EXACT LOCATION OF α-BLOCH SPACES
 IN L_{a}^{p} AND H^{p} OF A
 COMPLEX UNIT BALL

WEISHENG YANG AND CAIHENG OUYANG

Abstract

In this paper we prove that, on the unit ball of \mathbf{C}^{n}, (i) for $f \in H(B)$ and $0<\alpha<\infty, f \in$ $\mathcal{B}^{\alpha} \Leftrightarrow \sup _{z \in B}|\mathcal{R} f(z)|\left(1-|z|^{2}\right)^{\alpha}<\infty ;$ as a corollary, $\mathcal{B}^{\alpha}=$ $A(B) \cap \operatorname{Lip}(1-\alpha)$ for $0<\alpha<1$. (ii) $B^{\alpha(<1+(1 / p))} \subset$ $L_{a}^{p} \subset \mathcal{B}^{1+((n+1) / p)}, \mathcal{B}^{\alpha(<1)} \subset H^{p} \subset \mathcal{B}^{1+(n / p)}$ for $n>1$ and $0<p<\infty$, where L_{a}^{p}, H^{p} denote the Bergman spaces and Hardy spaces, respectively. And $\mathcal{B}^{1} \subset \cap_{0<p<\infty} L_{a}^{p} \subset \mathcal{B}^{\alpha(>1)}$, $\mathcal{B}^{\alpha(<1)} \subset \cap_{0<p<\infty} H^{p} \subset \mathcal{B}^{\alpha(>1)}$. Further, it is proved with constructive methods that all of the above containments are strict and best possible.

1. Introduction. Let $H(B)$ denote the class of all holomorphic functions in the unit ball B of \mathbf{C}^{n}. We say that $f \in \mathcal{B}^{\alpha}, \alpha$-Bloch, if

$$
\|f\|_{\mathcal{B}^{\alpha}(B)}=\sup _{z \in B}|\nabla f(z)|\left(1-|z|^{2}\right)^{\alpha}<\infty, \quad 0<\alpha<\infty .
$$

It is clear that \mathcal{B}^{α} is a normed linear space, modulo constant functions, and $\mathcal{B}^{\alpha_{1}} \subset \mathcal{B}^{\alpha_{2}}$ for $\alpha_{1}<\alpha_{2}$. When $n=1$, replace them by $H(D)$ and $\mathcal{B}^{\alpha}(D)$, where D denotes the unit disk of complex plane.
Hardy and Littlewood proved that $[\mathbf{3}],[\mathbf{2}]: \mathcal{B}^{\alpha}(D)=\operatorname{Lip}(1-\alpha)$. We know that $\operatorname{Lip} \beta$ can be used to describe the dual space of Hardy space $H^{p}(D)$ for $0<p<1[\mathbf{2}]$. So \mathcal{B}^{α} are important in the theory of Hardy spaces. In [15] we gave some invariant gradient characterizations and Bergman-Carleson measure characterization of \mathcal{B}^{α} on the unit ball.

For $\mathcal{B}^{1}=\operatorname{Bloch}(B)$, Timoney showed that $H_{p} \not \subset \operatorname{Bloch}(B)$ for any $p \in(0, \infty)$, but he did not know whether there were Bloch functions which were not in H^{p} or not, see Example 3.7(3) of [12]. Later on, in [10], Ryll and Wojtaszczyk pointed out that Bloch $(B) \not \subset H^{p}$;

