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THE FINITE LEGENDRE TRANSFORMATION
OF GENERALIZED FUNCTIONS

J.M.R. MÉNDEZ-PÉREZ AND G. MIQUEL MORALES

ABSTRACT. Some techniques employed successfully to in-
vestigate a class of infinite integral transforms are now used to
study the finite Legendre transformation in a suitable space
of generalized functions. Particularly, the close similarity be-
tween this transform and the infinite Mehler-Fock transform
is emphasized. Inversion and uniqueness theorems are estab-
lished, and the operational calculus generated is applied in
solving certain boundary-value problems.

1. Introduction. L. Schwartz [11] was very probably the first who
considered the series expansions of generalized functions to investigate
the Fourier and Hermite expansions of a certain class of distributions.
Later, Gelfand and Shilov [5], Walter [16], Chébli [1] and Trimèche [15]
studied other series expansions with regard to more general differential
operators. The use of Hilbert-space techniques allowed to Zemanian
[17, 18] to introduce a wide variety of finite distributional transforma-
tions, amongst others, the finite Legendre transformation

(1.1) l{f(x)} = F (n) =
∫ 1

−1

Pn(x)f(x) dx, n = 0, 1, 2, . . . ,

where Pn(x) are the well-known Legendre polynomials [2, 4]. More
recently, these results are extended to some testing function spaces of
Lp type and their duals by Pathak [9].

By using a quite different technique, Dube [3] and Pathak and Singh
[10] have also extended the finite Hankel transformation to certain
spaces of distributions. Precisely the aim of this paper is to investigate
the finite Legendre transformation of generalized functions following
this procedure. In this point we remember that an analogous to
the Riemann-Lebesgue lemma plays an important role in the proof
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1372 J.M.R. MÉNDEZ-PÉREZ AND G. MIQUEL MORALES

of inversion formulas for the finite Hankel transforms. Inasmuch
as a similar result for the Fourier-Legendre series expansions is not
available, in what we know, we have to modify substantially the
procedure usually employed in the literature with regard to the finite
transforms. Our approach is inspired by the works of Zemanian
about Laplace and Meijer transforms [18] and Tiwari and Pandey [14]
dealing with the infinite Mehler-Fock transform. In this way, inversion
and uniqueness theorems are established in an appropriate space of
generalized functions, making it unnecessary to restrict results to the
Schwartz distributional space D′(−1, 1). It is worthwhile to remark
that there is an extraordinary resemblance between finite Legendre and
infinite Mehler-Fock transformations. Finally we apply the operational
calculus generated in solving a distributional differential equation.

The classical inversion formula of the transform (1.1) is given by the
corresponding convergence theorem for the Fourier-Legendre series, [2,
p. 234].

Theorem 1. Let f(x) be a piecewise continuous function on the
interval (−1, 1) and An denote the coefficients

(1.2) An =
2n + 1

2

∫ 1

−1

Pn(x)f(x) dx, n = 0, 1, 2, . . . .

Then at each point x in that interval where f(x) is continuous and has
derivatives from the right and left, the Legendre series

(1.3)
∞∑

n=0

AnPn(x)

converges to f(x).

In the sequel, KN (t, x) stands for the kernel

(1.4) KN (t, x) =
N∑

m=0

(
m +

1
2

)
Pm(t)Pm(x)

which, by virtue of the Christoffel-Darboux formula [2, p. 235], can be
rewritten

(1.5) KN (t, x) =
N + 1

2
PN+1(t)PN(x) − PN (t)PN+1(x)

t − x
, (t �= x).
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When t = x we assign to KN (t, x) the value

(1.6) KN (x, x) =
N + 1

2
(P ′

N+1(x)PN(x) − P ′
N (x)PN+1(x)).

The sum of the first m + 1 terms of the Legendre series (1.3) is given
by

(1.7) Sm(x) =
m∑

n=0

AnPn(x) =
∫ 1

−1

Km(t, x)f(t) dt.

