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DISTAL COMPACTIFICATIONS
OF GROUP EXTENSIONS

H.D. JUNGHENN AND P. MILNES

ABSTRACT. Let N and K be topological groups, and let
G be a topological group extension of N by K. We show
that if N or K is compact then, under suitable conditions,
the distal compactification of G is a canonical extension of
a group compactification of N by the distal compactification
of K. An analogous result is shown to hold for the universal
point distal G-flow.

1. Introduction. Let N and K be groups with identity e. A group
Gy is an extension of N by K if there exists a short exact sequence

e—N-—Gy—K —e.

A result of Schreier [12] asserts that Gy is canonically isomorphic to
G := N x K with multiplication in G given by

(1) (s,t)(s',t') = (st(s')[t,t'],tt'), s, € N,t,t' € K,

where the mappings (¢,t') — [t,'] : K x K - N and t = t(-) : K —
Aut (N) satisfy the Schreier extension formulation conditions

e(s)=s and [t,e] =][et] =e,
(SEF) [t t'](tt')(s) = t(t'(s))[t, t'], and

(¢, ¢][¢t", ¢"] = ¢([¢', ¢"]), [t '2"],

see [13]. To indicate this we shall write G = N x K (SEF).

Now suppose that N and K are topological groups and that the
Schreier mappings [-,-] : K x K — N and (s,t) = t(s): N x K - N

Received by the editors on August 12, 1997, and in revised form on January 20,

998.
1991 AMS Mathematics Subject Classification. 43A60, 22D05.
Key words and phrases. roup extension, semi-direct product, topological

group, right topological group compactification, left norm continuous, distal, point

distal, Furstenberg structure.
This research was supported in part by NSERC grant A7857.

Copyright ©1999 Rocky Mountain Mathematics Consortium

209



210 H.D. JUNGHENN AND P. MILNES

are jointly continuous, so that G is a topological group. In [6, Corollary
4.2] we showed that the almost periodic compactification GA¥ of G is a
canonical group extension of a topological group compactification of N
by KAF if and only if the mapping |-, -] enjoys a certain relative com-
pactness condition. In the present paper we prove distal, point distal
and LC analogs of this result. For example, we prove in Theorem 3.1
that, if K is compact and if either G is a central extension or the left
and right uniformities of NV coincide, then the LC compactification GL¢
of G is a canonical extension of N“¢ by K if and only if the mapping
t — g(t(+)) is norm continuous for each g € LC(N). In the same section
we also prove that, if NV is compact, then GLC is a canonical extension
of N by KX if and only if the mapping [, K] is equicontinuous. In
Section 4 we give sufficient conditions for the distal compactification
GPLC of G to be a canonical extension of N by K”LC in case N is
compact, and a canonical extension of NPLC by K if K is compact. In
each case we characterize the Furstenberg structure of GPZC in terms
of that of the component compactifications (Section 5). Finally, in Sec-
tion 6 we give sufficient conditions for the universal (jointly continuous)
point distal G-flow G¥PLC to be canonically isomorphic to a G-flow
N x KPEPC if N is compact, and canonically isomorphic to a G-flow
NPDPLC « K if K is compact.

2. Preliminaries. Let IV and K be topological groups with identity
e, and let G = N x K (SEF) be a topological group extension of N by
K, as described in the introduction. G is said to be a split extension or
a semi-direct product if the range of [+, -] is {e}, and a central extension if
the range of [-, -] is contained in the center of N. For central extensions
the middle equation of (SEF) asserts that K acts on N via the mapping
t+— t(-). Welet ¢ : N — G and ¢2 : K — G denote the canonical
injections, p; : G — N and py; : G — K the projection mappings,
and we set r; = ¢; o p;- In general, ¢; and ps are homomorphisms,
and in the semi-direct product case ¢y is a homomorphism. As usual,
C(G) denotes the C*-algebra of bounded, continuous, complex-valued
functions on G and R(-) and L(-) the right and left translation operators
on C(G), R(s)f(t) = f(ts) = L(t)f(s)-

We shall need some notions from the theory of semigroup compacti-
fications; for details the reader is referred to Chapters 3 and 4 of [1].

A right topological semigroup is a semigroup S with a topology
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relative to which the right translation mappings s +— st : S — S
are continuous. A (right topological semigroup) compactification of
G is a compact, Hausdorff, right topological semigroup G’ together
with a continuous homomorphism egr : G — G’, the compactification
map such that the image £¢/(G) is dense in G’ and the mappings
s = eq(s)s : G —- G and ¢ — §'t' : G' — G’ are continuous
for each s € G and t' € G'. A compactification G"' is a factor of a
compactification G’ if there exists a continuous function ¢ : G' — G”,
the compactification homomorphism such that poegr =egr. If X is a
compact Hausdorff space and ¢ : G — X, ¢/ : G’ — X are continuous
functions such that ¢’ o egr = ¢, then ¢’ is said to be an extension of
@.