[^0]therefore, there is no containment between H^{p} and Bloch. Naturally we want to know the relationships between α-Bloch and some classes of holomorphic functions, such as the exact location of α-Bloch spaces in L_{a}^{p} and H^{p}.
In this paper we will prove that (i) $f \in \mathcal{B}^{\alpha} \Leftrightarrow \sup _{z \in B}|\mathcal{R} f(z)|(1-$ $\left.|z|^{2}\right)^{\alpha}<\infty$. $\mathcal{B}^{\alpha}=A(B) \cap \operatorname{Lip}(1-\alpha)$ for $0<\alpha<1$. (ii) $\mathcal{B}^{\alpha(<1+(1 / p))} \subset$ $L_{a}^{p} \subset \mathcal{B}^{1+((n+1) / p)}, \mathcal{B}^{\alpha(<1)} \subset H^{p} \subset \mathcal{B}^{1+(n / p)}$ for $n>1$ and $0<p<\infty$. Further, $\mathcal{B}^{1} \subset \cap_{0<p<\infty} L_{a}^{p} \subset \mathcal{B}^{\alpha(>1)}, \mathcal{B}^{\alpha(<1)} \subset \cap_{0<p<\infty} H^{p} \subset \mathcal{B}^{\alpha(>1)}$. All of the above containments are strict and best possible. For the inclusion chain $\mathcal{B}^{\alpha(<1+(1 / p))} \subset L_{a}^{p} \subset \mathcal{B}^{1+((n+1) / p)}$, the strictness at the left side and the possibility at the right side show that, for each p, at least one $f(z)$ exists, $f \in L_{a}^{p}$, whose growth rate of gradient, or radial derivative, will be larger than, or equal to, $\left(1-|z|^{2}\right)^{-(1+(1 / p))}$, and go so far as to $\left(1-|z|^{2}\right)^{-(1+((n+1) / p))}$. There is a similar conclusion for H^{p} in the other inclusion chain. Especially in the proof of the strictness and best possibility in (ii), we will use constructive methods.
2. Radial growth of α-Bloch functions. For $y \in S$, the unit sphere in $\mathbf{C}^{\mathbf{n}},\langle z, y\rangle=0$, let $T_{y} f(z)=\sum_{j=1}^{n} y_{j}\left(\partial f / \partial z_{j}\right)(z)$ denote the complex tangential derivative of f in z and $\mathcal{R} f(z)=$ $\sum_{j=1}^{n} z_{j}\left(\partial f / \partial z_{j}\right)(z)$ the radial derivative of f.

Lemma 1. Suppose that $f \in H(B), z \in B, y \in S,\langle z, y\rangle=0, \gamma \geq 0$.
(a) If $|f(z)| \leq\left(1-|z|^{2}\right)^{-\gamma}$, then

$$
\left|T_{y} f(z)\right| \leq C\left(1-|z|^{2}\right)^{-\gamma-(1 / 2)}
$$

(b) If $\left|T_{y} f(z)\right| \leq\left(1-|z|^{2}\right)^{-\gamma}$, then

$$
|\mathcal{R} f(z)| \leq C\left(1-|z|^{2}\right)^{-\gamma-(1 / 2)}
$$

(c) If $|f(z)| \leq\left(1-|z|^{2}\right)^{-\gamma}$, then

$$
|\mathcal{R} f(z)| \leq C\left(1-|z|^{2}\right)^{-\gamma-1}
$$

Proof. (a) and (b) are Lemma 1 and Lemma 2 of [17], respectively. In fact, the method to prove (a) is similar to 6.4 .6 of $[\mathbf{9}]$ and the idea to prove (b) is due to Lemma 4.8 of [12].

Combining (a) with (b), we can get (c).

Lemma 2. Suppose that $f \in H(B), y \in S,\langle z, y\rangle=0, \gamma \geq 0$. If f satisfies

$$
\begin{equation*}
\left|\left(T_{y} \mathcal{R}\right) f(z)\right| \leq\left(1-|z|^{2}\right)^{-\gamma-(1 / 2)} \tag{1}
\end{equation*}
$$

when $1 / 2<|z|<1$, then

$$
\left|T_{y} f(z)\right|\left(1-|z|^{2}\right)^{\gamma}<C
$$

where C is a positive constant depending only on f.

