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MONOTONICITY IN TIME OF LARGE SOLUTIONS
TO A NONLINEAR HEAT EQUATION

V.A. GALAKTIONOV AND A.A. LACEY

ABSTRACT. We consider the Cauchy problem for a two-
dimensional semi-linear heat equation with radial symmetry

ut = urr + ur/r + eu in R+ × (0, T );

with smooth, bounded initial data u0(r). We prove that the
solution u(r, t) becomes strictly monotone in time, ut > 0, at
any point where u is large enough.

The proof is based on intersection comparison of u(r, t) with
the set {w(·)} of stationary solutions satisfying w′′ + w′/r +
ew = 0 for r > 0. The above monotonicity result is shown to
depend essentially on the global structure of the set {w}.

The same result is found to hold for positive solutions u to
the equation with power nonlinearity

ut = ∆u + up, 1 < p < (N + 2)/(N − 2)+.

Several generalizations to boundary value problems and quasi-
linear equations are given.

1. Introduction. Nonlinear parabolic equations of the general form

ut = ∆φ(u) + f(u)

with f > 0, φ′ > 0, are known, under certain restrictions on f (and
φ if the problem is based on a bounded domain with, say, Dirichlet
conditions) to exhibit blow-up. By this it is meant that the solution
ceases to exist at some finite time T with a classical solution u valid
for 0 < t < T and supx u(x, t) → ∞ as t → T . See, for example, the
books [2, 17] and references therein.
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A good deal of attention has been focused on the manner of blow-up,
in particular, the local behavior with respect to time t and position
x, near any blow-up points, i.e., t close to T , x close to X for which
there is some sequence (xn, tn) → (X,T ) such that u(xn, tn) → ∞. For
some results it is necessary to make the assumption that the solution
be increasing in time, ut ≥ 0, at least for x in a neighborhood of X
and t close to T , see, for example, [6, 7] and references in [2, 17].
By standard use of the maximum principle this condition is certainly
guaranteed if ut ≥ 0 initially and on the lateral boundary of the domain
but is certainly not true in general.

In the context of combustion theory, blow-up of the variable u,
representing temperature, is equivalent to ignition, provided that ut ≥
0.

In the present paper we prove that the condition ut > 0 must occur
in a domain where u is large enough for a wide class of radial solutions.
The result is true in the subcritical parameter range with respect to
the critical Sobolev exponent for the elliptic operator of the nonlinear
heat equation. The proof is based on the analysis of the structure of
the family of stationary solutions.

Galaktionov and Posashkov [9, 10, 12] considered the one-dimensional
problem for different uniformly parabolic and also degenerate equations
and were able to show, with some assumptions on φ and f , and quite
weak restrictions on the initial data u(x, 0) = u0(x), that there is some
value M , depending upon the initial data, such that ut(x, t) ≥ 0 wher-
ever u(x, t) ≥M .

In the present paper we first consider the two-dimensional, radially
symmetric problems

ut = ∆u+ eu in Ω × (0, T ),

where Ω is the ball B(0, R) = {x : |x| = r < R} or the whole space
R2. For simplicity, the case of Ω = R2 is generally considered and
we shall only remark on how the results extend to Ω = B(0, R) with
Dirichlet boundary conditions imposed on ∂Ω = {x : |x| = R}. We
shall also note extensions to more general equations but still retaining
radial symmetry.
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We begin by studying the semi-linear heat equation

ut = urr + ur/r + eu in QT = R+ × (0, T );(1.1)
ur = 0 on r = 0, 0 ≤ t < T ;(1.2)
u(r, 0) = u0(r) for r > 0.(1.3)

Here T ∈ [0,∞] is assumed to be the maximal existence time of the
classical solution, [5].

We shall suppose that u0 is in C1, more particularly, that there is
some K > 0 such that

(1.4) sup |u0| < K, sup |u′0| < K,

and also that u′0(0) = 0 for regularity. We do not require that u0 be
radially decreasing. It may be noted that we can use the smoothing
properties of heat equations to enlarge the class of initial data, replacing
t = 0 by t = ε for some small ε > 0:

sup |u(·, ε)| < Kε, sup |ur(·, ε)| < Kε, ur(0, ε) = 0.

Our main result is to obtain monotonicity in time where the solution
is large, like Galaktionov and Posashkov for N = 1. In particular, we
prove

Theorem 1. There exists a constant M , depending upon the constant
K in (1.4), such that if u(r0, t0) ≥ M for some (r0, t0) ∈ QT , then
ut(r0, t) > 0 for all t ∈ [t0, T ).

In the case of r0 = 0 the above result can be proved using the
approach given in [8].