A compactification with a given property P is called a P-compactifi-
cation. A universal P-compactification of G is a P-compactification of
which every P-compactification of G is a factor. We denote the univer-
sal P-compactification of G by G* and the function space %, (C(GT))
of G¥ by P(G). P(G) is easily seen to be m-admissible, i.e., it is a
translation invariant C*-subalgebra of C(G) containing the constant
functions and the functions z — u(L(z)f), where f € P(G) and p is a
member of the spectrum of P(G). Conversely, if F' is an m-admissible
C*-subalgebra of C(G), then the spectrum G¥ of F is a compactifica-
tion of G with compactification map = — &, where Z(f) = f(z).

We shall be concerned primarily with the universal compactifications
G? where P is either the right topological group property, i.e., the
property that the compactification is a right topological group, or
the LC property, i.e., the property that the natural left action of G
on the compactification is jointly continuous. The function spaces
P(G) corresponding to these properties are, respectively, D(G), the
algebra of distal functions on G, and LC(G), the algebra of left norm
continuous, equivalent to bounded, right uniformly continuous [4, p.
21], functions on G, see Sections 3 and 4. We shall also need to
consider the algebra RC(G) of right norm continuous functions, which
is generally not m-admissible, and the m-admissible algebra LM C(G),
which consists of all functions f € C(G) such that the pointwise closure
of R(G)f = {R(z)f : « € G} is a subset of C(G). Details concerning
these and related spaces may be found in Chapter 4 of [1]. We note in
particular that LM C(G) = LC(G) if G is locally compact or complete
metric [1].
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Our goal is to find conditions under which there exists a compactifica-
tion isomorphism G” = N’ x K’ (SEF), where N’ and K’ are compact-
ifications of N and K and multiplication on N’ x K’ is defined as in (1)
by Schreier maps [-,-] : K'xK' — N’ and (z,y) — y(z) : N'xK' — N'.
These maps satisfy (SEF) but, because G¥ may not be a group, y(-)
need not be an automorphism. Also, the Schreier maps need not be
jointly continuous, although they do satisfy certain separate continu-
ity conditions, see [6, Section 2]. The compactification map ey i is
assumed to be the product map en’ X egr : N x K — N’ x K'; this is
equivalent to requiring that the Schreier maps of N’ x K’ be extensions
of the Schreier maps of V x K. Under these circumstances we shall
call N' x K’ an (SEF) compactification of G.

The main results of the paper rely on the following version of Theorem
3.4 in [6].

Theorem 2.1. Let F, A and B be m-admissible C*-subalgebras
of C(G@), C(N) and C(K), respectively. Suppose that the following
conditions hold:

(a) Pi(4)
(b) p3(B)
(c) ¢i (F)

(d) ¢3(F) C B;

(e) either N is compact and F C LC(G) or K is compact and the
map t — f(-,t): K — C(N) is norm continuous for each f € F.

Then G¥ =2 N4 x KB (SEF), A = ¢;(F) and B = ¢;(F). Moreover,

GF is a split extension if G is a split extension and a central extension
if G is a central extension and N4 is a topological semigroup.

Conversely, if G = N' x Klp (SEF) for some compactifications
N’ and K', then N' = N4 and K' = KB, where A = ¢ (F)
and B = ¢3(F). Moreover, conditions (a)—(d) hold, and the maps
s— f(s,:) and t — f(-,t) are norm continuous for f € F.

CF
C F,
cA

Remark 2.2. If F = P(G), A=P(N) and B = P(K) for a property
P which is inherited by subcompactifications, see [7] then, because p
and ¢; are homomorphisms, conditions (b) and (c) hold automatically.
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3. LC-Compactifications. The space LC(G) consists of all
functions f € C(G) such that z — L(z)f : G — C(G) is norm
continuous. The space RC(QG) is defined analogously. In this section we
consider the problem of expressing G-C as a canonical (right topological
semigroup) extension of some compactification of N by KL¢. Simple
examples show that one cannot expect this to occur in general unless
N or K is compact (e.g., Z x Z). We cousider first the case K compact.

Theorem 3.1. Let K be compact and suppose either that G is a
central extension or that LC(N) = RC(N). Then GE¢ = NLC x
K (SEF) if and only if the family {t — encc(t(s)) : s € N} is
equicontinuous (equivalently the function t — g¢(t(-)) : K — LC(N)
is norm continuous for each g € LC(N)). In particular, this holds if
{t = t(s) : s € N} is equicontinuous.