Proof. When $\xi, y \in S$ and $\langle\xi, y\rangle=0$ by Lemma 6.4.5 of [9], we have

$$
\begin{aligned}
r\left(D_{j} f\right)(r \xi) & =\int_{0}^{r}\left(D_{j} \mathcal{R} f\right)(t \xi) d t \\
r T_{y} f(r \xi) & =r \sum_{j=1}^{n}\left(D_{j} f\right)(r \xi) y_{j} \\
& =\int_{0}^{r} \sum_{j=1}^{n}\left(D_{j} \mathcal{R} f\right)(t \xi) y_{j} d t \\
& =\int_{0}^{r}\left(T_{y} \mathcal{R} f\right)(t \xi) d t
\end{aligned}
$$

Let $z=r \xi$, then by (1), when $1 / 2<|z|<1$, we have

$$
\begin{aligned}
\left|T_{y} f(z)\right| & \leq \frac{1}{|z|} \int_{0}^{|z|}\left|\left(T_{y} \mathcal{R} f\right)\left(t \frac{z}{|z|}\right)\right| d t \\
& =\frac{1}{|z|}\left(\int_{0 \leq t \leq 1 / 2}+\int_{1 / 2<t \leq|z|}\right)\left|\left(T_{y} \mathcal{R} f\right)\left(t \frac{z}{|z|}\right)\right| d t \\
& \leq 2 \int_{0 \leq t \leq 1 / 2}\left|(\nabla \mathcal{R} f)\left(t \frac{z}{|z|}\right)\right| d t+2 \int_{1 / 2}^{|z|}\left(1-t^{2}\right)^{-\gamma-(1 / 2)} d t \\
& \leq C_{1}+2 \int_{1 / 2}^{|z|}\left(1-t^{2}\right)^{-\gamma-(1 / 2)} d t
\end{aligned}
$$

since $\mathcal{R} f$ is holomorphic in B. Thus,

$$
\begin{aligned}
\left(1-|z|^{2}\right)^{\gamma}\left|T_{y} f(z)\right| & \leq 2 \int_{1 / 2}^{|z|}\left(1-|z|^{2}\right)^{\gamma}\left(1-t^{2}\right)^{-\gamma-1 / 2} d t+C_{1}\left(1-|z|^{2}\right)^{\gamma} \\
& \leq 2 \int_{1 / 2}^{|z|}(1-t)^{-1 / 2} d t+C_{1}\left(\frac{3}{4}\right)^{\gamma} \\
& \leq 2 \sqrt{2}+C_{1}=C
\end{aligned}
$$

noticing that $\gamma \geq 0$ implies that $(3 / 4)^{\gamma} \leq 1$.
In the following, C denotes a positive constant which is not necessarily the same on each appearance.

Proposition 1. For $f \in H(B)$ and $0<\alpha<\infty$,

$$
f \in \mathcal{B}^{\alpha} \Longleftrightarrow \sup _{z \in B}|\mathcal{R} f(z)|\left(1-|z|^{2}\right)^{\alpha}<\infty
$$

Proof. Because $|\mathcal{R} f(z)| \leq|\nabla f(z)|$, it is easy to see

$$
f \in \mathcal{B}^{\alpha} \Longrightarrow \sup _{z \in B}|\mathcal{R} f(z)|\left(1-|z|^{2}\right)^{\alpha}<\infty
$$

On the other hand, suppose $\sup _{z \in B}|\mathcal{R} f(z)|\left(1-|z|^{2}\right)^{\alpha}<\infty$. When $|z| \leq 1 / 2$, because f is holomorphic in B, it is clear that

$$
\begin{equation*}
\sup _{|z| \leq 1 / 2}|\nabla f(z)|\left(1-|z|^{2}\right)^{\alpha}<\infty \tag{2}
\end{equation*}
$$