Since our monotonicity result depends upon the global structure of
the family of stationary solutions of the equation under consideration,
we start with the particular semi-linear equation (1.1) in R2 which has
explicit stationary solutions, see, for example, [13]. This simplifies the
analysis and makes it possible to explain the basic comparison idea,
which applies equally well to many nonlinear heat equations.
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Specifically, we also discuss the following well-known semi-linear
diffusion equation from physical chemistry

(1.5) ut = ∆u+ up = urr + (N − 1)ur/r + up in QT ,

where p > 1 is a constant, R2 is replaced by RN and symmetry
condition (1.2) again applies. The initial data (1.3) satisfies (1.4) and
is now nonnegative. We prove

Theorem 2. The assertion of Theorem 1 is true for the equation
(1.5) provided that

(1.6) 1 < p < ps ≡ N + 2
(N − 2)+

.

Finally we state the most general result on eventual monotonicity for
equations with power-type nonlinearities of the form

ut = ∆um + up, m > 1, p > 1,(1.7)

or

ut = ∇ · (|∇u|m∇u) + up, m > 0, p > 1,(1.8)

with bounded smooth enough data u0 ≥ 0,

(1.9) sup |u0| < K; sup |(um−1
0 )′| < K or sup |u′0| < K.

We can show that eventual monotonicity crucially depends on the
general structure of the family of stationary solutions and holds in the
subcritical range:

Theorem 3. Under the hypotheses (1.9) the assertion of Theorem 1
is true for (1.7) or (1.8) provided that p ∈ (1, ps) where ps is the
critical Sobolev exponent corresponding to the elliptic operators in (1.7)
or (1.8), i.e.,

(1.10)
ps = m

N + 2
(N − 2)+

for (1.7),

ps =
N(m+ 1) +m+ 2

[N − (m+ 2)]+
for (1.8).



MONOTONICITY IN TIME 1283

For (1.8) the value ps in (1.10) is critical for the compact embedding
Wm+2

1 (B1) ⊂ Lp+1(B1), B1 is a ball in RN , which holds for p < ps

but not for p ≥ ps.

We show that such monotonicity results near t = T for 1 < p < ps

imply directly that blow-up is complete: no continuation of solutions
into t > T is possible.

We conclude this introduction by noting that the result for (1.1)
appears to fail for three-dimensional problems. Eberly and Troy
[4], see also Lacey and Tzanetis [15], found a similarity solution for
ut = urr + 2ur/r+ eu valid in r ≥ 0, t < 0, which blows up at r = 0 as
t → 0−. Close examination of this solution shows that ut(r, t) < 0 for
r and t arbitrarily close to 0, where u is arbitrarily large.

2. Preliminaries.

2.1. Intersection properties. We start by outlining the key method
used in the papers of Galaktionov and Posashkov and which is the basis
of the proofs of the present results.

Suppose that we choose a steady state w(r), which then satisfies

(2.1) w′′ + w′/r + ew = 0 for r > 0,

which intersects u0(r) at just two points 0 < r1 < r2. This means
that the difference z(r, 0) = u0(r) − w(r) changes sign in any small
neighborhoods of r = r1 and r = r2. For simplicity we consider the
case (r − r1)(r − r2)(u0(r) − w(r)) ≥ 0 for all r ≥ 0. From the strong
maximum principle, [5], there are some continuous r1(t), r2(t) defined
for 0 ≤ t < t0 ∈ (0, T ] with r1(t) < r2(t), u(r, t) > w(r) for r > r2(t)
or r < r1(t) and u(r, t) < w(r) for r1(t) < r < r2(t); i.e., for times
t less than t0, the function u intersects w at precisely two points in
r. Results of this kind for linear parabolic equations may be found in
references in [17, 8, 10]. The basic ideas for such analysis go back
to [18]. Moreover, if the maximal t0 for which this holds is less than
T , then there is some s ≥ 0 such that u(r, t0) > w(r) for r 	= s while
u(s, t0) = w(s) and ur(s, t0) = w′(s).

By the maximum principle we know that if the solution to the
parabolic problem u(r, t) and a steady state w(r) intersect just once
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in some interval 0 < R1 < r < R2 for t = t1, and u(Rj , t) does
not cross w(Rj) for t ∈ [t1, t2], j = 1, 2, then again the comparison
principle for parabolic equations gives, for all t in [t1, t2], a unique
intersection of u(r, t) with w(r) in (R1, R2). More precisely, the
number of intersections for t = t2 does not exceed the number of
sign changes of z(r, t) = u(r, t) − w(r) on the parabolic boundary of
the domain (R1, R2) × (t1, t2). Moreover, suppose that u(r, t) and
w(r) are tangent at some point R0 ∈ (R1, R2) at some time, say
t0 ∈ (t1, t2), i.e., r = R0 is a zero-tangency point of z(r, t0) (which
satisfies z(R0, t0) = zr(R0, t0) = 0). Then, by taking a slightly different
steady state wε which crosses w at r = R0, we can arrange things
so that u(r, t0) crosses wε(r) at least twice while zε = u − wε again
has a single sign-change on the parabolic boundary. This gives a
contradiction. See [9, 10] for details. Thus, we have under the above
hypothesis |ur − w′| > 0 at the point of intersection for t ∈ (t1, t2].

