is well known that the mapping
p—p/0 (pelb))
is an isomorphism of [#) onto C(S/6). By [5, Lemma 7.5(ii)], we have
(1) AKp << MO0Kp/0 (A\pe]d)).

Let A, p,o € [0) with AKp. By (1), we have A\/0Kp/0 which, by [5,
Theorem 5.1, yields A\/8 V a/0Kp/0 V o/6 since S/6 is completely
simple. Hence (AV o)/0K(pV o)/0 which by (1) gives AV oKpV o.
Therefore K’ is a congruence. It also follows from (1) that [6)/K’ =
C(S/0)/K which, by [5, Corollary 5.2], finally gives that [#)/K’ is a
modular lattice. |

In order to ensure that the above proposition is not vacuous, that is,
that @ # w may occur, we prove the following simple statement.

Lemma 3.2. Let S be a retract extension of a completely simple
semigroup Sy by a completely simple semigroup S1 with a zero adjoined
determined by a homomorphism ¢ : S — So. Then 8 = w for S if and
only if So is trivial.
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Proof. First note that 6 = k1 if we consider S as a semilattice of
semigroups Sy and S;. The corresponding retraction @ : S — Sy is
given by: ©|So = ts,, ¥|s, = ¢. Let a,b € Sy be such that afb. Then
there exists a sequence

a = T1uY1, TIV1Y1 = TaU2Y2, *'* TpUnln = b,

for some x;,vy; € S' and w;,v; € S such that either u; < v; or v; < uy,
i=1,2,...,n. Hence

a =z (u1)ys, r(viY)yr = x2(u2))y2, - Tp(vp)yn = b,

and since w;¥ = vy for i = 1,2,... ,n, we get a = b. Therefore
0|s, = €. It follows that, if § = w, we must have Sy trivial.

Conversely, assume that Sy is trivial. Then ¢ is a constant map so
that the induced congruence @ equals w on S;. By [6, Lemma 5.4],
0|s, = ¢ and thus 0|s, = w. Since then any element of S; is f-related
to the single element in Sy, it follows that 6 = w. o

4. The meet of congruences r,3. DBesides the notation x4 s
introduced in the preceding section, for o > 8 in Y, we let (, g be the
congruence on Y generated by the singleton {(a, 3)}. We also let

K = /\ Ra,f3) C:: /\ Cmﬁ~

a>f3 a>p0

For the main result of this section, we shall need the following simple
statement of independent interest.

Lemma 4.1. Let Y be a semilattice with at least three elements.
Then ( = €.

Proof. Let a, 3,7 € Y be such that a > 3, v # o and v # 3. Then
exactly one of the following occurs: o > v, @ < 7 or «a and « are
incomparable; the same type of situation occurs with 3 versus . Now,
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pairing these cases, we arrive at the following possibilities:

a
.99 2. 7% 3 4. 97 5. % 76 ¢
p 4 a oy
Y BB 4 B B
B

Let 6 be the congruence on Y with classes [a) and Y'\[«). Then « and
0 are not f-related. By the cases enunciated above, we have

L CBKY c b; 2. C’y,ﬁ c o, 3. Cﬁ,ﬁ'y C o,
4.Ca Sl 5.6pC0 6. (e, SO

Since v and 3 are not f-related, this shows that in all cases there exists
(s5.n such that o and 38 are not (s,-related. It follows that o and 3 are
not (-related.

Now let o, 8 € Y with a # (. If they are comparable, by the above,
they are not (-related. If they are not comparable, then a@ > o and
thus a and af are not (-related. But this obviously implies that also
«a and G are not (-related. Therefore { = ¢. o

Theorem 4.2. Let S = (Y;5,) be a completely regqular semigroup
and Y have at least three elements. Assume that K restricted to [k) is
a congruence. Then K is a congruence on all of C(S5).

Proof. According to [5, Theorem 5.1], it suffices to show that, for any
a > BinY, we have S, C kerr, 3. We represent xo,3 by means of
its congruence aggregate as in [4], to wit Kap ~ (Ca,8;7y) in view of
[5, Lemma 4.4] which asserts that k., g induces on Y the congruence
Ca,p for some 1, € C(S,) for each v € Y. By [4, Corollary 5.5(i)],
the mapping ka3 — (a,3 is a complete homomorphism. Since x has its
congruence aggregate of the form Ao 3(Ca,s; ), it follows that x ~ ({5 ).
But Lemma 4.1 gives that ( = e. Therefore x C D.