Now, let $1 / 2<|z|<1$. For each fixed z, from the vector space $\left\{y \in \mathbf{C}^{n}:\langle z, y\rangle=0\right\}$, we can find unit vectors y_{2}, \ldots, y_{n} so that $z /|z|$, y_{2}, \ldots, y_{n} form a base of vector space \mathbf{C}^{n}. Of course, $\bar{z} /|z|, \overline{y_{2}}, \ldots, \overline{y_{n}}$ form another base of \mathbf{C}^{n}. Therefore,

$$
\begin{align*}
|\nabla f(z)|^{2} & =|\langle\nabla f(z),(\bar{z} /|z|)\rangle|^{2}+\left|\left\langle\nabla f(z), \overline{y_{2}}\right\rangle\right|^{2}+\cdots+\left|\left\langle\nabla f(z), \overline{y_{n}}\right\rangle\right|^{2} \\
& =\frac{1}{|z|^{2}}|\mathcal{R} f(z)|^{2}+\left|T_{y_{2}} f(z)\right|^{2}+\cdots+\left|T_{y_{n}} f(z)\right|^{2} \tag{3}
\end{align*}
$$

By the hypothesis $\sup _{z \in B}|\mathcal{R} f(z)|\left(1-|z|^{2}\right)^{\alpha}<\infty$ and $1 / 2<|z|<1$, obviously

$$
\begin{equation*}
\frac{1}{|z|^{2}}|\mathcal{R} f(z)|^{2} \leq C\left(1-|z|^{2}\right)^{-2 \alpha} \tag{4}
\end{equation*}
$$

By the hypothesis $\sup _{z \in B}|\mathcal{R} f(z)|\left(1-|z|^{2}\right)^{\alpha}<\infty$ and Lemma 1(a) for $2 \leq j \leq n$,

$$
\left|T_{y_{j}} \mathcal{R} f(z)\right| \leq C\left(1-|z|^{2}\right)^{-\alpha-(1 / 2)} .
$$

By Lemma 2,

$$
\begin{equation*}
\left|T_{y_{j}} f(z)\right|\left(1-|z|^{2}\right)^{\alpha}<C \tag{5}
\end{equation*}
$$

Therefore, by (3), (4) and (5),

$$
\begin{equation*}
\sup _{1 / 2<|z|<1}\left(1-|z|^{2}\right)^{2 \alpha}|\nabla f(z)|^{2} \leq C<\infty \tag{6}
\end{equation*}
$$

By (2) and (6), we know

$$
\sup _{z \in B}\left(1-|z|^{2}\right)^{\alpha}|\nabla f(z)| \leq C<\infty
$$

Corollary 1. $\mathcal{B}^{\alpha}=A(B) \cap \operatorname{Lip}(1-\alpha)$, for $0<\alpha<1$, where $A(B)$ is the ball algebra, see [9].

Proof. If $f \in \mathcal{B}^{\alpha}$, by Proposition 1,

$$
|\mathcal{R} f(z)| \leq C\left(1-|z|^{2}\right)^{-\alpha}=C\left(1-|z|^{2}\right)^{(1-\alpha)-1}
$$

By Theorem 6.4.10 of [9] and $0<1-\alpha<1$,

$$
f \in A(B) \cap \operatorname{Lip}(1-\alpha)
$$

If $f \in A(B) \cap \operatorname{Lip}(1-\alpha)$, then by Theorem 6.4.9 and the Remark of 6.4.9 of [9], we can get

$$
|\mathcal{R} f(z)| \leq C\left(1-|z|^{2}\right)^{(1-\alpha)-1}=C\left(1-|z|^{2}\right)^{-\alpha}
$$

By Proposition 1, $f \in \mathcal{B}^{\alpha}$.
For $\xi \in S, \lambda \in D$, let $f_{\xi}(\lambda)=f(\xi \lambda)$ denote the slice function of f.

Corollary 2. $f \in \mathcal{B}^{\alpha} \Leftrightarrow \sup _{\xi \in S}\left\|f_{\xi}\right\|_{B^{\alpha}(D)}<\infty$.