Applying the result to two isolated points r1(t), r2(t), as above, we see
that ur(r1(t), t)−w′(r1(t)) < 0 < ur(r2(t), t)−w′(r2(t)) for 0 < t < t0.
Tangency only occurs when two or more points of intersection come
together.

Now, choosing some r0 > 0, let us assume that there is some value
M0 ≥ u0(r0) so that any steady state w which satisfies w(r0) ≥ M0

intersects u0 at most twice. Then, if at some time t = t0 > 0,
u = M ≥ M0 at r = r0, then the “tangent steady state” w, with
w(r0) = M and w′(r0) = ur(r0, t0), crosses u0 at most twice and
is tangent to u(·, t0) at r = r0. From the above there are precisely
two points of intersection between w and u(·, t) for t < t0, with
u(r, t0) > w(r) for r 	= r0. It follows that urr(r0, t0) ≥ w′′(r0) and,
from (1.1) and (2.1), ut(r0, t0) ≥ 0. Thus, for a given r0 ≥ 0, we have

(2.2) ut(r0, t) ≥ 0 at any time at which u(r0, t) ≥M0.

Again, assuming that w and u0 cross precisely twice and that w and
u(·, t0) touch at r = r0, (so w and u(·, t0) are tangent, without crossing,
at that point) we now want a rather stronger result, namely,

(2.3) ut(r0, t0) > 0.

Fix δ > 0 small enough and take an arbitrary (r1, t1) ∈ Qδ,t0 =
(r0−δ, r0+δ)×(t0−δ, t0). Denote by w1(r) the stationary solution which
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is tangent to the profile u(r, t1) at r = r1. By continuous dependence of
solutions of the stationary ordinary differential equation (2.1) and by
continuity of u(r, t), we conclude that, for a given small ε > 0 (chosen
so that the intersections of u with w lie in (ε, 1/ε)),

(2.4) w1(r) − w(r) −→ 0 as δ −→ 0,

uniformly on (ε, 1/ε). Note that w1(r) can be singular at the origin,
see Section 2.2. Assuming, without loss of generality, that both
intersections of u0 and w are transversal (if not, then this becomes
true after a small change of time origin), we can take δ small enough
so that w1 intersects u0 twice in [ε, 1/ε] and |w1(ε±1) − u(ε±1, t)| > 0
for 0 ≤ t ≤ t1, we conclude from (2.4) that the number of intersections
between u0 and w1 is less than or equal to three. However, in view of
(2.4) and a possible singularity of w1, we also deduce from the known
regularity of the solution u(r, t) that the third intersection (if it exists
for all t ∈ (0, t0)) stays near r = 0. Hence, whether or not the third
intersection exists, we have only two points of intersection between
u(·, t) and w1 in (ε, 1/ε) for all t ∈ (0, t1). As above, we conclude that

(2.5) ut(r1, t1) ≥ 0 for all (r1, t1) ∈ Qδ,t0 .

Now, using the fact that the derivative p = ut solves a linear parabolic
equation with smooth coefficients in the neighborhood of (r0, t0),

pt = prr + pr/r + eup,

either p ≡ 0 or, by the strong maximum principle, p > 0 in Qδ,t0 [5].
The same argument applies for some (possibly smaller) δ > 0, as u and
its derivatives are bounded in [ε, 1/ε]× [0, t0] for any t2 ≤ t0 such that
u(r0, t2) = u(r0, t0). Taking the smallest such t2 we see that p 	≡ 0. We
arrive at (2.3).

We conclude that, if u(·, t) develops a point of tangency with the
steady state w at r = r0 through the coalescence of precisely two points
of intersection, say r1(t) < r2(t) with (r − r1)(r − r2)(u − w) > 0 for
r1 	= r 	= r2, then ut > 0 at that point. (If (r−r1)(r−r2)(u−w) < 0 for
r1 	= r 	= r2, then ut < 0 at the point of tangency.) Conversely, if ut = 0
at r = r0, t = t0 > 0 with u(r0, t0) = w(r0), ur(r0, t0) = w′(r0), then
for t < t0 there must be at least three distinct points of intersection
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between u(·, t) and w, all of which tend to r0 as t→ t0. Here r = r0 is
a point of inflection of the difference z(r, t0).

2.2. Explicit steady states. For the radially symmetric problem, a
steady state w = w(r) solves (2.1). If it is a classical steady solution,
then w is bounded for r bounded and w′ → 0 as r → 0. The ordinary
differential equation may be solved explicitly (by putting w = ψ−2 ln r
and r = es to get an autonomous equation; see, for example, [13]) to
find the general solution

(2.6) w(r; a, γ) = −2 ln[arγ + r2−γ/8a(1 − γ)2]

with a, γ arbitrary constants satisfying a > 0, γ < 1. (At times it is
more convenient to write w in other forms.) All steady states are of
this type so that, given any differentiable function f(r) and any point
r = s, it is possible to choose a unique pair of values (a, γ), a > 0 and
γ < 1, such that w = w(·; a, γ) is tangent to f at r = s : w(s) = f(s),
w′(s) = f ′(s).