Now fix a > 3, and let p = Ko,3 A D. Then
ker ko 3 = ker ko g Nker D = ker(ka,g A D) = kerp
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and, by the preceding paragraph, we have k C p. Define a relation A
on S by
Ay = =z,ye€S,
for some vy €Y and xk.gy if v £ 0.

Clearly X is an equivalence relation. Let zAy with z,y € S, and a € S;.
If v6 < 3, then zaDya implies that xaiya. If v6 £ 3, then v £ 0,
and thus ke gy which implies that xzar, gya which, together with
xaDya yields xadya. Similarly axAay in all cases. Therefore A € C(S)
and, in fact, K € p C A. Since kq,gKp, the hypothesis implies that
Ka,g VAKpV A

Let a € S,. By [4, Lemma 2.1(ii)], there exists b € Sg such that
a > b. Hence akq gb. Also bAe for any e € E(Sg) and thus akq gble
whence a € ker(kq,g V A) = ker(p vV X). Hence there exists a sequence

apri\zap - - - xpha’

for some x1,29,...,z, € S. Since both p and A are under D, we
must have 21,9, - Ty € So. But then arqy g1, 1kq,8T2,... by the
definitions of p and A, which yields akq,ga’ so that a € kerk, 5. We
have proved that S, C ker kq, 3, as required. a

Theorem 4.2 does not extend to the case when Y has only two
elements.

Example 4.3. Let S =Y x Z3 where Yo = {0,1} and Z> = Z/(2).
Then = C(Y") has the form
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where 0 = Ko with S = {1} x Z5, Sg = {0} x Z5 and p is the
Rees congruence. Then [kq,5,w] = {o,w} and K|, = € 50 it is a
congruence. But K is not a congruence.

Theorem 4.2 is vacuous for |Y| = 1, for k4 g is not defined and K is
a congruence. In general, K = Aqa>gka,g is different from the equality
relation as we shall see below.

A completely regular semigroup which is a chain Y of completely
simple semigroups S, in which every element acts as the zero of any
element in a higher completely simple component is called the mutually
annihilating sum (of semigroups Sy, @ € Y), see [1].

Lemma 4.4. Let S be a mutually annihilating sum of completely
simple semigroups. Then K is a congruence for S.

Proof. Let a € S, and b € S3 where a > 3. We have, by hypothesis,
that b = ab = ba whence b° = ab® = b so that a > b°. It follows, by
[4, Lemma 2.1(iv)], that ak,, gb° and thus a € ker £, 5. By [5, Theorem
5.1], we conclude that K is a congruence for S. |

We exhibit in the following example that, in a completely simple
semigroup S for which K is a congruence, K = Ay>gkq,3 Need not be
the equality relation.

Lemma 4.5. Let S be a mutually annihilating sum of the completely
simple semigroups S, Sg and S, where o > 3 > . Then K C D,
kls, = €, Kls, is a group congruence and ks, = €.

Proof. We have seen in the proof of Theorem 4.2 that x C D. The
following verification will take care of the remaining assertions of the
lemma.

1. For any a € S, and e € E(S3), we have e < a which, by [4,
Lemma 2.1(iv)], implies that exq ga so that a € kerkq g. Therefore
Ka,gls, = w. The same type of argument shows that ex, gf for any
e, f € E(Sp) so that kq,gls, is a group congruence. Next let a,b € S,
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be such that ar. gb. Then there exists a sequence

(2) a = T1U1Y1, TIV1Y1 = TaU2y2, 1 TpUnYn =D

for some x;,y; € S, u;,v; € S such that either u; € S,, v; € Sg or
u; € 98, v; € S fori=1,2,... ,n. Since a € Sy and u; € S, USg3, we
must have either 1 € S, or 1 € S,. This implies that z;v1y, € S,

and thus, either zo € S, or y» € S,. Continuing this reasoning, we
conclude, from the peculiarity of the multiplication in S, that

a=2T1Y1, Ti1Yy1=7T2Y2, ‘' TpYn =0
so that a = b. Therefore x4 sls, = €.