Proof. If $f \in \mathcal{B}^{\alpha}$, then $|\mathcal{R} f(z)|\left(1-|z|^{2}\right)^{\alpha} \leq C$ by Proposition 1. Thus, for each $\xi \in S,|\mathcal{R} f(\lambda \xi)|\left(1-|\lambda \xi|^{2}\right)^{\alpha} \leq C$ and so $\left|f_{\xi}^{\prime}(\lambda)\right|\left(1-|\lambda|^{2}\right)^{\alpha} \leq C$. Taking $\sup _{\lambda \in D}$ and $\sup _{\xi \in S}$ in order, we get $\sup _{\xi \in S}\left\|f_{\xi}\right\|_{\mathcal{B}^{\alpha}(D)}<\infty$.

The converse is a similar process.
3. Power series with Hadamard gaps and α-Bloch, L_{a}^{p}. Propositions 2 and 3 will be used in the proof of the Theorem and Corollary 3 , and are of independent interest.
It is proved in [14] that, if $f(z)=\sum_{k=1}^{\infty} a_{k} z^{n_{k}} \in H(D)$ with $n_{k+1} / n_{k} \geq q, k \geq 1, q>1$, then for $\alpha>0$,

$$
\begin{equation*}
f \in \mathcal{B}^{\alpha}(D) \Longleftrightarrow \limsup _{k \rightarrow \infty}\left|a_{k}\right| n_{k}^{1-\alpha}<\infty \tag{7}
\end{equation*}
$$

From [18], we know that, if $0<p<\infty,\left\{n_{k}\right\}$ is an increasing sequence of positive integers satisfying $n_{k+1} / n_{k} \geq q>1$ for all k, then there is a constant A depending only on p and q such that

$$
\begin{align*}
A^{-1}\left(\sum_{k=1}^{\infty}\left|a_{k}\right|^{2}\right)^{1 / 2} & \leq\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\sum_{k=1}^{\infty} a_{k} e^{i n_{k} \theta}\right|^{p} d \theta\right)^{1 / p} \\
& \leq A\left(\sum_{k=1}^{\infty}\left|a_{k}\right|^{2}\right)^{1 / 2} \tag{8}
\end{align*}
$$

for any number $a_{k}, k=1,2, \ldots$.
In [4], it is proved that if $\alpha>0, p>0, n \geq 0, a_{n} \geq 0, I_{n}=\left\{k: 2^{n} \leq\right.$ $\left.k<2^{n+1}, k \in \mathbf{N}\right\}, t_{n}=\sum_{k \in I_{n}} a_{k}$ and $f(x)=\sum_{n=1}^{\infty} a_{n} x^{n}$. Then there is a constant K depending only on p and α such that

$$
\begin{equation*}
\frac{1}{K} \sum_{n=0}^{\infty} 2^{-n \alpha} t_{n}^{p} \leq \int_{0}^{1}(1-x)^{\alpha-1} f(x)^{p} d x \leq K \sum_{n=0}^{\infty} 2^{-n \alpha} t_{n}^{p} \tag{9}
\end{equation*}
$$

A holomorphic function $f(z)=\sum_{k=1}^{\infty} P_{n_{k}}(z)$ on $B, P_{n_{k}}$ is a homogeneous polynomial of degree $n_{k} \in \mathbf{N}$, the set of natural numbers is said to have Hadamard gaps if $n_{k+1} / n_{k} \geq q>1$ for all $k=1,2, \ldots$.
Based on (7) and Corollary 2, we can give a sufficient condition for a power series in B with Hadamard gaps, to belong to α-Bloch spaces $\mathcal{B}^{\alpha}(B)$.

Proposition 2. Let $f(z)=\sum_{k=1}^{\infty} P_{n_{k}}(z)$ be a power series on B with Hadamard gaps. Suppose that

$$
\left\|P_{n_{k}}\right\|_{\infty}=\sup \left\{\left|P_{n_{k}}(\xi)\right|: \xi \in S\right\} \leq n_{k}^{\alpha-1}
$$

for all $k \geq 1$. Then $f \in \mathcal{B}^{\alpha}(B), 0<\alpha<\infty$.