We recall other properties of Legendre polynomials we shall need in
this paper [2, 4, 13],

|Pn(x)| ≤ 1, −1 < x < 1, n = 0, 1, 2, . . .(1.8)

Pn(1) = 1, Pn(−1) = (−1)n(1.9)

|Pn(x)| ≤
√

π

2n(1 − x2)
, −1 < x < 1, n = 1, 2, . . .(1.10)

P ′
n+1(x) − P ′

n−1(x) = (2n + 1)Pn(x), n = 1, 2, . . . ,(1.11)

D(−1, 1) denotes the space of infinitely differentiable functions whose
supports are contained in (−1, 1) and its dual D′(−1, 1) is the space
of Schwartz distributions. Finally, E(−1, 1) represents the space of all
infinitely differentiable functions on (−1, 1) and its dual E ′(−1, 1) is the
space of distributions with compact supports.

2. The testing function space L(−1, 1) and its dual. L(−1, 1) is
the space of all complex-valued infinitely differentiable functions ϕ(x)
defined on the open interval (−1, 1) such that

(2.1) γk(ϕ) = sup
−1<x<1

|Rk
xϕ(x)| < ∞,

for every nonnegative integer k, where Rx denotes the differential
operator

(2.2) Rx = D(x2 − 1)D = (x2 − 1)D2 + 2xD, D =
d

dx
.
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The linear space L(−1, 1), with the topology generated by the collection
of semi-norms {γk}, turns out to be a Fréchet space [18, p. 12].
L′(−1, 1) symbolizes the dual space of L(−1, 1) and is equipped with
the usual weak topology [18, p. 21].

We now list some properties of these spaces:

(i) The inclusion relations D(−1, 1) ⊂ L(−1, 1) ⊂ E(−1, 1) hold al-
gebraically and topologically, L(−1, 1) being dense in E(−1, 1). There-
fore, E ′(−1, 1) is a subspace of L′(−1, 1).

(ii) If f(x) is a function defined and absolutely integrable on (−1, 1),
then f(x) gives rise to a regular generalized function on L′(−1, 1)
through

(2.3) 〈f, ϕ〉 =
∫ 1

−1

f(x)ϕ(x) dx, ϕ(x) ∈ L(−1, 1).

Indeed, f is clearly linear. Moreover, since

|〈f, ϕ〉| ≤ γ0(ϕ)
∫ 1

−1

|f(x)| dx,

f is a continuous functional on L(−1, 1). Particularly, every function
f(x) ∈ L(−1, 1) is absolutely integrable because∫ 1

−1

|f(x)| dx ≤ 2γ0(f) < ∞.

Hence, by identifying f(x) ∈ L(−1, 1) with the regular distribution
f(x) generated in L′(−1, 1) by means of (2.3), we can justify the
inclusion L(−1, 1) ⊂ L′(−1, 1).

(iii) The differential operator Rx, defined by (2.2), is a continuous lin-
ear mapping of L(−1, 1) into itself. This is an immediate consequence
of

γk(Rxϕ(x)} ≤ γk+1(ϕ), ϕ ∈ L(−1, 1).

Consequently, the generalized operator Rx defined on L′(−1, 1) as the
adjoint of the operator (2.2), that is to say,

(2.4)
〈Rxf(x), ϕ(x)〉 = 〈f(x), Rxϕ(x)〉,

f ∈ L′(−1, 1), ϕ ∈ L(−1, 1),
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is also a continuous linear mapping of L′(−1, 1) into itself.

(iv) Since Pn(x) satisfies the differential equation (x2−1)y′′ +2xy′−
n(n + 1)y = 0 [2, 4], one has

(2.5) RxPn(x) = n(n + 1)Pn(x).

Next we characterize the members of the space L(−1, 1).

Proposition 2.1. An infinitely differentiable function ϕ(x) on
(−1, 1) is a member of L(−1, 1) if and only if, for all nonnegative
integers k, Dkϕ(x) = O(1) when x → 1 − 0 and x → −1 + 0.