The properties of these steady solutions are discussed in detail in the
Appendix. There are two key results of that analysis. The first is that
there are three types of solution:

(i) for γ = 0, w is classical. It is bounded above with w′(0) = 0 and
w(0) = −2 ln a finite;

(ii) for γ < 0, w is singular but bounded above, w → −∞ as r → 0.
There is then a point r = s, where w achieves its maximum;

(iii) for 0 < γ < 1, w is singular and unbounded both above and below
but such w lie below the envelope, − ln(r2/2) of the regular (γ = 0)
solutions.

The second result is that there is some function k(K) such that if w
has a maximum ≥ M (so that γ ≤ 0) and M ≥ k(K), then |w′| > K
wherever |w| ≤ K.

These results could be obtained from the analysis of [13], as is done
for the power case in Section 6, but they are contained in the Appendix
as an alternative approach and for completeness of the present paper.
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3. Use of intersection comparison with steady states.

Partial proof of Theorem 1. We take initial data u(r, 0) = u0(r) for
r ≥ 0 satisfying |u0|, |u′0| ≤ K for some K. We now use the techniques
of intersection comparison by proving the following result which is a
weakened version of the theorem.

Proposition 1. Assume that, for some r0 ≥ 0, t0 ∈ (0, T ),

(3.1) u(r0, t0) > k(K),

where either

(3.2)
r0 = 0 or

r0 > 0 and u(r0, t0) ≥ − ln(r20/2).

Then

(3.3) ut(r0, t) > 0 for all t ∈ [t0, T ).

Proof. Let us choose M > k(K), which automatically means that
the inequalities M > K + 2 ln 2, M > 3K + 4 lnK are satisfied. Now
suppose that, for some position r = r0 ≥ 0 and t ≥ t0, u(r0, t) ≥ M ,
and either r0 = 0 or M ≥ − ln(r20/2).

Take the steady state w = w(·; a, γ) such that w is tangent to u(·, t0)
at r = r0. Then, since r0 = 0 or w(r0) ≥ − ln(r20/2) for r0 > 0, we
must have γ ≤ 0. With γ ≤ 0 and w reaching or exceeding M we know
that

(a) if γ = 0, then w′ < −K where −K ≤ w ≤ K and so w crosses u0

precisely once;

(b) if γ < 0, then w′ > K where −K ≤ w ≤ K and r < s while
w′ < −K where −K ≤ w ≤ K and r > s so w crosses u0 precisely
twice.

Using the results from Section 2.1 concerning intersections of u with
w, we have that u(r, t0) > w(r) for r 	= r0 and ut(r0, t0) > 0. For any
time t while u(r0, t) > k(K), we have, by the above, ut(r0, t) > 0 so
that u(r0, t) ≥ u(r0, t0). This completes the proof.
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Note. The special case r0 = 0 requires that the argument be suitably
modified, for example, as follows (or see either [8] or [17, p. 420]). A
new comparison function v(r, t; ε, δ) can be defined as a solution to the
same nonlinear heat equation as u but with initial data v0 close to the
regular steady state w which is tangent to u(·, t0) as t0. To be more
precise, we can take v0(r) given by

v′′0 + v′0/r + ev0 =
{
ε r < 1,
0 r > 1

with v′0(0) = 0, v0(0) = u(0, t0) − δ. With δ small and positive ε(δ)
is chosen so that v(0, t0; ε, δ) = u(0, t0). Such an ε is also small and
positive, which guarantees that v0 and u0 cross precisely once, on again
taking the intersection of w and u0 to be transversal. Now v(·, t)
and u(·, t) have at most one point of intersection, and, in particular,
v(0, t0) = u(0, t0), v(r, t0) < u(r, t0) for r > 0, so v(·, t) < u(·, t)
for t > t0. Also vt > 0 for t > 0 since v0 is a lower solution:
ut(0, t0) ≥ vt(0, t0) > 0.

4. Consequences.

4.1. Blow-up at r = 0. We say that blow-up occurs at r = 0 if there
are some sequences rn → 0, tn → T with u(rn, tn) → ∞.

Let us suppose that there are points arbitrarily close to zero such
that u(r, t) ≤ − ln(r2/2) for 0 ≤ t < T . Now choose r = R to
be such a position with − ln(R2/2) ≥ K. We can pick the value
a = R/2

√
2 so that w = w(·; a, 0) touches the envelope − ln(r2/2)

at r = R. Then u(R, t) ≤ w(R) for 0 ≤ t < T , u(r, 0) ≤ w(r) for
0 ≤ r ≤ R and consequently w is an upper solution for u in 0 ≤ r ≤ R
so u ≤ w ≤ −2 ln a = − ln(R2/8) for 0 ≤ r ≤ R, 0 ≤ t ≤ T . This
would contradict the supposition that u blows up at r = 0.

Thus, for all r in (0, R), for some R > 0, there is a time t(r),
0 < t(r) < T , such that u(r, t) exceeds both k(K) and − ln(r2/2).
Then it follows from Proposition 1 that ut > 0 for t > t(r), 0 < r < R
and, in particular, if the solution still exists (in some weak sense) at
t = T , so that for 0 < r < R, u(r, T ) <∞, ut(r, T ) > 0 for r < R.