Proof. Considering $\lim _{k \rightarrow \infty} \sup A_{k}=\inf _{k} \sup _{j \geq k} A_{j}$ for sequence $\left\{A_{k}\right\}_{k=1}^{\infty}$, the condition of (7) can be written as

$$
\inf _{k} \sup _{j \geq k}\left|a_{j}\right| n_{j}^{1-\alpha}<\infty
$$

for all $k \geq 1$. For each $\xi \in S$, observe that the slice function

$$
f_{\xi}(\lambda)=\sum_{k=1}^{\infty} P_{n_{k}}(\xi) \lambda^{n_{k}}, \quad \lambda \in D
$$

If $\left\|P_{n_{k}}\right\|_{\infty} \leq n_{k}^{\alpha-1}$ for all $k \geq 1$, then

$$
\inf _{k} \sup _{j \geq k}\left|P_{n_{j}}(\xi)\right| n_{j}^{1-\alpha} \leq \inf _{k} \sup _{j \geq k}\left\|P_{n_{j}}\right\|_{\infty} n_{j}^{1-\alpha} \leq 1
$$

Therefore, by $(7),\left\|f_{\xi}\right\|_{\mathcal{B}^{\alpha}(D)} \leq C$; here C is a positive constant depending only on q and α, not on f. Taking $\sup _{\xi \in S}$, we see $\sup _{\xi \in S}\left\|f_{\xi}\right\|_{\mathcal{B}^{\alpha}(D)}<\infty$, and so $f \in \mathcal{B}^{\alpha}(B)$ by Corollary 2 .

Remark 1. This result generalizes Proposition 4.16 of [12].
Next we give a necessary and sufficient condition for a function on B, with Hadamard gaps, to belong to Bergman spaces $L_{a}^{p}(B)$.

Proposition 3. Let $f(z)=\sum_{k=1}^{\infty} P_{n_{k}}(z)$ be a power series on B with Hadamard gaps. Then the following are equivalent:
(i) $f \in L_{a}^{p}, 0<p<\infty$;
(ii) $\sum_{k=0}^{\infty} 2^{-k} \sum_{n_{j} \in I_{k}}\left\|P_{n_{j}}\right\|_{p}^{p}<\infty$,
where $I_{k}=\left\{n_{j}: 2^{k} \leq n_{j}<2^{k+1}, n_{j} \in \mathbf{N}\right\},\left\|P_{n_{j}}\right\|_{p}^{p}=\int_{S}\left|P_{n_{j}}(\xi)\right|^{p} d \sigma(\xi)$.
Proof. By integration in polar coordinates and 1.4.7 Proposition (1) of $[\mathbf{9}]$,

$$
\begin{aligned}
\|f\|_{L_{a}^{p}}^{p} & =2 n \int_{0}^{1} r^{2 n-1} d r \int_{S}|f(r \xi)|^{p} d \sigma(\xi) \\
& =2 n \int_{0}^{1} r^{2 n-1} d r \int_{S} d \sigma(\xi) \int_{0}^{2 \pi}\left|f\left(r e^{i \theta} \xi\right)\right|^{p} \frac{d \theta}{2 \pi} \\
& =2 n \int_{S} d \sigma(\xi) \int_{0}^{1} r^{2 n-1} d r \int_{0}^{2 \pi}\left|\sum_{k=1}^{\infty} P_{n_{k}}(\xi) r^{n_{k}} e^{i n_{k} \theta}\right|^{p} \frac{d \theta}{2 \pi}
\end{aligned}
$$

Applying (8) to the end of the above, we get

$$
\begin{equation*}
\|f\|_{L_{a}^{p}}^{p} \leq n A^{p} \int_{S} d \sigma(\xi) \int_{0}^{1}\left(\sum_{k=1}^{\infty}\left|P_{n_{k}}(\xi)\right|^{2}\left(r^{2}\right)^{n_{k}}\right)^{p / 2} d r^{2} \tag{10}
\end{equation*}
$$