Proof. It is easily seen that

(2.6) Rk
xϕ(x) =

2k∑
j=1

pj(x)Djϕ(x),

where pj(x) are polynomials of jth degree. This implies immediately
that a function ϕ(x) ∈ C∞(−1, 1) satisfying the limit conditions
Dkϕ(x) = O(1) as x → ±1 ∓ 0 belongs to L(−1, 1). To prove the
reciprocal, we refer to an analogous property verified by Glaeske and
Hess [6, Proposition 2.3 and Lemma 2.1] in relation with the infinite
Mehler-Fock transformation.

The boundedness of all derivatives of a function ϕ(x) ∈ L(−1, 1) for
x → 1− 0 and x → −1 + 0 implies the existence of their corresponding
limits, in accordance with Glaeske and Hess [6]. This permits us to
obtain a characterization of the members of the space L(−1, 1) similarly
to that reached by Zemanian [18] for the Hankel transformable testing
functions.

Proposition 2.2. ϕ(x) is a member of L(−1, 1) if and only if ϕ(x)
is an infinitely differentiable complex-valued function on −1 < x < 1
which possesses Taylor expansions near the endpoints x = 1 and
x = −1.
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3. The generalized finite Legendre transformation. The
generalized finite Legendre transformation is defined on L′(−1, 1) by
means of

(3.1) (l′f)(n) = F (n) = 〈f(x), Pn(x)〉, n = 0, 1, 2, . . . ,

for every f(x) ∈ L′(−1, 1). Inasmuch as

γk{Pn(x)} = sup
−1<x<1

|nk(n + 1)kPn(x)| ≤ nk(n + 1)k,

one has that Pn(x) ∈ L(−1, 1) and, therefore, Definition (3.1) makes
sense.

Lemma 3.1. Let f(x) ∈ L′(−1, 1). Then, for any positive integer
N and for an arbitrary ϕ(x) ∈ L(−1, 1), we have

(3.2)
∫ 1

−1

〈f(t), KN (t, x)〉ϕ(x) dx =
〈

f(t),
∫ 1

−1

KN (t, x)ϕ(x) dx

〉
,

where the kernel KN (t, x) is given by (1.4).

Proof. Let us fix x in (−1, 1). By invoking (1.4) and (2.5), we yield

Rk
t KN (t, x) =

1
2

N∑
n=0

(2n + 1)[n(n + 1)]kPn(t)Pn(x).

Thus KN (t, x) is a smooth function of t and γk{KN (t, x)} < ∞ for
all k = 0, 1, 2, . . . . Hence, KN (t, x) ∈ L(−1, 1) as a function of t.
Similarly, we can establish that

∫ 1

−1

KN (t, x)ϕ(x) dx ∈ L(−1, 1).
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So both sides of equality (3.2) make sense. To verify the equality, note
that∫ 1

−1

〈f(t), KN (t, x)〉ϕ(x) dx

=
∫ 1

−1

〈
f(t),

N∑
m=0

(
m +

1
2

)
Pm(t)Pm(x)

〉
ϕ(x) dx

=
∫ 1

−1

N∑
m=0

(
m +

1
2

)
Pm(x)〈f(t), Pm(t)〉ϕ(x) dx

=
N∑

m=0

(
m +

1
2

)
〈f(t), Pm(t)〉

∫ 1

−1

Pm(x)ϕ(x) dx

=
N∑

m=0

(
m +

1
2

)〈
f(t), Pm(t)

∫ 1

−1

Pm(x)ϕ(x) dx

〉

=
〈

f(t),
N∑

m=0

(
m +

1
2

)
Pm(t)

∫ 1

−1

Pm(x)ϕ(x) dx

〉

=
〈

f(t),
∫ 1

−1

{ N∑
m=0

(
m +

1
2

)
Pm(t)Pm(x)

}
ϕ(x) dx

〉

=
〈

f(t),
∫ 1

−1

KN (t, x)ϕ(x) dx

〉

because of the linearity of f(t).

Theorem 3.1 (Inversion theorem). Let f(x) be an arbitrary general-
ized function in the space L′(−1, 1), and let F (m) be its finite Legendre
transform as given by (3.1). Then

lim
N→∞

N∑
m=0

(
m +

1
2

)
F (m)Pm(x) = f(x)

in the sense of the convergence in L′(−1, 1).

