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AN INTRODUCTION TO ZARISKI SPACES
OVER ZARISKI TOPOLOGIES

R.L. MCCASLAND, M.E. MOORE AND P.F. SMITH

ABSTRACT. Given a topology Ω on a set X, we consider a
structure (Y, Γ) such that the relationship between (Y,Γ) and
(X, Ω) is similar to the relationship between a module and its
ring of scalars. Indeed, this structure is a module analogue
of the Zariski topology on the prime spectrum of a ring R
in that its construction uses the prime submodules of an R-
module M in essentially the same way that the construction
of the Zariski topology uses the prime ideals of R. It is
shown that an R-module homomorphism f between two R-
modules induces in a natural way a homomorphism between
their associated structures, and in case f is an epimorphism,
the induced homomorphism is continuous in nontrivial cases.

1. Zariski spaces. Throughout this paper R denotes a commutative
ring with identity and M a unital R-module. If I is an ideal of R, we
write I�R, and A ≤ M means that A is a submodule of M . If A ≤ M ,
then (A : M) represents the ideal {r ∈ R : rM ⊆ A}.

A submodule P of M is called prime if P is proper, and whenever
rm ∈ P , r ∈ R and m ∈ M , then m ∈ P or r ∈ (P : M). The collection
of all prime submodules of M is denoted by spec M . If A is a submodule
of M , then the radical of A, denoted radA, is the intersection of all
prime submodules of M which contain A, unless no such primes exist,
in which case radA = M . In fact, there exist modules M with no
prime submodules at all, though any such module M could not be
finitely generated. Such modules are called primeless. Studies of prime
submodules can be found in [1, 3, 5] and [7 12], among others. In
particular, one can find the following, easily proven but useful, result
in [5] or [7].

Lemma 1. Let P be a (proper) submodule of M . Then P is prime
in M if and only if (P : M) is prime in R and M/P is a torsion-free
R/(P : M)-module.
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As prime submodules are the analogue of prime ideals, an obvious
question is whether there is a topology on spec M similar to the Zariski
topology on spec R. For a study on specR, see [6], for example.

Definition. Let A be any subset of the R-module M . The variety
of A is V (A) = {P ∈ spec M : A ⊆ P} and ζ(M) denotes the set of
all varieties of subsets of M , i.e., ζ(M) = {V (A) : A ⊆ M}. Similarly,
ζ(R) denotes the collection of all varieties of subsets of R, i.e., the
closed sets of the Zariski topology on specR.

Clearly V (A) = V (rad RA) and B ⊆ A implies V (B) ⊇ V (A), similar
to the case for ζ(R). In addition, for any collection of submodules Nλ,
λ ∈ Λ, of M , ∩λ∈ΛV (Nλ) = V (

∑
λ∈Λ Nλ). However, it turns out

that (specM, ζ(M)) is not a topological space in general. The problem
lies in the fact that a prime submodule can contain an intersection of
two submodules without containing either submodule. This usually
prevents the union of two varieties from being another variety. In fact,
if M is finitely generated, then ζ(M) is a topology if and only if M is
a multiplication module. (For this fact and a further study of ζ(M) as
a topology, see [11].) What can be said then about the structure of
ζ(M)? Before answering this question we turn our attention briefly to
semi-rings and semi-modules.

Let (X, Ω) be a topological space, where for our purposes topology
means the collection of closed sets. If one essentially ignores the set
X, then the set Ω is seen to be a commutative semi-ring under the
operations intersection and union, which we will think of as addition
and multiplication, respectively. Clearly we have 0Ω = X and 1Ω = ∅.

Definition. Let (X, Ω) be a topological space, and let Γ be a
collection of subsets of a (possibly empty) set Y such that Y ∈ Γ
and Γ is closed with respect to finite intersections. Further suppose
that there exists a mapping ∗ : Ω × Γ → Γ such that (Γ,∩) is an Ω-
semi-module. That is to say, for all τ, τ ′ ∈ Ω and for all γ, γ′ ∈ Γ, the
following properties hold:

(i) τ ∗ (γ ∩ γ′) = (τ ∗ γ) ∩ (τ ∗ γ′);

(ii) (τ ∩ τ ′) ∗ γ = (τ ∗ γ) ∩ (τ ′ ∗ γ);

(iii) (τ ∪ τ ′) ∗ γ = τ ∗ (τ ′ ∗ γ);
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(iv) ∅ ∗ γ = γ;

(v) τ ∗ Y = Y = X ∗ γ.