On the other hand, applying (8) once more and integrating by parts twice, we have

$$
\begin{aligned}
&\|f\|_{L_{a}^{p}}^{p} \geq n A^{-p} \int_{S} d \sigma(\xi) \int_{0}^{1}\left(r^{2}\right)^{n-1}\left(\sum_{k=1}^{\infty}\left|P_{n_{k}}(\xi)\right|^{2}\left(r^{2}\right)^{n_{k}}\right)^{p / 2} d r^{2} \\
&= A^{-p} \int_{S} d \sigma(\xi) \\
& \int_{0}^{1}\left(\sum_{k=1}^{\infty}\left|P_{n_{k}}(\xi)\right|^{2} x^{n_{k}}\right)^{p / 2} d x^{n} \\
&=A^{-p} \int_{S} d \sigma(\xi)\left[\left.\left(\sum_{k=1}^{\infty}\left|P_{n_{k}}(\xi)\right|^{2} x^{n_{k}}\right)^{p / 2} x^{n}\right|_{0} ^{1}\right. \\
&\left.\quad-\int_{0}^{1} x^{n} d\left(\sum_{k=1}^{\infty}\left|P_{n_{k}}(\xi)\right|^{2} x^{n_{k}}\right)^{p / 2}\right]
\end{aligned}
$$

$$
\begin{align*}
& \geq A^{-p} \int_{S} d \sigma(\xi)[\left.\left(\sum_{k=1}^{\infty}\left|P_{n_{k}}(\xi)\right|^{2} x^{n_{k}}\right)^{p / 2} x\right|_{0} ^{1} \\
&\left.\quad-\int_{0}^{1} x d\left(\sum_{k=1}^{\infty}\left|P_{n_{k}}(\xi)\right|^{2} x^{n_{k}}\right)^{p / 2}\right] \\
&=A^{-p} \int_{S} d \sigma(\xi) \int_{0}^{1}\left(\sum_{k=1}^{\infty}\left|P_{n_{k}}(\xi)\right|^{2} x^{n_{k}}\right)^{p / 2} d x \tag{11}
\end{align*}
$$

Combining (10) and (11), we get

$$
\|f\|_{L_{a}^{p}}^{p} \approx \int_{S} d \sigma(\xi) \int_{0}^{1}\left(\sum_{k=1}^{\infty}\left|P_{n_{k}}(\xi)\right|^{2} x^{n_{k}}\right)^{p / 2} d x
$$

Using (9), we have

$$
\|f\|_{L_{a}^{p}}^{p} \cong \int_{S}\left(\sum_{k=1}^{\infty} 2^{-k} t_{k}^{p / 2}\right) d \sigma(\xi)
$$

where

$$
t_{k}=\sum_{n_{j} \in I_{k}}\left|P_{n_{j}}(\xi)\right|^{2}
$$

Since $n_{j+1} \geq q n_{j} \geq q 2^{k}$, so $q^{N} 2^{k} \leq n_{j+N}<2^{k+1}$. Thus the number N of $P_{n_{j}}$ when $n_{j} \in I_{k}$ is at $\operatorname{most}\left[\log _{q} 2\right]+1$ for $k=0,1,2, \ldots$. Therefore, by (9) for $p<2$ and (10) for $p \geq 2$ of [5],

$$
\begin{aligned}
\|f\|_{L_{a}^{p}}^{p} & \approx \int_{S}\left(\sum_{k=1}^{\infty} 2^{-k}\left(\sum_{n_{j} \in I_{k}}\left|P_{n_{j}}(\xi)\right|^{2}\right)^{p / 2}\right) d \sigma(\xi) \\
& \approx \sum_{k=0}^{\infty} 2^{-k} \sum_{n_{j} \in I_{k}}\left\|P_{n_{j}}\right\|_{p}^{p}
\end{aligned}
$$

This proves Proposition 3.