Proof. We emphasize here that the inversion proof of Dube [3] and
Pathak and Singh [10] with regard to the finite Hankel transformations
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is based on the existence of one analogous to the Riemann-Lebesgue
lemma. But we have to modify this procedure because the Fourier-
Legendre series expansion lacks a similar result, in what we know. Our
approach is inspired by the works of Zemanian about the Laplace and
Meijer transforms [18] and Tiwari and Pandey [14] for the infinite
Mehler-Fock transformation. In this way we achieve verification of the
inversion formula in its own space L′(−1, 1) instead of D′, as is usually
in the available literature.

Assume that ϕ(x) is any member of L(−1, 1). Note that
∑N

m=0(m +
1/2)F (m)Pm(x) is an absolutely integrable function on (−1, 1) for any
fixed N . Therefore, it gives rise to a regular member in L′(−1, 1) by
virtue of (2.3), and we may write

(3.3)
〈 N∑

m=0

(
m +

1
2

)
F (m)Pm(x), ϕ(x)

〉

=
∫ 1

−1

N∑
m=0

(
m +

1
2

)
F (m)Pm(x)ϕ(x) dx.

By using (3.1), the linearity of f(x) and Lemma 3.1, the righthand side
in (3.3) adopts the form

(3.4)

∫ 1

−1

N∑
m=0

(
m +

1
2

)
〈f(t),Pm(t)〉Pm(x)ϕ(x) dx

=
∫ 1

−1

〈f(t), KN (t, x)〉ϕ(x) dx

=
〈

f(t),
∫ 1

−1

KN (t, x)ϕ(x) dx

〉
.

Our next objective is to show that∫ 1

−1

KN (t, x)ϕ(x) dx −→ ϕ(t) as N → ∞ in L(−1, 1),

that is to say,

Rk
t

{∫ 1

−1

KN (t, x)ϕ(x) dx − ϕ(t)
}

−→ 0
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uniformly in t ∈ (−1, 1) as N → ∞.

In view of (1.4), it is obvious that

(3.5) Rt{KN (t, x)} = Rx{KN (t, x)}.

On the other hand, by the smoothness of the integrand, we may carry
the differential operator Rt under the integral sign, to obtain

(3.6) Rt

{∫ 1

−1

KN (t, x)ϕ(x) dx

}
=

∫ 1

−1

Rt{KN (t, x)}ϕ(x) dx.

Then, in view of (3.5) and (2.2), the last integral in (3.6) can be
rewritten

∫ 1

−1

Rx{KN (t, x)}ϕ(x) dx =
∫ 1

−1

Dx{(x2 − 1)DxKN (t, x)}ϕ(x) dx

= [(x2 − 1){DxKN (t, x)}ϕ(x)]x→1−0
x→−1+0

−
∫ 1

−1

(x2 − 1){DxKN (t, x)}Dxϕ(x) dx

= −[KN (t, x)(x2 − 1)Dxϕ(x)]x→1−0
x→−1+0

+
∫ 1

−1

KN (t, x){Dx(x2 − 1)Dxϕ(x)} dx

=
∫ 1

−1

KN (t, x)Rxϕ(x) dx,

once we have integrated twice by parts and taken into account that the
limit terms are equal to zero because of Proposition 2.1. By reiterating
this process k times, we arrive quickly at

(3.7) Rk
t

∫ 1

−1

KN (t, x)ϕ(x) dx =
∫ 1

−1

KN (t, x)Rk
xϕ(x) dx.

On the other hand, by setting f(x) = P0(x) = 1 in Theorem 1.1 [2,
p. 236], we get

1 =
∫ 1

−1

KN (t, x) dx.
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Definitively, bearing in mind all of the above considerations, we have
to prove that

(3.8)
∫ 1

−1

KN (t, x)Rk
xϕ(x) dx − Rk

t ϕ(t)

=
∫ 1

−1

KN (t, x)[Rk
xϕ(x) − Rk

t ϕ(t)] dx −→ 0,

uniformly in t ∈ (−1, 1), as N → ∞.