Then (Y, Γ) is called an Ω-space.

The reader might note that objects of a somewhat more general
nature were studied by Fofanova [2] and others, under the name
polygons.

Theorem 2. Let M be an R-module, and let the ζ(R)-action on
ζ(M) be given by V (I) ∗ V (A) = V (RIA), where I ⊆ R and A ⊆ M .
Then (specM, ζ(M)) is a ζ(R)-space.

Proof. It is clear that (ζ(M),∩) is a commutative monoid with
identity spec M = V (0). Now suppose that V (I) = V (J), I, J ⊆ R,
and suppose V (A) = V (B), A, B ⊆ M . We must show that V (RIA) =
V (RJB). If P ∈ V (RIA), then either P ⊇ A, thus P ⊇ RJB, or
(P : M) ⊇ RI, and thus P ⊇ (P : M)B ⊇ RJB, by Lemma 1.
By symmetry we have V (RIA) = V (RJB). The rest of the proof
is now a routine check, particularly so since we may without loss of
generality assume that I, J�R and A, B ≤ M . For example, we have
V (I) ∗ (V (J) ∗ V (A)) = V (I) ∗ V (JA) = V (I(JA)) = V (IJ) ∗ V (A) =
(V (I) ∪ V (J)) ∗ V (A). The other properties follow similarly.

We call ζ(M) the Zariski space on M .

2. Continuous mappings and homomorphisms. Let (X, Ω) be
a topological space, and let (Y, Γ) and (Y ′, Γ′) be Ω-spaces. The mo-
tivation for the following terminology is perfectly obvious. A mapping
ϑ : Y → Y ′ is said to be continuous if ϑ−1(γ′) ∈ Γ for every γ′ ∈ Γ′.
A mapping ϕ : Γ → Γ′ is said to be an Ω-homomorphism if, for every
τ ∈ Ω and all γ, δ ∈ Γ, ϕ(γ ∩ δ) = ϕ(γ)∩ ϕ(δ) and ϕ(τ ∗ γ) = τ ∗ ϕ(γ),
that is, ϕ is a homomorphism of semi-modules. Now, given a continu-
ous map ϑ : Y → Y ′, we observe that ϑ−1 determines a map ϑ̂ : Γ′ → Γ,
given by ϑ̂(γ′) = ϑ−1(γ′). In the event ϑ̂ is an Ω-homomorphism, we
say that ϑ is a continuous homomorphism.

Consider now an R-module homomorphism f : M → N . The
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main result of this section says that if f is an epimorphism, and
N is not primeless, then there exists a continuous homomorphism
ϑ : spec N → specM such that, for all P ∈ spec N , ϑ(P ) = f−1(P ).
We will actually go a bit further. If f is not surjective, then there is no
longer necessarily a corresponding function ϑ. Even so, we will define a
relation ϕ between ζ(M) and ζ(N) such that, whenever f is surjective,
then ϕ(V (A)) = ϑ−1(V (A)) for all V (A) ∈ ζ(M). In other words,
ϕ = ϑ̂. It is perhaps surprising that this relation ϕ turns out to be a
function, indeed a ζ(R)-homomorphism, even if f is not surjective.

The proof of the following lemma is an easy exercise, and as such is
left to the reader.

Lemma 3. If M is an R-module and P is prime in M , then for any
submodule B of M , either B ⊆ P or P ∩ B is prime in B.

The next result appears in [9, Results 1.1 and 1.2].

Lemma 4. Let f : M → N be an R-module epimorphism. Then
there exists a bijection between specN and the set of all prime submod-
ules of M containing ker f .

Corollary 5. Let f : M → N be an R-module epimorphism, and let
A be a submodule of M such that ker f ⊆ A. Then V (A) → V (f(A)),
given by P → f(P ) is a bijection, unless V (A) is the empty set, in
which case so is V (f(A)).