Proof. For the necessity, let t, — to in K and set x, :=
ence ([ta,ty}]) and xp := enze ([to, ty 1]). By the LC property of GEC,
eqro (e te)egre(s,t;l) = (enre(ta(s))zq,e) converges uniformly in s
to egre (e, to)egre (s,tyt) = (enze(to(s))xo,e). The hypotheses then
imply that eycc(ta(s)) = ence(to(s)) uniformly in s.

For the sufficiency we need to verify that conditions (a) and (e) of
Theorem 2.1 hold for F = LC(G), A = LC(N) and B = C(K)
(see Remark 2.2). For 2.1 (a), let ¢ € LC(N), f = pi(g), and let
(Sasta) = (S0,t0) in G. To see that f € LC(G), consider the inequality

|L(Sasta)f(s,t) — L(so,t0) f(s,1)]
= |g(sata(s)[ta,t]) — g
< lg(sata(s)[tast]) — g
+19(s0ta(8)[tas t]) — g(soto(s)[ta, t])|

+ [g(soto(s)[ta,t]) —

ta
ta(

The first term on the right side of the inequality obviously converges
to zero uniformly in (s,t). To see that the second term on the right
also converges to zero uniformly in (s,t), note that the equicontinuity
hypothesis implies that g(sote()r) — g(soto(-)r) in norm for each
r € N, soif g € RC(N) or G is central then the convergence is
uniform in r on the compact set [K, K]. Finally, because [-, K] is
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trivially equicontinuous, the third term converges to zero uniformly

n (s,t) if either G is central or LC(N) = RC(N).

It remains to show that, for a function f € LC(G), the map t — f(-,t)
is continuous in the uniform norm. Let ¢, — tp in K and set
To = [t ta], ro = [ty ', to] and h = gf(L(e,tp)f). Then

f(s,ta) = f(s,t0)| = |f (e, ta) (r3 115 (5)7as €))
— f(esto)(rg 5" (s)r0, €))]
< [|L(esta) f — L(es to) f]]
+[h(rg 5 ()ra) = hirg Ho * ()ro) |
=aqy + by,

where, obviously, a, — 0. Since ¢; is a homomorphism, h € LC(N),
and it follows from the equicontinuity hypothesis that b, — 0 if G is
central and that h(ut_!(-)v) — h(uto(-)v) in norm for each u and v in
N. If LC(N) = RC(N), then the latter convergence is uniform in u
and v on compacta, hence again, b, — 0. u]

An illustration of Theorem 3.1 is given in Example 4.4 below.

For the case N compact the equicontinuity requirement shifts from
the action to the cocycle.

Theorem 3.2. If N is compact, then GX¢ = N x KXC (SEF) if and
only if [, K] is equicontinuous.

Proof. 1f GE¢ = N x KL¢ (SEF) and t, — to in K, then

([tas t], exczc (tat)) = egre (e, ta)egre (6, 1) — egro (e, to)egre (e, t)
= ([to, t], excro (tot))

uniformly in ¢, hence [-, K] is equicontinuous.

Conversely, suppose that [, K] is equicontinuous. We use Theo-
rem 2.1 with F = LC(G), A = C(N) and B = LC(K) to show that
GEC = N x KL¢ (SEF). By Remark 2.2 it suffices to show that The-
orem 2.1 (a) and (d) hold. For (a), let g € C(N), f = pi(g), and let
(Sasta) = (S0,t0) in G. Each bracketed term on the right side of the
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equality

L(Sa,ta)f(s,t) — L(sg,t0) f(s,t)
= [9(sata(s)[ta,t]) — g(sata(s)[to,t])]
+ [9(sata(s)[to, t]) — g(soto(s)[to, t])]

converges to zero uniformly in (s,t), the first by the equicontinuity of
[, K] and the second by the joint continuity of (s,t) — ¢(s). Therefore,
f € LC(G).

It remains to show that ¢5(LC(G)) C LC(K). Let f € LC(G),
g = g5(f), and let t, — to in K. Then, for any compact subset C of
G, f(c(e,ta)(e,t)) — f(cle,to)(e,t)) uniformly in ¢t € K and ¢ € C,
so the first bracketed term on the right side of the following equality
converges to zero uniformly in ¢:

L(ta)g(t) — L(to)g(t) = [f(([ta, 1], €) (e, ta)(e,t))
= F(([tast], )" (e, to) (e, 1))]
+ 1f(([tar t] )7 (esto) (e, )
— £(([to, t], €)™ (e, to) (e, 1))]-

To see that the second bracketed term on the right also converges to
zero uniformly in ¢, and hence that g € LC(K), choose a neighborhood
V of (e,e) in G such that zy~' € V implies |f(z) — f(y)| < &, and
let W be a neighborhood of e in N such that ¢f (W) C V. By the
equicontinuity of [-, K], [ta,t] ![to,t] € W for all sufficiently large o
and all t € K, and this implies that the absolute value of the second
bracketed term on the right in the above equality is less than €. |

Corollary 3.3 [9, Theorem 10]. If N is compact and K is discrete,
then GE€ = N x B(K) (SEF).