For the moment, let us take for granted that it is possible to break
the integral in (3.8) into

(3.9)

∫ 1

−1

KN (t, x)[ϕk(x) − ϕk(t)] dx =
∫ −1+δ

−1

+
∫ 1−δ

−1+δ

+
∫ 1

1−δ

= I1,N (t) + I2,N (t) + I3,N (t)

where I1,N , I2,N and I3,N denote, respectively, integrals on the intervals
(−1,−1 + δ), (−1 + δ, 1 − δ) and (1 − δ, 1), δ being an indeterminate
number such that 0 < δ < 1. We stress that ϕk(x) = Rk

xϕ(x) belongs
to L(−1, 1), in line with property (iii) of the second section.

In the sequel Φk(x, t) represents [ϕk(x)−ϕk(t)](x− t)−1. Notice that
Φk(x, t) is a continuous function for all t �= x. Moreover, Φk(x, t) tends
to → Dϕk(x) as t → x. If we assign this value to Φk(x, x), it becomes a
continuous function everywhere. Furthermore, we assume analogously
that

∂

∂x
Φk(x, t) =

ϕ′
k(x)(x − t) − ϕk(x) + ϕk(t)

(x − t)2

has been defined by continuity at t = x. By this reason and Propo-
sition 2.1, Φk(x, t) and DxΦk(x, t) are bounded on the square domain
−1 ≤ t ≤ 1, −1 ≤ x ≤ 1, say, by the positive constant C.

Firstly we study simultaneously the terms I1,N (t) and I3,N (t). Bear-
ing in mind (1.5) and using the said function Φk(x, t), we can write,
for i = 1, 3,

(3.10)
Ii,N (t) =

∫ xi,2

xi,1

KN (t, x)[ϕk(x) − ϕk(t)] dx

= I
(1)
i,N (t) − I

(2)
i,N (t)
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where

I
(1)
i,N (t) =

N + 1
2

PN+1(t)
∫ xi,2

xi,1

PN (x)Φk(x, t) dx

(3.11)

and

I
(2)
i,N (t) =

N + 1
2

PN (t)
∫ xi,2

xi,1

PN+1(x)Φk(x, t) dx.

(3.12)

Remember that x1,1 = −1, x1,2 = −1 + δ, x3,1 = 1 − δ and x3,2 = 1.

By integrating by parts, we get in view of (1.11),

I
(1)
i,N (t) =

N + 1
4N + 2

PN+1(t)[(PN+1(x) − PN−1(x))Φk(x, t)]x=xi,2
x=xi,1

− N + 1
4N + 2

PN+1(t)
∫ xi,2

xi,1

(PN+1(x) − PN−1(x))
∂Φk(x, t)

∂x
dx

(3.13)

and

I
(2)
i,N (t) =

N + 1
4N + 6

PN (t)[(PN+2(x) − PN (x))Φk(x, t)]x=xi,2
x=xi,1

− N + 1
4N + 6

PN (t)
∫ xi,2

xi,1

(PN+2(x) − PN (x))
∂Φk(x, t)

∂x
dx.

(3.14)

We next discuss the four terms with integrals, i = 1, 3, that appear in
the righthand sides of (3.13) and (3.14). We now exploit the fact that
PN (t), PN+1(t), PN+1(x)−PN−1(x) and PN+2(x)−PN (x) are uniformly
bounded in (−1, 1) according to (1.8); as well as that xi,2 − xi,1 = δ,
i = 1, 3, and Φk(x, t) and DxΦk(x, t) are bounded by C. Thus, given
an ε > 0, we can make all these terms less than or equal to Cδ and,
consequently,

(3.15) Cδ <
ε

9
,
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if we choose δ sufficiently small.