Theorem 6. Let f : M → N be an R-module homomorphism.
Define ϕ : ζ(M) → ζ(N) by ϕ(V (A)) = V (f(A)). Then ϕ is a ζ(R)-
homomorphism.

Proof. To see that ϕ is well-defined, suppose that V (A) = V (B)
for some A, B ⊆ M , and let P ∈ V (f(A)). If P ⊇ f(M), then
P ⊇ f(B) and so P ∈ V (f(B)). On the other hand, if P 	⊇ f(M),
then P ∩ f(M) is a prime submodule of f(M) by Lemma 3, so that by
Corollary 5 we have f−1(P ∩ f(M)) ∈ V (A + ker f) ⊆ V (A) = V (B).
Thus P ∩ f(M) ⊇ f(B), which clearly implies P ∈ V (f(B)). This
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argument is symmetrical, hence we have V (f(A)) = V (f(B)). The two
homomorphism properties of ϕ follow easily from the homomorphism
properties of f and from the operations defined on the varieties.

We also note that the above theorem holds even in the case when
either M or N is primeless.

Corollary 7. Let f : M → N be an R-module epimorphism,
such that N is not primeless. Define ϑ : specN → specM by
ϑ(P ) = f−1(P ). Then ϑ is a continuous homomorphism.

Proof. That ϑ is well-defined follows from Corollary 5. It likewise
follows that, for any V (A) ∈ ζ(M), ϑ−1(V (A)) = V (f(A + ker f)) =
V (f(A)) = ϕ(V (A)), using the notation of Theorem 6, and the proof
is complete.

In the remainder of this section, we compare and contrast some of
the properties of the functions f and ϕ given in Theorem 6.

Lemma 8. Given the functions f and ϕ as described in Theorem 6,
the following hold:

(i) if f is surjective, then ϕ is surjective;

(ii) if ϕ is surjective and N is finitely generated, then f is surjective;

(iii) if f is bijective, then ϕ is bijective.

Proof. (i) If f is surjective, then for any V (B) ∈ ζ(N), B a submodule
of N , we have ϕ(V (f−1(B))) = V (B).

(ii) If f is not surjective then, for every subset A of M , f(A)
is contained in some prime submodule of N because N is finitely
generated. Hence there does not exist a subset A of M such that
ϕ(V (A)) = V (N) = ∅.

(iii) Suppose ϕ(V (A)) = ϕ(V (B)), i.e., V (f(A)) = V (f(B)). If
P ∈ V (A), then since P ⊇ ker f = 0, f(P ) is prime in N and
f(P ) ⊇ f(A). Hence f(P ) ⊇ f(B), so that P ⊇ B. It follows that
V (A) = V (B).
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The next two examples each demonstrate that f being injective need
not imply that ϕ is injective, unless of course f is also surjective.
Indeed, the second example shows that ϕ need not be injective even if
ker ϕ = {V (0)}, where ker ϕ is defined as the set of all V (A) ∈ ζ(M)
such that ϕ(V (A)) = V (0).

Example. Let R = Z, M = Z/Z2 and N = Z/Z4. Now specM =
{R0̄} and spec N = {R2̄}. Take f to be the mapping ā 
→ 2ā. Then f is
clearly injective, but V (M) ∈ ker ϕ, since V (f(M)) = V (R2̄) = V (0̄).

Example. Let M = R = Z, and let f : M → M be given
by r 
→ 2r. Then kerϕ = {V (0)}, but ϕ is not injective, since
ϕ(V (M)) = ϕ(V (2M)).

Another example shows that the converse of Lemma 8 (iii) does
not hold in general, though the succeeding lemma provides a partial
converse in the case M is semi-prime, that is to say, rad 0 = 0.

Example. Let R and N be as in the first example above, and let
K = R2̄. Consider f : N → N/K, the usual epimorphism. Clearly f
is not injective, whereas the induced ϕ is both injective and surjective.

Lemma 9. Let f and ϕ be as described in Theorem 6, and suppose
that f is surjective. If, in addition, M is semi-prime and kerϕ =
{V (0)}, then f and ϕ are both injective.

Proof. Let K = ker f . Then ϕ(V (K)) = V (f(K)) = V (0), so
V (K) ∈ kerϕ = {V (0)}. But V (K) = V (0) implies that K = 0,
since M is semi-prime. Now ϕ is injective by Lemma 8 (iii).