Should u continue to exist beyond the blow-up time T then the earlier
arguments would continue to hold so that ut > 0 and u > − ln(r2/2)
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for 0 < r < R, T ≤ t < T + ε for some ε > 0. Then for
t > T , u(0, t) = ∞, the arguments of [14] may be applied, and u
is actually infinite everywhere, see also [1]. We conclude that u blows
up completely (so there is no continuation) at t = T .

4.2. Blow-up at r = R > 0. We denote the one-dimensional family
of stationary solutions satisfying w(R) = K by S. Let W (r) be the
envelope of S, W (r) = supw∈S w(r). Similar arguments to those of
Section 4.1 then give that u(r, T ) > W (r) and ut(r, T ) > 0 in either a
left or right neighborhood of r = R with complete blow-up occurring
at t = T .

5. Monotonicity for u > M .

Proof of Theorem 1. The results of Section 3 are incomplete in that,
in view of Hypothesis 3.2, there appears to be a possibility of having
points arbitrarily close to the origin with u arbitrarily large (but less
than − ln(r2/2)) and ut ≤ 0.

Let us now assume that this is true so there are some sequences
rn → 0, tn → T , Un ≡ u(rn, tn) → ∞, with ut(rn, tn) ≤ 0. We can
suppose, omitting the first few values of n if necessary, that Un > K
for all n, in which case u(rn, tn) > u(rn, 0). It follows that, for some
values of t in (0, tn], ut(rn, t) > 0 and there must exist some time such
that ut(rn, t) = 0 and u(rn, t) ≥ Un. With an appropriate redefinition
of tn and Un, we may then take ut(rn, tn) = 0.

Assuming further that Un > k(K) for all n (which again can be
ensured by omitting some n) and recalling by Proposition 1 that ut > 0
if u > k(K) and u ≥ − ln(r2/2), we must have rn <

√
2e−Un/2.

Now let wn = w(·; an, γn) be the steady state tangent to u(·, tn)
at r = rn. Since u(rn, tn) = Un > k(K) any steady state with
γn ≤ 0 must intersect u0 at most twice (Sections 2, 3) which would
give ut(rn, tn) > 0 and contradict the assumed property ut(rn, tn) = 0.
Thus 0 < γn < 1 (as well as an > 0). Indeed, from Section 2, wn must
intersect u(·, t) at least three times near u = Un and r = rn.

Now choose n large enough and a0 small enough to make w0 =
w(·; a0, 0) intersect u0 just once and the first intersection point, r = R,
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between w0 and wn be such that u0(r) < w0(r) ≤ wn(r) for r ≤ R
(recall that wn lies below the envelope − ln(r2/2) which w0 touches at
r = 2

√
2a0, w = −2 ln(2a0)). See Figure 1(a).

As long as u(R, t) remains less than w0(R) = wn(R) ≡W (> −2 ln a0

by the above) w0 acts as an upper solution for u in r < R so
u(r, t) < w0(r) ≤ wn(r) for r ≤ R. If u(R, t) reaches W at time
t = T1, i.e., u(R, T1) = W , then by the strong maximum principle,
ur(R, T1) > w′

0(R) > w′
n(R), u(r, T1) < w0(r) < wn(r) for r < R,

u(R, T1) = w0(R) = wn(R) = W , and u(r, T1) > w0(r) > wn(r) in
some right neighborhood of r = R, see Figure 1(b). Thus, u(·, T1)
crosses wn precisely once in 0 ≤ r < R + ε for some ε > 0. If u(R, t)
then becomes greater than W for t > T1, there is again precisely one
intersection point between u(·, t) and wn for 0 ≤ r < R+ ε; indeed, as
long as u(R, t) > W , u(·, t) and wn cross at most once for r ∈ [0, R],
see Figure 1(c). Continuing this type of argument, suppose now that
u(R, t) falls back to W at time t = T2 > T1, then the arguments of
Section 2, with the uniqueness of the intersection between u and w0,
show that the situation is essentially that of t = T1. Since w0 and u(·, t)
continue to cross at most once, if u(R, t) > W there is at most one point
of intersection between u(·, t) and wn in (0, R), while if u(R, t) ≤ W
there is no such crossing point in that interval, see Figure 1.

We see that, for all times t < T , there can be at most one point of
intersection between wn and u(·, t) for r ∈ (0, R), i.e., above u = W <
−2 ln a0. That there can be at most one point of intersection between
u(·, t) and wn, with u greater than w0(0) = −2 ln a0, contradicts the
need for at least three points of intersection to coalesce where u = Un

when n is sufficiently large so that Un > −2 ln a0.

This completes the proof of Theorem 1.

6. Monotonicity for the equation with power-nonlinearity.

In this section we show that the method we have described above can
be directly applied to equation (1.5), as long as (1.6) holds, to prove
Theorem 2. Our analysis consists of several steps. We consider the
nonnegative solution u = u(r, t) ≥ 0 in QT of the Cauchy problem
(1.5), (1.2), (1.3).