Henceforth, in this proof, we fix δ < min{ε/(9C), 1}.
On the other hand, one of the terms within the braces in (3.13) and

(3.14) is equal to zero, for i = 1, 3, because the functions PN+1(x) −
PN−1(x) and PN+2(x)−PN (x) vanish in both the end points x = x1,1 =
−1 and x = x3,2 = 1. As the next step, we investigate the remaining
terms, which verify by invoking (1.10) that

(3.16)
∣∣∣∣ N + 1
4N + 2

PN+1(t)[PN+1(±x3,1) − PN−1(±x3,1)]Φk(±x3,1, t)
∣∣∣∣

≤ C

{√
π

2(N + 1)(1 − x2
3,1)

+
√

π

2(N − 1)(1 − x2
3,1)

}

< C

√
2π

(N − 1)δ
<

ε

9
,

N > ν1 for sufficiently large ν1 > 0, uniformly in t ∈ (−1, 1), and∣∣∣∣ N + 1
4N + 6

PN (t)[PN+2(±x3,1) − PN (±x3,1)]Φk(±x3,1, t)
∣∣∣∣

≤ C

√
2π

(N − 2)δ
<

ε

9
,(3.17)

N > ν2 for adequately large ν2 > 0, uniformly in t ∈ (−1, 1) as well.

All that remains to be investigated is the term I2,N (t). For this
purpose, making use of the function Φk(x, t), we set

(3.18)
I2,N (t) =

∫ 1−δ

−1+δ

KN (t, x)[ϕk(x) − ϕk(t)] dx

= I
(1)
2,N (t) − I

(2)
2,N (t)

where

I
(1)
2,N (t) =

N + 1
2

PN+1(t)
∫ 1−δ

−1+δ

PN (x)Φk(x, t) dx

and

I
(2)
2,N (t) =

N + 1
2

PN (t)
∫ 1−δ

−1+δ

PN+1(x)Φk(x, t) dx.
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An integration by parts and the use of (1.11) yield

I
(1)
2,N (t) =

N + 1
4N + 2

PN+1(t)
{

[PN+1(x3,1) − PN−1(x3,1)]Φk(x3,1, t)

− [PN+1(x1,2) − PN−1(x1,2)]Φk(x1,2, t)

−
∫ 1−δ

−1+δ

[PN+1(x) − PN−1(x)]
∂Φk(x, t)

∂x
dx

}
.

By invoking (1.8), (1.10) and the boundedness of functions Φk(x, t)
and ∂Φk(x, t)/∂x, we infer from the last expression that

(3.19) |I(1)
2,N (t)| <

8(N + 1)C
4N + 2

√
π

2(N − 1)δ
= O(N−1/2),

for a sufficiently large number N , uniformly in t ∈ (−1, 1). Similarly,

(3.20) |I(2)
2,N (t)| = O(N−1/2), uniformly in t ∈ (−1, 1).

These results (3.19) and (3.20) and expression (3.18) allow us to make

(3.21) |I2,N (t)| <
ε

9
,

N > ν3 for a suitable ν3 > 0.

Finally, by virtue of our conclusions (3.15), (3.16), (3.17) and (3.21),
we are led from (3.9) to the desired result if we choose N > ν =
max{ν1, ν2, ν3}.

Theorem 3.2 (The uniqueness theorem). Let f and g be arbitrary
members of L′(−1, 1). If F (m) and G(m) denote their respective
Legendre transforms and F (m) = G(m) for each m = 0, 1, 2, . . . , then
f = g in the sense of the equality in L′(−1, 1).

Proof. Theorem 3.1 and the fact that F (m) = G(m) by hypothesis
imply that

〈f(x) − g(x), ϕ(x)〉 = lim
N→∞

〈 N∑
m=0

(
m +

1
2

)
[F (m)

− G(m)]Pm(x), ϕ(x)
〉

= 0,
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for all ϕ ∈ L(−1, 1).

Finally, we shall derive the more important operation transform for-
mula which, together with the inversion theorem, shows the usefulness
of the Legendre transformation in solving certain partial differential
equations. Let f(x) ∈ L′(−1, 1). From definitions (3.1) and (2.4) we
get, in view of the operational rule (2.5),

[l′{Rk
xf(x)}](n) = 〈Rk

xf(x), Pn(x)〉
= 〈f(x), Rk

xPn(x)〉
= 〈f(x), [n(n + 1)]kPn(x)〉
= [n(n + 1)]k〈f(x), Pn(x)〉
= [n(n + 1)]k{l′f(x)}(n).