Corollary 3.4 [10, Theorem 3.5]. If N is compact and G is a semi-
direct product of N and K , then GLC is a semi-direct product of N and
KLC,

Example 3.5. Let G = N x K = C* x R? have multiplication

(Z, w? y)(zl7 x’? yl) = (zzlelym’7 Z + ml? y + y’)'
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Here [(z,y), (z',y")] = e and the automorphism determined by
(z,y) is the identity map. For the subgroups G; = T x (R x Z) and
G2 = T x (Z x R), Theorem 3.2 implies that GF¢ = T x (R x Z)X¢
(SEF) and GLC % T x (Z x R)C (SEF).

4. Distal compactifications. A function f € LMC(G) is distal
if the pointwise closure of the right orbit R(G)f is a distal flow under
right translation. This is equivalent to the function f = (e&ome) H(f)
satisfying

fuwvw) = fluw), u,v=1*we GM°,

[1]. The algebra of distal functions on G is denoted by D(G), and we
set DLCL(G) := D(G) N LC(G). Note that DLC(G) = D(G) if G is
locally compact or complete metric. We let ¢ : GE¢ — GPLC denote
the compactification homomorphism.

Lemma 4.1. Let H be a topological group and 6§ : H — G a
continuous function such that 6*(LC(G)) C LC(H) (this implies that
6 has an extension § : HXC — GLC). The following statements are
equivalent:

(a) 6*(DLC(G)) C DLC(H), hence 0 has an extension 8 : HPLC —
GDLC.

(b) (¢ 0 0)(uvw) = (p o 8)(uw), u,v = v, w € HEC.

Proof. We have egprc 06 = po 6 o egre, so 0*(DLC(G)) =
etic © (p o0 8)*C(GPLY). Thus, (a) is equivalent to the identity

(90 0)" fuvw) = (p 0 8)" f(uw),
fec(GPLY), w,v=1v*we HC

and hence to (b). O

Lemma 4.2. Let K be compact, and suppose that GF¢ = N’ x K
(SEF) for some compactification N' of N. Then GPL¢ = N4 x K
(SEF) where A = ¢i (DLC(G)).

Proof. By Theorem 2.1, r;(LC(G)) C LC(G). We show that Lemma
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4.1(b) holds for 8 = r;. The desired conclusion will then follow from
Lemma 4.1, Theorem 2.1 and Remark 2.2.

Let u = (x,y), v = (2',3') and w = (z",%") be members of GL¢ with

v2 =v. Then 2’2 = 2’ and ¢’ = e so

o(71 (uwvw)) = p(zy(z)y(«")[y,y"], €)
= o(z,e)p(y(z'), e)p(x, )~ o(1 (uw)).

Since ' is an idempotent, so is (y(z'), e). Therefore, p(y(z'),e) = (e, €)
and (b) of Lemma 4.1 follows. O

We may now prove the following distal analog of Theorem 3.1.

Theorem 4.3. Let K be compact and {t — encc(t(s)) : s € N}
equicontinuous. If G is a central extension or if LC(N) = RC(N),
then GPLC = NDPLC » K (SEF).

Proof. By Theorem 3.1 and Lemma 4.2, GPL¢ = N’ x K (SEF) for
some factor N’ of NPLC, To show that NPLC is a factor of N/ and
hence that N’ = NPLC it suffices to show that multiplication can be
extended to G’ := NPLC x K so that G’ is a right topological group
compactification of G.

Define multiplication in G’ by (z,t)(2',t) = (zt(z")eyore([t,t']), tt'),
where the mapping =z +— t(z) : NPL¢ — NPLC ig the extension
of ¢(-) + N — N. Conditions (SEF) are obviously satisfied, so it
remains only to show that G’ is a right topological compactification
of G. But this follows easily from the fact that G’ is the continuous
homomorphic image of GFC under 6 x idg, where § : NIC — NDPLC
is the compactification map. a

Example 4.4. Let Z, denote the p-adic integers, and let G =
C* x Z? have multiplication