3. Subtractive subspaces and quotient semi-modules. Before
reaching our next goal of presenting an isomorphism theorem for ζ(R)-
spaces, it seems useful, if not necessary, to provide some basic facts
about quotient semi-modules and subtractive subspaces, all of which
can be found in [4], albeit in a more general setting. In particular, by
quotient semi-module we mean a Bourne factor semi-module.
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Let (Y, Γ) be an Ω-space, and let ∆ ⊆ Γ. If (∆,∩) is an Ω-sub-
semi-module of (Γ,∩), we say that ∆ is a subspace of Γ. If ∆ has the
additional property that γ ∈ Γ, δ ∈ ∆, and γ∩δ ∈ ∆ imply γ ∈ ∆, then
∆ is said to be subtractive. Given any subspace ∆ of Γ, the subtractive
closure of ∆, obtained by intersecting all subtractive subspaces of Γ
which contain ∆, is denoted �(∆). The next result is provided here for
convenience, see [4].

Lemma 10. Let ∆ be a subspace of the Ω-space Γ. The following
are equivalent:

(i) ∆ is subtractive;

(ii) ∆ is the kernel of some Ω-homomorphism ϕ : Γ → Γ′;

(iii) δ ∈ ∆ and δ ⊆ γ, γ ∈ Γ, imply γ ∈ ∆.

We now record a fact which, though it is easily shown, nevertheless
proves to be quite useful. In the Ω-space Γ, let τ, τ ′ ∈ Ω and
γ, γ′ ∈ Γ. If τ ⊆ τ ′ and γ ⊆ γ′, then τ ∗ γ ⊆ τ ′ ∗ γ′. Just note that
τ ∗ γ = (τ ∩ τ ′) ∗ (γ∩ γ′) = (τ ∗ γ)∩ (τ ∗ γ′)∩ (τ ′ ∗ γ)∩ (τ ′ ∗ γ′) ⊆ τ ′ ∗ γ′.

Lemma 11. Let ∆ be a subspace of the Ω-space Γ, and let β ∈ Γ.
Then

(i) �(∆) is subtractive;

(ii) �(∆) = {γ ∈ Γ : γ ⊇ δ for some δ ∈ ∆};
(iii) Ω ∗ β = {τ ∗ β : τ ∈ Ω} is a subspace of Γ and �(Ω ∗ β) = {γ ∈

Γ : γ ⊇ β}.

Proof. The proof of (i) is routine.

(ii) Let
∑

= {γ ∈ Γ : γ ⊇ δ for some δ ∈ ∆}, and let γ ∈ ∑
. Then

there exists δ ∈ ∆ such that γ ⊇ δ. Now for every subtractive subspace
Φ which contains ∆, we have γ ∩ δ = δ ∈ ∆ ⊆ Φ, which implies γ ∈ Φ.
It now remains only to show that

∑
is itself a subtractive subspace. If

γ, γ′ ∈ ∑
and δ, δ′ are the known elements of ∆ such that δ ⊆ γ and

δ′ ⊆ γ′, then γ ∩ γ′ ⊇ δ ∩ δ′ ∈ ∆, so that γ ∩ γ′ ∈ ∑
. Now if τ ∈ Ω,

then by the remarks preceding this result, τ ∗ γ ⊇ τ ∗ δ ∈ ∆, which
likewise gives τ ∗ γ ∈ ∑

. Finally, if α ∈ Γ and α ∩ γ ∈ ∑
, then for
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some δ̂ ∈ ∆ we have α ∩ γ ⊇ δ̂, and clearly α ⊇ α ∩ γ.

The proof of (iii) follows in a like manner to the preceding proof.

In light of the last result, the notation �(β) will be used interchange-
ably with �(Ω ∗ β).