Thus, we have obtained the formula

(3.22) [l′{Rk
xf(x)}](n) = [n(n + 1)]k{l′f(x)}(n)

for each nonnegative integer k.

Remark 3.1. The next numerical example illustrates the inversion
Theorem 3.1. Consider the Dirac delta function δ(x − a), −1 < a < 1.
Inasmuch as δ(x−a) ∈ E ′(−1, 1), it follows that δ(x−a) ∈ L′(−1, 1) by
virtue of property (i) of the second section. On the one hand, according
to Definition (3.1), the finite Legendre transform of δ(x − a) is

[l′{δ(x − a)}](n) = 〈δ(x − a), Pn(x)〉 = Pn(a).

On the other hand, by virtue of Theorem 1.1, one has for all ϕ(x) ∈
L(−1, 1),

〈 N∑
m=0

(
m +

1
2

)
Pm(a)Pm(x), ϕ(x)

〉

=
∫ 1

−1

N∑
m=0

(
m +

1
2

)
Pm(a)Pm(x)ϕ(x) dx

=
∫ 1

−1

KN (a, x)ϕ(x) dx −→ ϕ(a)

= 〈δ(x − a), ϕ(x)〉 as N → ∞.
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Therefore,

δ(x − a) = lim
N→∞

N∑
m=0

(
m +

1
2

)
Pm(a)Pm(x).

4. Applications. The finite Legendre transformation is useful for
solving various boundary-value problems when a spherical coordinate
system is chosen. Thus, we consider the problem of finding the steady
temperatures v(r, θ) in a hollow sphere a < r < b such that v(r, θ)
assumes prescribed values ϕ(θ) in the internal surface whereas that
external is maintained at temperature zero. This classical problem can
be posed as follows

(4.1)

r2 ∂2v

∂r2
+ 2r

∂v

∂r
+

1
sin θ

∂

∂θ

(
sin θ

∂v

∂θ

)
= 0,

a < r < b, 0 < θ < π,

u(a, θ) = ϕ(θ), u(b, θ) = 0,

0 ≤ θ ≤ π.

By setting x = cos θ and u(r, x) = v(r, θ), the Dirichlet problem (4.1)
reduces now to seek a function u(r, x) satisfying the partial differential
equation

(4.2) r2 ∂2u

∂r2
+ 2r

∂u

∂r
+ (1 − x2)

∂2u

∂x2
− 2x

∂u

∂x
= 0,

and the boundary conditions:

(a) As r → a, u(r, x) converges to f(x) ∈ L′(−1, 1).

(b) As r → b, u(r, x) converges to zero in L′(−1, 1).

(c) For r fixed, a < r < b, u(r, x) remains finite as x → ±1.

By applying to (4.2) the finite Legendre transformation, denoting
U(r, n) = l′{u(r, x)}(n) and taking into account the operational rule
(3.22), we convert the above problem into the ordinary differential
equation

r2 ∂2U(r, n)
∂r2

+ 2r
∂U(r, n)

∂r
− n(n + 1)U(r, n) = 0,
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whose general solution is

U(r, n) = Arn + Br−n−1, n = 0, 1, 2, . . . .

The adequate values of A and B will be suggested by the boundary
conditions (a) and (b). Thus, we yield the solution

(4.3) U(r, n) =
r2n+1 − b2n+1

a2n+1 − b2n+1
F (n)

(
a

r

)n+1

,

where F (n) = l′{f(x)}(n). By inverting (4.3) according to Theo-
rem 3.1, we derive the desired solution

(4.4)

u(r, x) = l′−1{U(r, n)}(x)

=
∞∑

n=0

2n + 1
2

r2n+1 − b2n+1

a2n+1 − b2n+1

(
a

r

)n+1

F (n)Pn(x).

To justify that (4.4) is truly a solution, we need two previous results:

(i) Let ϕ(x) ∈ L(−1, 1). Then Φ(n) = l{ϕ(x)}(n), given by (1.1), is
of rapid descent as n → ∞.