(z,2,9)(2', 2’ ) = (22'e¥™ 200 g 2!y +y)),

where zj is a fixed p-adic number. Then GF¢ = C*LC x Z?, (SEF)
(Theorem 3.1) and GP =2 C*P x Z2 (SEF) (Theorem 4.3).
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Lemma 4.5. Let N be compact, and suppose that GF¢ = N' x KL¢
(SEF) for some compactification N' of N. Consider the following
identities in the variables ', " € N' and y,y' = y'?, y" € K*C:

(a))[sa(y(] )[y,y](yy’)(w”)[yy’,y”],e) = ¢(y(@")[y,y"],e) whenever

(2’
(b) ¢([y, ][yy y'l,e) = e(y(ly' ¥ Dy, y"], e)-
(C) y(@") [y, v'1(wy') (=")yy', v"] = y(=")]y,y"] whenever y'(z')[y’,y']

/

Y

(d) v, 'y’ v = y(ly's 4Dy, v"]-

Then

(i) GPLC = N" x KPLC (SEF) for some factor N" of N' if and
only if (a) and (b) hold,

(ii) GPEC = N' x KPLC (SEF) if and only if (c) and (d) hold.

Proof. (a) is essentially a restatement of Lemma 4.1 (b) with 6§ = r;.
We show that (b) is equivalent to Lemma 4.1 (b) with 8 = go; (i) will
then follow from Lemma 4.1 and Theorem 2.1. With y, vy, y" as above,

we have o([v',y'],e) = ¢(e,y’) so

so(eay)so(e,y’)sa(e,y”)
[V, 1), e)e(e, y)ple, y")
= (y([y’,y])[y,y”] )(sooqz)(y'),

from which the desired equivalence follows.

For (ii), note that GPLC =~ N’ x KPLC (SEF) if and only if (a)
and (b) hold and ¢} (DLC(G)) = ¢f(LC(G)), in which case ¢(-,€) is
the identity map. The preceding equality is implied by the inclusion
ri(LC(G)) C DLC(G), which is equivalent to (c). O

ey, ¥'llyy" s v" ] e)(w o @) (yy'y")

Theorem 4.6. Let G be a central extension with N compact and [t, -]
a homomorphism for each t € K. Then GPLC = N x KPLC (SEF) if
and only if [, K| is equicontinuous and the action of K on N is distal.

Proof. The necessity is clear. For the sufficiency, note first that, by
Theorem 3.2, GEC = N x KLY (SEF). Consider the Schreier maps
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[,]: K x K¢ — N and (s,y) — y(s) : N x KF¢ — N for GL°.
By continuity, [y, ] : KX¢ — N is a homomorphism for each y € K1€.
Let y,9,y" € K¢ with y"? = ¢/. Then [y,9'] = e and, by (SEF), we
have

(2) ', y"1 =yl " Dly, ¥"]-

If the flow (K, N) is distal, then () is the identity map, and taking
y =19 in (2) we see that [v/,y"'] = ¥'([v',y"]) = e. Hence (2) reduces to
lvy',y"] = [y,y"], from which (c¢) and (d) of Lemma 4.5 readily follow.
]

Corollary 4.7. Let N be compact, and let G be a semi-direct product,
so that, by Corollary 3.4, GFC is a semi-direct product N x KTC. The
following statements are equivalent:

(a) GPLC s a split extension of N by KPLC,

Proof. Clearly (e,y)N1 C Ni(e,y), and the reverse inclusion is
equivalent to y(N) = N. Thus (c¢) and (d) are equivalent. The
equivalence of (a) and (b) follows directly from Theorem 4.6.

To see that (a) implies (d), let 6 : KX¢ — KPLC and ¢ : GL¢ —
GPLC denote the compactification homomorphisms, so that ¢(s,y) =
(s,6(y)). Then

(0(y)(5),0(y)) = (&, 0(y))(s,€) = p(
= o(y(s),y) = (y(s),0(y)),

so y(+) = 0(y)(-) and hence y(-) is surjective.

Clearly (d) implies (e). That (e) implies (a) is a consequence of
Lemma 4.5, which asserts in the present setting that GPLC is a split
extension if and only if y(2')(yy')(z") = y(z”) for all ’,2"” € N and
v,y =y? € KLC with ¢/ (2) = e. O
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Example 4.8 (Wreath product). Let H be a compact topological
group, A a nonempty set, let N := H? with the product topology and
group structure, and let K be a discrete group acting on A on the right.
G is a semi-direct product of N and K where, for t € K, ¢(-) : N - N
is defined by t(s)(A\) = s(\t), s € N, A € A. By Corollary 3.4, GL¢ is
a semi-direct product N x B(K). If each orbit AK is finite, then the
action of K on N is equicontinuous, hence distal, and G (= GPLC) is
a semi-direct product N x K (Corollary 4.7). For a concrete example,
take K = Z, A = {0,1,...,p — 1}, and let the action be An = A+ n
(mod p).