6.1. Intersection properties. We first note that all the properties of
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FIGURE 1. Crossings of u(·, t) with w0, wn: (a) t < T1; (b) t = T1 or T2;
(c) T1 < t < T2.
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intersection with stationary solutions, that is, with solutions w(r) of

(6.1) Lw ≡ w′′ + (N − 1)w′/r + wp = 0,

as given in Section 2.1, still hold.

6.2. Steady states. Properties of the set of stationary solutions
w = w(r; a, µ, λ) satisfying equation (6.1) with the conditions

(6.2) w = λ and w′ = µ at r = a,

where a ≥ 0, λ > 0, µ ∈ R, are well known [13]. (Note that
this parameterization is not unique; we can have w(·; a1, µ1, λ1) =
w(·; a2, µ2, λ2) with a1 	= a2, µ1 	= µ2, λ1 	= λ2.) We state two basic
results which are necessary for our comparison argument:

If (1.6) holds, then any regular steady state w0(r;λ) ≡ w(r; 0, 0, λ),
with λ > 0, vanishes at a finite value of r, r0, and

(6.3) r0 = r0(λ) = r0(1)λ(1−p)/2 −→ 0 as λ −→ ∞.

Moreover, for a constant c > 0,

(6.4)
|w′

0(r;λ)| −→ ∞ as λ −→ ∞
on the level set {w0 = c};

indeed, this holds uniformly in c ∈ (0, C] for any fixed C > 0.

Observe that, in view of the similarity invariance of equation (6.1),
we have

(6.5) w0(r;λ) ≡ λw0(rλ(p−1)/2; 1).

We now check that the properties of the derivatives for steady
solutions which are bounded above, as found in Section 2.2, again hold.

Proposition 2. Let (1.6) hold. There exists M = M(K) > 0 such
that, for any λ ≥ M and any a ≥ 0, the steady state w = w(r; a, 0, λ)
satisfies

(6.6) |w′| ≥ K on any level set {w = c ∈ (0,K]}.
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Proof. It follows from (6.4) that (6.6) is true for a = 0. Since, if
a� 1, the solution w(r; a, 0, λ) is almost one-dimensional in the sense
that, after the change of the independent variable, r = a+ y, it solves
an asymptotically small perturbed, one-dimensional equation

(6.7) wyy + wp = −(N − 1)wy/(a+ y) = O(1/a),

the result is true for all a � 1. Evidently (6.6) holds for solutions of
the unperturbed equation

(6.8) vyy + vp = 0,

(this property of the exact one-dimensional problem is fundamental
to the result of [9]) and then, by continuity with respect to a small
perturbation to the ordinary differential equation (6.8), it is true for
(6.7).

Now fix a > 0. Then, by monotonicity, we have that

w′′ + wp = −(N − 1)w′/r < 0 for r < a,

and one can see immediately by comparison that w(r) lies below the
one-dimensional function v(r − a) for r < a. Taking other translations
of v, the comparison argument can be extended to show that w is
steeper than v; more precisely, if w(r) = v(y) with r < a and y < 0,
then 0 < v′(y) < w′(r). Thus (6.6) holds for all those r where w′ > 0.

Now take r > a. Then, for any b ∈ (0, a], we see that the function
w0(r − b;λ) is a subsolution for equation (6.1), that is,

Lw0(r − b;λ) = −b(N − 1)w′
0/r(r − b) > 0 for r > b.

Therefore, by a standard comparison argument, we can deduce that
w(r) ≤ w0(r−a;λ) for r > a, and, moreover, that w is steeper than w0

for r > a. Using (6.4), we can then conclude that (6.6) holds at points
on the level set where w′ < 0.

This completes the proof.

6.3. Partial proof of Theorem 2. Let us now introduce the envelope
of the set of steady states {w0(r;λ)}:
(6.9) V (r) = sup

λ>0
w0(r;λ) = a0r

−2/(p−1) for r > 0,
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where a0 = a0(p,N) is a constant. (The equation for the envelope V
is easily calculated by using the invariance (6.5), see [17, p. 424].)

It then follows from Proposition 2 that the result of Proposition 1 is
also true in the present case. The only difference is that we have to
modify (3.2) by using the new envelope:

(6.10) u(r0, t0) ≥ a0r
−2/(p−1)
0 .

We also replace k in (3.1) by M(K) given in Proposition 2.

6.4. Proof of Theorem 2. Following the scheme of the analysis in
Section 5 we need only check the following property of the set {w} of
steady states. We retain the notation of Section 5. In particular, we
denote by wn a singular steady state and, as above, w0 is a regular
solution.

Proposition 3. Any w0 intersects an arbitrary singular steady state
wn. In other words we always have, qualitatively, the relative position
of profiles wn, w0 and u(·, t) shown in Figure 1.

Proof. This can be obtained from the general properties of stationary
solutions {w} studied, by reducing (6.1) to a first order ordinary
differential equation, in [13]. (There is also an evolution argument,
see [17, Chapter 4].