Now let ∆ be a subspace of the Ω-space Γ. Then the relation ≡∆

defined on Γ by γ ≡∆ γ′ if there exists δ, δ′ ∈ ∆ such that γ∩δ = γ′∩δ′

is in fact an equivalence relation. For each γ ∈ Γ, let [γ] denote the
equivalence class of γ, and let Γ/∆ denote the collection of all such
equivalence classes. If we define [γ] + [γ′] = [γ ∩ γ′] and τ [γ] = [τ ∗ γ]
for all τ ∈ Ω, γ ∈ Γ, then Γ/∆ becomes a left Ω-semi-module. It is clear
that this quotient semi-module is not actually an Ω-space, one reason
being that the defined operation is not intersection. Nevertheless, we
will show that if M satisfies ACC on semi-prime submodules, then
every quotient semi-module of ζ(M) is isomorphic to a ζ(R)-space. By
a semi-prime submodule, we mean an intersection of prime submodules,
and by an Ω-isomorphism we mean an Ω-homomorphism which is
bijective. The reader should note that the latter definition differs
somewhat from that found in [4].

One final comment before moving on to the last section. In the
general case, if G and H are semi-modules over the semi-ring T , and
ϕ : G → H is a surjective T -homomorphism, then the best that can
be said is that there is a semi-isomorphism ϕ̃ : G/ kerϕ → H given by
[g] 
→ ϕ(g). (See [4, Corollary 13.48] for details.) This means that ϕ̃ is
a surjective homomorphism and has trivial kernel, but it need not be
an injection.

4. An isomorphism theorem. In contrast to our last comment
in the previous section, we show that if f : M → N is any R-module
epimorphism with kernel K, then the induced ζ(R)-homomorphism ϕ :
ζ(M) → ζ(N) gives rise to a ζ(R)-isomorphism ϕ̃ : ζ(M)/�(V (K)) →
ζ(N). The following result follows immediately from Lemma 11.

Lemma 12. Let A and B be submodules of M . Then the following
are equivalent:
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(i) V (B) ∈ �(V (A));

(ii) V (B) ⊇ V (A);

(iii) B ⊆ rad A.

Recall from Theorem 6 that if f : M → N is an R-module homo-
morphism, then ϕ : ζ(M) → ζ(N) defined by ϕ(V (A)) = V (f(A)) is
a ζ(R)-homomorphism. It is this mapping ϕ to which we refer in the
next two results.

Lemma 13. Let f : M → N be an R-module epimorphism, and let
ϕ be the induced ζ(R)-homomorphism. Then the following hold:

(i) ker ϕ = �(V (ker f)), and

(ii) if A is any submodule of M such that ker ϕ ⊆ �(V (A)), then
ϕ(�(V (A))) = �(ϕ(V (A))).

Proof. (i) This follows from Lemma 12 and Corollary 5.

(ii) First note that ϕ is surjective by Lemma 8 (i). Now Lemma 12
implies that ker f ⊆ rad A, hence it follows that f(rad A) = rad f(A).
Therefore, ϕ(�(V (A))) = {V (f(B)) : B ⊆ rad A} = {V (f(B)) :
f(B) ⊆ f(rad A) = rad f(A)} = �(V (f(A))) = �(ϕ(V (A))).

We do not know if, given an arbitrary ζ(R)-epimorphism, the image
of every subtractive subspace which contains the kernel is subtractive,
but Lemma 13 (ii) partially answers the question.

Theorem 14. Let f : M → N be an R-module epimorphism
with K = ker f , and let ϕ : ζ(M) → ζ(N) be the induced ζ(R)-
homomorphism. Then ϕ induces a ζ(R)-isomorphism ϕ̃ : ζ(M)/
�(V (K)) → ζ(N).

Proof. By the remarks at the end of the previous section, all that
remains to show is that ϕ̃ is injective. Suppose then that V (f(A)) =
V (f(B)). First observe that, if P ∈ V (A+K), then f(P ) ⊇ f(A+K) =
f(A), and since f(P ) is prime in N , then f(P ) ⊇ f(B), so that
P ⊇ B + K. A similar argument shows that V (B + K) ⊆ V (A + K).
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Hence we have V (A)∩V (K) = V (A+K) = V (B+K) = V (B)∩V (K),
and since V (K) ∈ �(V (K)),then [V (A)] = [V (B)].

Corollary 15. Let A be any submodule of M . Then the quo-
tient semi-module ζ(M)/�(V (A)) is ζ(R)-isomorphic to the ζ(R)-space
ζ(M/A).

Proof. Apply Theorem 14 to the canonical epimorphism f : M →
M/A.