On the other hand, it is easy to give examples for which G is not a
semi-direct product N x KP. For instance, take H =T, A=K = Z,
and let the (nondistal) action of K on A be \sn=X+n. If y #0is an
idempotent in KZ¢ then y(-) cannot be the identity function, hence
GP cannot be a semi-direct product of N and KP (Corollary 4.7).

Example 4.9. Let G = N x K = T? x Z? have multiplication

(zla 22,1, n)(zlla Z;a mla TL,)

l2n)\m n(n—1)/2

’
= (21212 , 222N " m +m/,n +n'),

where X is a fixed member of T. Here [(m, n), (m’,n’)] = (\™'n(n=1)/2,
A"m) " and the automorphism determined by (m,n) is the map
(21, 22) = (2123, z2). By Theorem 4.6, (T? x Z2)P = T2 x Z2P (SEF).
Similarly, (T x Z2)P = T x Z2P (SEF) for the subgroup T x Z? of the
group G in Example 3.5.

Example 4.10. Let N be an abelian topological group, K a
topological group, and let ¢y : K — NN be a continuous function such
that ¥(e) = e. Then [t,t/] = ¥(t)(t)w(tt') ! satisfies the cocycle
identity in (SEF); in fact, it is a coboundary. Hence, taking ¢(-) to be
the identity map, we have G = N x K (SEF).

Now take N = T and K = Z. By Corollary 3.3, (T x Z)L¢ =
T x B(Z), and if ¢ is distal, then Lemma 4.5 implies that (T x
Z)P = T x ZP (SEF). On the other hand, X(z,t) = 2%(t) defines
a continuous character of G such that ¢5(x) = %, so if P is a
property of compactifications such that P(G) contains all continuous
characters and ¢ ¢ P(K), then ¢;(P(G)) ¢ P(K) and hence G¥
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cannot be isomorphic to N’ x K’ (SEF) for any compactifications N’
and K', Theorem 2.1. For example, if we take ¢(n) = ein/(141%) then
(T x Z)P 2 T' x Z' (SEF).

5. The Furstenberg structure of GPLC. A refinement, due to
Milnes and Pym [10, Theorem 11], of Namioka’s version [11] of the
Furstenberg structure theorem [3, 2] asserts the existence of an ordinal
€o and a family {V; : 0 < € < &} of closed normal subgroups of GPL¢
such that the following hold:

() Vo = GPLC and Vg, = {e};
(b) for £ < &, Veq1 is a subset of Vg, and the function

(WVes1, 0Veqr) — woVers,  GPEC Ven x Ve [Ven — GPFC/Vey

is continuous in the Hausdorff quotient topologies;
(c) for each limit ordinal £ < &, Ve =, V2

One can restate this result in terms of the compactifications G¢ :=
GPLC Vg of G as follows:

(a') Gp = {e} and G¢, = GPLC;

(b") for £ < &, G¢ is a factor of G¢41 with compactification homomor-
phism ¢¢, and G¢41 satisfies the G¢-relative joint continuity property:
UqVq — uv for any pair of nets u, — w and v, — v in Ge¢yq with
pe(va) = €

(c') for each limit ordinal { < &, the compactification G¢ is the
projective limit of the compactifications G, v < €.

One may further assume that G¢i1 is maximal with respect to the
relative joint continuity property in (b’), in which case we shall say
that Gey1 is the Ge-relatively almost periodic right topological group
compactification (or simply, r.a.p. compactification) of G and call the
system of compactifications {G¢ : £ < &} of G an r.a.p. chain for
GPLC. The algebra APg,(G) := €6y, (C(Geq1)) is the space of
€6, (C(Gg))-relatively almost periodic functions considered in [8], see
also [7].

In this section we show that, under suitable conditions, a r.a.p. chain
{G¢ : € < &} for GPLC is necessarily of the form {Ng x K : £ < &} if
K is compact, and {N x K¢ : £ < &} if N is compact, where {IN¢} and
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NDLC KDLC

{K¢} are r.a.p. chains for and

with the case K compact.

, respectively. We begin

Lemma 5.1. Let K be compact, {t — t(s) : s € N} equicontinuous,
and suppose that GPLY = NPLC x K (SEF). Let G' be a right
topological group compactification of G such that G' = N' x K (SEF)
for some compactification N' of N. Then G* = N* x K (SEF), where
NU is the N'-r.a.p. compactification of N and GY is the G'—r.a.p.
compactification of G.