(ii) For every f(x) ∈ L′(−1, 1), we have that F (n) = l′{f(x)}(n),
defined by (3.1), is of slow growth as n → ∞.

To verify (i), suppose n �= 0 and let an arbitrary nonnegative integer
stand for k. Then, we can write

(4.5)
nk(n + 1)kΦ(n) =

∫ 1

−1

{RkPn(x)}ϕ(x) dx

=
1

n(n + 1)

∫ 1

−1

{Rk+1Pn(x)}ϕ(x) dx.

Upon integrating the last expression in (4.5) 2(k + 1) times by parts,
we yield in view of Proposition 2.1,

nk(n + 1)kΦ(n) =
1

n(n + 1)

∫ 1

−1

Pn(x){Rk+1ϕ(x)} dx,
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which implies that

|nkΦ(n)| ≤ 2γk+1(ϕ)
n(n + 1)k+1

−→ 0, as n → ∞.

To prove (ii), it suffices to remember that there exist positive con-
stants C and C1 and a nonnegative integer s such that [18, Theorem
1.8-1]:

|F (n)| = |〈f(x), Pn(x)〉| ≤ C max
0≤k≤s

γk{Pn(x)} ≤ C1n
2s.

Making use of (ii), we can easily show that the series (4.4) and the
series obtained by applying Dr, D

2
r , Dx and D2

x separately under the
summation sign converge uniformly on a < r ≤ b and −1 ≤ x ≤ 1.
Thus, on the one hand, some tedious calculations allow us to get

(4.6) r2 ∂2u

∂r2
+ 2r

∂u

∂r
=

∞∑
n=0

2n + 1
2

r2n+1 − b2n+1

a2n+1 − b2n+1

· n(n + 1)
(

a

r

)n+1

F (n)Pn(x).

On the other hand, from (2.5) we immediately infer

(4.7)

(1 − x2)
∂2u

∂x2
− 2x

∂u

∂x
= −Rxu(r, x)

= −
∞∑

n=0

2n + 1
2

r2n+1 − b2n+1

a2n+1 − b2n+1

· n(n + 1)
(

a

r

)n+1

F (n)Pn(x).

By combining (4.6) and (4.7), we conclude that u(r, x) satisfies the
equation (4.2) in the domain a < r < b, −1 < x < 1.

As the next step, we verify that our solution fulfills boundary con-
ditions (a) and (b). To do it, notice that the series (4.4) defines a
continuous function of x, −1 ≤ x ≤ 1, and therefore gives rise to a
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regular member in L′(−1, 1) through (2.3). Hence, we can write for
every ϕ(x) ∈ L(−1, 1),

(4.8)

〈u(r, x), ϕ(x)〉 =
∫ 1

−1

{ ∞∑
n=0

2n + 1
2

r2n+1 − b2n+1

a2n+1 − b2n+1

·
(

a

r

)n+1

F (n)Pn(x)
}

ϕ(x) dx

=
∞∑

n=0

2n + 1
2

r2n+1 − b2n+1

a2n+1 − b2n+1

(
a

r

)n+1

F (n)Φ(n),

where Φ(n) = l{ϕ(x)}(n). But the last series in (4.8) converges
uniformly for all r because F (n) grows slowly while Φ(n) decreases
rapidly as n → ∞.

Now it is easily seen that 〈u(r, x), ϕ(x)〉 → 0 as r → b. Finally, by
taking the limit as r → a, one has

〈u(r, x), ϕ(x)〉 −→ lim
N→∞

N∑
n=0

2n + 1
2

F (n)Φ(n)

= lim
N→∞

N∑
n=0

2n + 1
2

F (n)
∫ 1

−1

Pn(x)ϕ(x) dx

= lim
N→∞

∫ 1

−1

N∑
n=0

2n + 1
2

F (n)Pn(x)ϕ(x) dx

= lim
N→∞

〈 N∑
n=0

2n + 1
2

F (n)Pn(x), ϕ(x)
〉

= 〈f(x), ϕ(x)〉,

by virtue of Theorem 3.1.

REFERENCES
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