Using Proposition 3 we can directly apply our geometric analysis
described step by step in Figure 1. This concludes the proof of
Theorem 2.

The proof of Theorem 3 is very similar. Necessary properties of
stationary solutions to (1.8) can be found in [11].

7. Other problems.

7.1. Constant boundary condition on r = R > 0. For an initial-value
problem posed in r < R <∞ with a constant Dirichlet condition at r =
R, we can assume, without loss of generality, that u(R, t) = 0 = u0(R).
The intersection arguments carry over essentially unchanged since,
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taking γ ≤ 0 and max{w} large, we still know that |w′| > K ≥ |u′0|
where |w| ≤ K, i.e., at any point where u0 and w may intersect. Then
w and u0, and hence w and u(·, t), can cross at most twice. These
conclusions also apply to an annular domain, 0 < R1 < r < R2 <∞.

The method may be adapted to obtain the same results for Robin
conditions, say ur + bu = 0 on r = R, and for Neumann boundary
conditions, ur = b on r = R.

7.2. Varying condition at r = R > 0. Taking the time-dependent
Dirichlet condition u(R, t) = g(t) for 0 < t < T , again the method
extends, with little modification, if g is ultimately increasing, i.e., g′ ≥ 0
for t ∈ (T − ε, T ) for some ε > 0. Starting at t = T − ε, one more
intersection between u(·, t) and some w with γ ≤ 0 can be created at
r = R as g(t) increases through w(R). However, for max{w} large, this
can still only give a maximum of two crossings.

If g is instead decreasing at times arbitrarily close to T , the argument
fails as more intersection points may appear at r = R. This failure
should not be too surprising, and our results are in some sense best
possible, as we can observe that any similarity solution, u = − ln(T −
t)+ v(r/(T − t)1/2), where v(η) satisfies v′′ + v′/η− ηv′/2+ ev − 1 = 0,
v′(0) = 0, has v(η) → −∞ exponentially fast as η → ∞. Then
u(0, t) → ∞, u(r, t) → −∞ for r > 0, and there are points arbitrarily
close to 0 with u(r, t) → ∞, ut(r, t) < 0 as t→ T , [3].

7.3. The nonlinear diffusion problem ut = ∆φ(u) + eφ(u) with
φ′ > 0. The key steps in the original argument use intersections with w
satisfying ∆w + ew = 0. The steady states of this new problem satisfy
∆φ(u) + eφ(u) = 0 so the arguments carry over using intersections
between u and φ−1(w) (or φ(u) and w).

7.4. Higher dimensions for ut = ∆u+ eu. Again we remark that our
results cannot extend to three dimensions for f(u) = eu, where there is
a weak singular steady state, and solutions u exist which have points
r → 0, t→ T , so that u(r, t) → ∞ but ut(r, t) < 0. We may regard our
present results as optimal.
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FIGURE 2. Regular steady state, γ = 0.

7.5. Generalizations of equation (1.7). There is, in principle, no
difficulty in extending the result to a more general equation

ut = ∆φ(u) + f(u),

where φ′(u) > 0 and f(u) > 0 for u > 0 are assumed to be smooth
and monotone increasing. The property given in Proposition 2 can be
obtained by using Pohozaev’s identity, see [16].

Appendix

We shall now briefly look at some properties of the three classes of
radially symmetric steady state for the exponential in two dimensions.

(i) γ = 0. Here w(r) = w(r; a, 0) = −2 ln(a + r2/8a) is a regular
(classical) steady state, see Figure 2.

The maximum of w is w(0) = −2 ln a.

Differentiating the solution yields −w′ = r/2a(a + r2/8a) > 0.
Indeed, −w′ ≥ r/2aeK/2 at every point where w ≥ −K (so a +
r2/8a ≤ eK/2). Moreover, at points where additionally w ≤ K, we
have that a + r2/8a ≥ e−K/2 so that (r/a)2 + 8 ≥ 8e−K/2/a and
(r/a)2 > 4e−K/2/a if a < e−K/2/2. In this case r/a > 2a−1/2e−K/4

and −w′ > a−1/2e−3K/4 > K for a < K−2e−3K/2 where −K ≤ w ≤ K.
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FIGURE 3. Singular steady state bounded above, γ < 0.

We see that, for one of these regular solutions to reach or exceed
a value M (supw ≥ M) w(0) ≥ M so a ≤ e−M/2. Thus, for
M > K + 2 ln 2, M > 3K + 4 lnK, we may choose a = e−M/2 and
then −w′ > K wherever −K ≤ w ≤ K.

(ii) γ < 0. Now, putting γ = −β, β > 0, and

w(r) = w(r; a,−β) = −2 ln[a/rβ + r2+β/8a(1 + β)2]
= ln[8(1 + β)2] − 2 ln[A/rβ + r2+β/A],

where A = 2
√

2(1 + β)a > 0. Here w is singular but bounded from
above, see Figure 3.