Proof. We use Theorem 2.1 with F = APg/(G), A = APn/(N) and
B = C(K) to show that G* = N* x K (SEF). It is enough to verify 2.1
(a), the remaining conditions of Theorem 2.1 being trivial. We have
the compactification homomorphisms

GPLC 2yt g, NPLC Yy Nt 0 N
where ¢ o ¢ = (0 o)) x idg. Condition 2.1(a) will hold if, for nets

(Tasta) — (z,t) and (z,,t)) — (z',t') in GPLC with (pop)(x!,,t.) =
(e, e), we have

(3) Y(@ata(q)tar ta]) — P(zt(2")[t, 1']).

Now by equicontinuity, t,(z.,) — t(z). Moreover,

(6 0 9)(ta(g)) =ta((0 0 ¢)(25)) = ta(e) =e.

Since t,, = t' = e, (3) follows immediately from the N’-relative
joint continuity property of N*. Therefore, Theorem 2.1(a) holds and
G' =~ N* x K (SEF). o

Theorem 5.2. Let K be compact and {t — t(s) : s € N} equicontin-
uous. Suppose that either G is a central extension or LC(N) = RC(N).
If {Ge : € < &} is an r.a.p. chain for GPLC | then there exists a r.a.p.
chain {N¢ : € < &} for NPLC such that G¢ = N¢ x K (SEF).

Proof. By Theorem 4.3 and Lemma 5.1, G¢ = N x K (SEF)
where, for £ < &y, Neyq is the Ne-r.a.p. compactification of N. It
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remains to show that, if { < §y is a limit ordinal then V¢ is the
projective limit of the system {(N,,¢.n) : ¥ < n < &}, where
¢un : Ny — N, is the compactification homomorphism. But this
follows easily from the fact that G¢ is the projective limit of the system
{(Gy, vy xidk) :v<n< &}, D

The case N compact follows directly from Theorem 4.6 and the next
lemma, which may be proved by arguing as in Lemma 5.1.

Lemma 5.3. Let N be compact and suppose that GPLC = N x KPLC
(SEF). Let G’ be a right topological group compactification of G such
that G' =2 N x K' (SEF) for some compactification K' of K. Then
G' = N x K' (SEF), where K' denotes the K'-r.a.p. compactification
of K and G* the G'-r.a.p. compactification of G.

Theorem 5.4. Suppose that N is compact, |-, K| is equicontinuous,
the action of K on N is distal, and [t,-] is a homomorphism for each
te K. If {Ge : € < &} is a r.a.p. chain for GPLC, then there exists a
r.a.p. chain {K¢ : € < &} for KPLC such that Ge = N x K¢ (SEF).

6. Point distal compactifications. A function f € LMC(G) is
point distal if, under the action of right translation R(z), the pointwise
closure of R(G)f is a point distal flow with distal point f. This is
equivalent to the function f = (e oao) 2(f) satisfying

fluv) = f(u), wu,v=10?eGHMC

[1]. The algebra of point distal functions on G is denoted by PD(G),
and we set PDLC(G) := PD(G) N LC(G). Since PDLC(QG) is
left translation invariant, its spectrum GFPPLC while generally not a
semigroup, is a flow under (s, t)z = L(z,t)*(z). Viewing GL¢ similarly,

we see that the canonical map ¢ : GE¢ — GFPPLC is equivariant and
satisfies
(4) p(w) = p(u), u,v=0"e G

The flow GPPLC can be characterized as the maximal such factor of
GLC. Tt is also the universal jointly continuous point distal G-flow.
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We shall call a continuous function ¢ from GF¢ to a compact
Hausdorff topological space X point distal if it has property (4) or
equivalently, if ot oegrc € PDLC(G) for every g € C(X). For such
a map there always exists a continuous function ¢ : GFPLC — X such

that ¢ o p = 1.
The following is a point distal analog of Theorem 4.3.

Theorem 6.1. Let G be a central extension with K compact and
{t — t(s) : s € N} equicontinuous. Then there exists a natural action
of G on NPPLC x K such that GEPPLC and NPPLC x K are canonically

isomorphic as flows.

Proof. For brevity, we write F' for PDLC. By Theorem 3.1,
GLC =~ NLC x K (SEF). Let (s,z) — s-x: N x NI — NT denote the
action of the flow (N, NF'), and let § : N*¢ — NF be the canonical
equivariant map. Since ¢(-) : N — N is a homomorphism, it has
an extension t(-) : N — N¥ which satisfies 8(¢(-)) = #(0(-)) and
t(s-x) = t(s) - t(z), s € N, x € N¥. Now define an action of G on
NF x K by

(s,t)(z,y) = (s[t,y] - t(x),ty), (s,t) € G,z € NF ye K.