Given a quotient semi-module ζ(M)/∆, ∆ being a subtractive sub-
space of ζ(M), then Corollary 15 shows that ζ(M)/∆ is essentially a
ζ(R)-space, provided ∆ is of the form �(V (A)) for some submodule A
of M . In fact, Theorem 16 shows that every subtractive subspace of
ζ(M) is of the form �(V (A)) for some submodule A of M if and only if
M satisfies the ascending chain condition on semi-prime submodules.

Theorem 16. The following are equivalent:

(i) M satisfies ACC on semi-prime submodules;

(ii) for every subtractive subspace ∆ of ζ(M) there exists a submodule
N of M such that ∆ = �(V (N));

(iii) for every submodule N of M there exists a finitely generated
submodule L of N such that rad N = radL.

Proof. (i) ⇒ (ii). Let ∆ be any subtractive subspace of ζ(M). If
V (M) ∈ ∆, then by Lemmas 10 and 11 we have ∆ = ζ(M) = �(V (M)).
So suppose that V (M) /∈ ∆. Let D be the collection of all semi-
prime submodules A of M such that V (A) ∈ ∆, and note that
D 	= ∅ since V (A) = V (rad A) for every A ≤ M . Now choose
N to be a maximal element of D. To see that ∆ = �(V (N)), let
V (B) ∈ ∆, where B is a submodule of M . If S = rad (B + N), then
V (S) = V (B + N) = V (B) ∩ V (N) ∈ ∆. Since S 	= M , then S is a
semi-prime submodule of M . It follows that B ⊆ S = N = radN , so
that V (B) ∈ �(V (N)) by Lemma 12.

(ii) ⇒ (iii). Let H be any submodule of M , and let ∆ = {V (G) :
G ⊆ rad L for some finitely generated submodule L of H}. It is easy
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to check that ∆ is a subtractive subspace of ζ(M). By hypothesis,
there exists a submodule A of M such that ∆ = �(V (A)). Since
V (A) ∈ �(V (A)) = ∆, without loss of generality we can suppose that
A ⊆ rad F , for some finitely generated submodule F of H. For any
m in H we have V (Rm) ∈ ∆ = �(V (A)), so that, by Lemma 12,
Rm ⊆ rad A ⊆ rad F . Thus H ⊆ rad F and hence radH = radF .

(iii) ⇒ (i). Let S1 ⊆ S2 ⊆ S3 ⊆ · · · be any ascending chain of
semi-prime submodules of M , and let G = ∪iSi. By hypothesis, there
exists a finitely generated submodule F of G such that radG = radF .
Hence there exists a positive integer n such that F ⊆ Sn. Then
rad G = radF ⊆ Sn ⊆ G ⊆ rad G, so that Sn = Sn+1 = Sn+2 = · · · .
Thus M satisfies ACC on semi-prime submodules.

Corollary 17. If M satisfies ACC on semi-prime submodules, then
every quotient semi-module of ζ(M) is isomorphic to ζ(M/A) for some
submodule A of M .

Proof. By Theorem 16 and Corollary 15.

Clearly any Noetherian module satisfies ACC on semi-prime submod-
ules. Finally, we shall show that any Artinian module satisfies ACC on
semi-prime submodules.

Proposition 18. Every Artinian module satisfies ACC on semi-
prime submodules.

Proof. Let M be an Artinian module. If M does not contain any
prime submodules, then there is nothing to prove. Suppose that M
contains a prime submodule. Let S be minimal in the collection

∑
of

semi-prime submodules of M which are finite intersections of primes.
If K is any prime submodule of M , then S ∩ K ∈ ∑

and S ∩ K ⊆ S,
so that S = S ∩ K ⊆ K. It follows that S = rad 0.

Moreover, let U be any submodule of M containing the prime sub-
module K such that U/K is simple. Since K is prime, the modules
M/K and U/K have the same annihilator, hence M/K is semi-simple.
But M/K is Artinian, so that M/K is Noetherian. Thus, M/K is
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Noetherian for any prime submodule K of M . Since S is a finite in-
tersection of prime submodules, it follows that M/S is Noetherian and
hence M satisfies ACC on semi-prime submodules.
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