2. Next kg.,|s, = € since the system of equations (2) with z;,y; € S*
and u;,v; € So U Sg cannot hold if a,b € S,. Similar reasoning as
the one above shows that kg .|s, = w and that kg,|s is a group
congruence.

3. Again kg |5, = w and kK |s, is a group congruence similarly as
above. Let a,b € Sg. For any v € S, and v € S, we have u > v,
a = au, av = bv, bu = b so that ak, b. Therefore Iia’7|sﬁ = w.

The desired conclusions now follow from the definition of x, namely,
K= KagNEGy N Ka,y- O

5. A generalization of Rees congruence. Again S denotes an
arbitrary completely regular semigroup. Let Z be the set of all ideals
of S together with the empty set ordered by inclusion.

Let p € C(S). For I € Z, let
I,={a€S|apbfor somebe I}

be the saturation of I by p. For I,J € Z such that Ip =1 C J, define
a relation py ; on S by

either a=0b¢ J
apr.jb <= or a,b e J\I,apb
or a,bel.

It follows without difficulty that p; s € C(S). In particular, for any
ideal I of S which saturates p, we have that p; ; is the Rees congruence
on S relative to I.
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In the representation pr ; none of the ingredients p, I and J need be
unique. We are interested in all congruences of this form for a fixed p.
For p € C(9), let

T, ={prs| LJ€T.I=1pC J}.

The next proposition and its corollary determine the level of unique-
ness of the parameters I and J in py ;.

Proposition 5.1. For p; s, pr,r €'y, we have

pra Cprr = plpnr=¢e  (J\L)pnJ=J\L,
ICL 4f|I|>1, I=uxzp forsomex €S,
ICK if|I|>1, I#xp foralxes.

Proof. Necessity. Let a,b € J\L be such that apb. If a € I, then
b e I since apb and I = Ip. If a ¢ I, then also b ¢ I so that a,b € J\I.
Thus apr, ;b whence apg rb. Since a,b ¢ L, we get a = b. Therefore
P|J\L =¢&.

Next let a € (J\L)p N J, say apb and b € J\L. Hence a,b € J and
apb which implies that either a,b € I or a,b € J\L since Ip = I whence
apr,sb. It follows that apg 1b. Since b ¢ L, also a ¢ L and a = b so
that @ € J\L. Therefore (J\L)pNJ C J\L and the opposite inclusion
is trivial.

Assume that |I| > 1 and I = zp for some z € S, and let a € I. There
exists b € I such that a # b. Hence ap; sb so that apk,b. Since a # b,
we get a,b € L. Therefore I C L. Assume that |I| > 1 and I # zp for
all x € S, and let a € I. There exists b € I such that a and b are not
p-related. Hence apr ;b whence a,, , b. Since a and b are not p-related,
it follows that a,b € K. Therefore I C K.

Sufficiency. It suffices to consider a,b € S such that a # b and apr sb.
Then either a,b € I or a,b € J\I, apb.

Consider the case a,b € I. Since a # b, we must have |I| > 1. If
I = xp for some x € S, then I C L so that a,b € L and apb whence



1478 M. PETRICH

either a,b € K or a,b € L\K, apb and in either case apg b. If I # xp
for all z € S, then I C K so that a,b € K whence apg, .b.

Finally consider the case a,b € J\I, apb. By the hypothesis p|,\ 1, = €,
we cannot have a,b € J\L. Thus, either a,b € L, in which case
a,b € K or a,b € L\K so that apg b, or a € J\L, b € JN L or
be J\L, a € JN L. The last two cases being symmetric, we assume
that a € J\L and b € JN L. Since apb, we get b € (J\L)p N J which,
by hypothesis, yields b € J\L. Hence a,b € J\L which, as we have
seen, is impossible. Therefore, this case cannot occur. o

Corollary 5.2. For pr;,px,r. €'y, we have

pr=prL <= plonuc\g) =6
(N\LpNJ=I\L, (I\)pOL=L\J,
if [ Il >1, I=uxp for somese S, thenlICL,
if | K| >1, K =uzp for somex €S, then K C J,

if |[I| > 1, I#xp for somex e S or|K|>1,
K #zp forallxz €S, then I =K.

Proof. Comparing this with the result in Proposition 5.1, it suffices
to consider the case |I| > 1, I # xzp for all z € S. With the condition
in that proposition, I C K so |K| > 1 and K # xp for all z € S and
thus also K C I and therefore I = K. m]

For the proof of the main result of this section we need some prepa-
ration.