That this is indeed an action follows from centrality and the cocycle
identity:

((s,)(s, 1)) (, y) = (st(s)[t, ] ¢t') (2, y)
(st(s")[t, ][t y] - (2) (), (2)y)
(sft, 'ylt(s'[t', ) - (¢ (2)), (¢")y)
(sft, t'ylt(s'[t), y] - £'(2)), (')
= (s,t)(s'[t',y] - (), t'y)
= (s,)((s", ') (z,v))-

Since the map (z,y) — (0(x),y) : GFY — NF x K is equivariant and
point distal, N¥' x K is a factor of G¥. Let n : G¥ — N¥ x K denote
the canonical map. We need to show that 7 is injective.

Define 7; : G — G by 74(s',t') = (s',t), and let 7 : GL¢ — GEC be
its extension, 7(z,y) = (x,t). If u = (z,y) and v? = v = (2/,y') are
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members of GLC| then z/2 = 2’ and y' = e, so w := (¢ 1(y(z')),e) is
an idempotent and, by (4),

¢ o Tt (uv) = p(zy(z'),t) = p((z,t)w) = p(z,t) = ¢ o Ft(u).

Thus, rf(F(G)) C F(G), cf. Lemma 4.1, and we get an extension
7t GF = GF of ;. It is easy to see that

(5) 7i(p(z,€)) = p(x,t), ze€ N tekK.

Moreover, since ¢(-,e) : NF¢ — G¥ is point distal and equivariant,
relative to the obvious action of N on G¥', the maximality of the factor
N of NXC implies the existence of an equivariant map v : N¥ — G¥
such that v o060 = ¢(-,e). The injectivity of n follows from the last
identity, from (5), and from the identity no ¢ = 6 x idg. O

The point distal analog of Theorem 4.6 takes the following form.

Theorem 6.2. Let G be a central extension with N compact. If [-, K|
is equicontinuous, [t,-] is a homomorphism for each t € K, and the
action of K on N is distal, then there is an action of G on N x KTPLC
such that GPPLC and N x KPPLC gre canonically isomorphic as flows.

Proof. By Theorem 3.2, GEC = N x KL¢ (SEF). Let 0 : K1¢ — KT
denote the canonical map, where F' = PDLC'. Consider the Schreier
map [-,-] : KX¢ x KX¢ — N. For a fixed t, [egrc(t),] : KE¢ - N
is a homomorphism and is therefore point distal. Hence there exists a
map vy : K — N such that ¢; 0 § = [egrc(t),-]. This, together with
the centrality of the extension, implies that

(5,8) - (2,y) = (st(z)ee(y),t-y), (s,0) €G, z€N, ye K¥

defines an action of G on N x K| where ¢ -y := L(t)*(y). Moreover,
the function idy x 6 : GI¢ — N x K¥ is equivariant, and since
y(+) = idy for idempotents y € KX (because the flow (K, N) is distal)
idy x 0: GLEY — N x K¥ is point distal. By maximality, there exists
an equivariant map 7 : G¥ — N x K such that no ¢ =idy x . To
complete the proof, we show that 7 is injective.
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Now, since ¢ is point distal, so is ¢s := ¢(s,-) : K¢ — GF.
Indeed, if y and 3’ are members of KL¢ with y'? = ¢ then, because
[y,-] is a homomorphism, (e,y’) is an idempotent and (s,y)(e,y’) =
(sly, ¥'],vy") = (s,yy'), so ps(yy') = ¢s(y). As a consequence, there
exists an extension @, : K — GF such that ¢, 0 = ¢, and the
injectivity of 7 easily follows. ]

Corollary 6.3. Let G be a split extension with N compact. If
the action of K on N is distal, then GFPLC and N x KPPLC gre
canonically isomorphic as flows.

The distal compactification results of Examples 4.4, 4.8, 4.9 and 4.10
have straightforward point distal analogs.

Theorem 6.2 and Corollary 6.3 have analogs for the universal jointly
continuous minimal G-flow G™, which may be characterized as the
spectrum of a maximal left translation invariant subalgebra of minimal
functions, functions f € LC(G) with the property that the pointwise
closure of R(G)f is a minimal flow. G™ may also be realized as GXCv,
where v is a minimal idempotent, i.e., an idempotent in the minimal
ideal of GL¢. Under the hypotheses of Theorem 6.2, GF¢ = N x K¢
(SEF) and v is of the form (e,y), where y is a minimal idempotent of
KLC so GECy = N x KLCy. Thus, we have

Theorem 6.4. Under the hypotheses of Theorem 6.2 there is an
action of G on N x KM such that GM and N x KM are canonically
isomorphic as flows.
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