Again, differentiating the solution, we obtain

w′ = 2[βA/rβ+1 − (2 + β)rβ+1/A][A/rβ + r2+β/A]−1 = 0

at the unique point r = s with s1+β((2 + β)/β)1/2 = A.

At r = s, the solution takes its maximum value W given by

W = ln[8(1 + β)2] − 2 ln
[
s

((
2 + β

β

)1/2

+
(

2 + β

β

)−1/2)]
.

Generally,

w −W = −2 ln
{
R

[
((2 + β)/β)1/2/R1+β + (β/(2 + β))1/2R1+β

]
((2 + β)/β)1/2 + (β/(2 + β))1/2

}
,
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where R = r/s.

For w to reach or exceed M somewhere W ≤M , so where w ≤ K,

R

[(
2 + β

β

)1/2/
R1+β +

(
β

2 + β

)1/2

R1+β

]/
[(

2 + β

β

)1/2

+
(

β

2 + β

)1/2]
≥ 2B

with 2B = e(M−K)/2.

For M > K + 2 ln 2, we have B > 1.

There are now two possibilities:

(a) R−β > B, in which case R < 1,

or

(b) R2+β > ((2 + β)/β)B > B, in which case R > 1.

Requiring that −K ≤ w ≤ K so that we also have

w = ln[8(1 + β)2]

− 2 ln
[
s1+β

(
2+β
β

)1/2/
rβ + r2+β

(
β

2+β

)1/2/
s1+β

]

≥ −K, s1+β

(
2 + β

β

)1/2/
rβ + r2+β

(
β

2 + β

)1/2/
s1+β

≤ 2
√

2(1 + β)eK/2,

and w′ = 2
√
β(2 + β)[(s/r)β+1 − (r/s)β+1]/[s1+β(2 + β)/β)1/2/rβ +

r2+β(β/(2 + β))1/2/s1+β] satisfies

w′ ≥ (1/
√

2)e−K/2
√

(β(2 + β)/(1 + β))(R−(1+β) − R1+β)

where R = r/s < 1,

−w′ ≥ 1√
2
e−K/2

√
β(2 + β)
(1 + β)

(R1+β −R−(1+β)) where R = r/s > 1.

We now examine the two separate cases in −K ≤ w ≤ K.
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(a) R−β > B > 1, R < 1. Then√
β(2 + β)
(1 + β)

(R−(1+β) −R1+β) ≥
√
β(2 + β)

2(1 + β)
R−(1+β),

on taking M sufficiently large so that B ≥ √
2, i.e., M ≥ K + 3 ln 2,

which ensures that R1+β/R−(1+β) < 1/R−2β < 1/B2 ≤ 1/2. Now

√
β(2 + β)

2(1 + β)
R−(1+β) ≥

√
β(2 + β)

2(1 + β)
B(1+β)/β >

B

2

√
β

1 + β
B1/β ≥ CB,

where C = (1/2) infβ∈R+{√β/(1 + β)21/2β} = (1/2)
√

(e/2) ln 2.

(b) R2+β > ((2 + β)/β)B > B > 1, R > 1. Since R > 1, we have

R1+β = (R2+β)(1+β)/(2+β) > (R2+β)1/2 >
√
β

as
1 + β

2 + β
>

1
2

for β > 0

and R−(1+β)/R1+β < 1/B. Then√
β(2 + β)
(1 + β)

(R1+β − 1/R1+β) ≥
√
β(2 + β)

2(1 + β)
R1+β

on taking M sufficiently large so that B ≥ 2, i.e., M ≥ K+4 ln 2. Now

√
β(2 + β)

2(1 + β)
R1+β >

1
2

√
β

1 + β

[
(2 + β)
β

B

](1+β)/(2+β)

>
1
2

√
β

1 + β

[
(2 + β)
β

B

]1/2

>

√
β

2
,

as B > 1 and β > 0.

Taking M > k(K) = max{K+4 ln 2, 2K+2 lnK+3 ln 2−2 lnC, 3K+
4 lnK + 8 ln 2} then ensures that, for γ < 0, i.e., β > 0, w′ > K where
−K ≤ w ≤ K and r < s, and w′ < −K where −K ≤ w ≤ K and
r > s.

(iii) 0 < γ < 1. Here w(r) = w(r; a, γ) = −2 ln[arγ +r2−γ/8a(1−γ)2]
is unbounded from above and w′ < 0 for all r, see Figure 4.
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r
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w ~ 2 2 ln r  as r .
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w r ;a,

FIGURE 4. Singular steady state without upper bound (0 < γ < 1).

Fixing γ and r, ∂w/∂a = −2[rγ−r2−γ/8a2(1−γ)2]/[arγ+r2−γ/8a(1−
γ)2] so we see that w achieves its maximum value (as a function of a)
for a = r1−γ/2

√
2(1 − γ). Then w = −2 ln[r/

√
2(1 − γ)]. We see that

these singular solutions all lie below −2 ln(r/
√

2) = − ln(r2/2) which
is the envelope of the regular (γ = 0) steady solutions.
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