Lemma 5.3. Let p € C(S), p1,,5, €T fora € A, I =Uqecal, and
J =Uqcado. Then VacAPIy I = PI,J-

Proof. Let A = Vaeapr, s, . First note that

asrdo

Ip={x €S |zpy for some y € I'}
= {xz € S| zpy for some y € I, for some v € A}
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= U{xeS\xpyforsomeyEIa}
acA

= Ufazl.

a€cA

Now let 3 € A, apr,,j,b and a # b. First assume that apb. Then
a,b € Jg so that a,b € J. Since apb, by the above we have either
a,b € I or a,b ¢ I. In the first case apy sb and in the second case
a,b € J\I and apb so that again apy sb. Next assume that a and b are
not p-related. Then a,b € Ig and thus a,b € I and apy sb. Therefore

P1s.05 S pr,.gand A C py .

Conversely let apr jb and a # b. First let apb. Then a,b € J, say
a € J, and b € Js. Hence apa’bpb®apb, where

either a,a’b € I, or a,a’be Jo\as
either a’b,0%a € I, or a°b,%a € J,\Ia,
either 0%a,b € Iy or b%a,be Js\Is

since both I, and Iz are p-saturated. Therefore

0 0
ap1,,J,0 bp1,. 1,0 aprs, b,

so that aAb. Finally let a and b not be p-related. Then a,b € I, say
a € I, and b € Ig. Hence a,ab € I, and ab, b € Iz which implies that
apr,,j,abpr, 7,b. Consequently alb which completes the proof that
pr.; € A and equality prevails. ]

Lemma 5.4. Let p € C(S), pr,,5, €Tp fora € A, I =Nqecaly and
J =Nacada. Then Nacapr,. s, = p1,J-

Proof. Let A\ = Aqeapr,,s, and a € Ip. Then apb for some b € I.
Hence b € I, and thus a € I,p = I, for every a € A so that a € I.
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Therefore Ip = 1. Let a,b € S. Then

aXb << ap, g bforallac 4
either a =b ¢ J,
— or a,b € Jy\In,apdb foralla € A,

ora,bel,

either a=b¢ J
apr.jb <= or a,b e J\I,apb,

ora,bel.

It suffices to consider the case a # b. If apb, then

aXb < a,beJ,
forall a€A <<= abed << aprsb

If a and b are not p-related, then

aAb <= a,bel,
forala€e A <= a,bel <+ apssb.

Therefore A = py, 7, as required. u]
For any set X, denote by P(X) the lattice of all subsets of X.

Theorem 5.5. Let p € C(S) and
Iy=A{prs|1,Je€I,I=1pC J}.

Then T, is a distributive complete sublattice of C(S) containing p with
greatest element w and least element €. The mapping

X:A—kerA (Ael,)

is a complete homomorphism of T', into P(S). Hence Klr, is a
complete congruence.
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Proof. Lemmas 5.3 and 5.4 show that I', is a complete sublattice of
C(S5). Clearly w = pgs,s, p = po,s and € = pgy o so that w, p,e € T'p.

Next let
S={{,J)eIxI|I=IpCJ}

under the operations of coordinatewise union and intersection. Now
Lemmas 5.3 and 5.4 show that the mapping

e:(I,J)—pr; (I,J)eX)

is a homomorphism of ¢ onto I',. Observing that the operations in
I are set-theoretical union and intersection, we deduce that 7 is a
distributive lattice and thus so is Z x Z. Since X is a sublattice of
T x I, it also is distributive and therefore its homomorphic image I,
is distributive as well.

Now let {pr, 7, | @ € A} be a subfamily of I',. Letting I = Uscala
and J = UgeaJn, by Lemma 5.3 we obtain

ker ( \/ plmJa) =kerprj = IU(kerpﬂ J)UE(S),

acA
U kerpr, g, = U (Io U (ker pn J,) U E(S))
acA acA
=IU ( | (kerpn Ja)) U E(S)
acA

=TU(kerpnJ)UE(S).

Since ¢ is always a complete A-homomorphism, the above evidently
shows that ¢ is a complete homomorphism of I', into P(S). As a
consequence, K|r, is a complete congruence. o
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