Remark 2. In [6], we proved Proposition 3 for $p=2$ by a slightly different method.
4. Strict and best possible inclusions for α-Bloch and L_{a}^{p}, H^{p}.

Theorem. When $0<p<\infty$ and $n>1$, we have
(a)

$$
\begin{aligned}
\mathcal{B}^{\alpha(<1+(1 / p))} & \subset L_{a}^{p} \subset \mathcal{B}^{1+((n+1) / p)} \\
\mathcal{B}^{\alpha(<1)} & \subset H^{p} \subset \mathcal{B}^{1+(n / p)}
\end{aligned}
$$

(b) For L_{a}^{p}, H^{p} and \mathcal{B}^{α}, all of the inclusion relationships in (a) are strict and best possible, where "best possible" means that, for each p, the indices α of \mathcal{B}^{α} at the left sides cannot be larger and those at the right sides cannot be smaller.

Proof. Since

$$
f(z)-f(0)=\int_{0}^{1} \nabla f(t z) z d t
$$

thus

$$
|f(z)|^{p} \leq C\left\{|f(0)|^{p}+\left(\int_{0}^{1}|\nabla f(t z)||z| d t\right)^{p}\right\}
$$

If $f \in \mathcal{B}_{1<\alpha<1+(1 / p)}^{\alpha}$, then

$$
\begin{aligned}
\int_{B}|f(z)|^{p} d v(z) \leq & C|f(0)|^{p}+C \int_{B}\left(\int_{0}^{1}|\nabla f(t z)||z| d t\right)^{p} d v(z) \\
\leq & C|f(0)|^{p}+C \int_{B}\left(\int_{0}^{1}\left(1-t^{2}|z|^{2}\right)^{-\alpha}|z| d t\right)^{p} d v(z) \\
\leq & C|f(0)|^{p}+C(\alpha-1)^{-1} \int_{B}(1-|z|)^{p(1-\alpha)} d v(z) \\
\leq & C|f(0)|^{p}+2 n C(\alpha-1)^{-1} \\
& \cdot \int_{0}^{1} r^{2 n-1}(1-r)^{p(1-\alpha)} d r<\infty
\end{aligned}
$$

Thus, $f \in L_{a}^{p}$. This means $\mathcal{B}_{1<\alpha<1+(1 / p))}^{\alpha} \subset L_{a}^{p}$. By the monotonicity of α-Bloch, we get

$$
\mathcal{B}_{0<\alpha<1+(1 / p)}^{\alpha} \subset L_{a}^{p}, \quad 0<p<\infty
$$

Let $\alpha=1$; then $\mathcal{B}^{\alpha}=\mathcal{B}^{1}$, the usual Bloch space. By this conclusion we see $\mathcal{B}^{1} \subset L_{a}^{p}$, for $0<p<\infty$. This is a well-known result.

By Corollary 1, we can easily see that

$$
\mathcal{B}_{0<\alpha<1}^{\alpha} \subset H^{p}, \quad 0<p<\infty
$$

Lemma 2 of [11] states that, let $f \in H(B)$ and $0<p<\infty, s \geq 0$, $n+s+1 \geq p$. Then, for $z \in B$,

$$
|\nabla f(z)|^{p} \leq K \int_{B}|f(w)|^{p} \frac{\left(1-|w|^{2}\right)^{s}}{|1-\langle z, w\rangle|^{n+s+p+1}} d v(w)
$$

Using this lemma we have

$$
\begin{aligned}
&\left(1-|z|^{2}\right)^{1+((n+1) / p)}|\nabla f(z)| \\
& \leq K^{1 / p}\left(\int_{B}|f(w)|^{p} \frac{\left(1-|z|^{2}\right)^{p+n+1}\left(1-|w|^{2}\right)^{s}}{|1-\langle z, w\rangle|^{n+s+p+1}} d v(w)\right)^{1 / p} \\
& \quad \leq\left(2^{p+n+1+s} K\right)^{1 / p}\left(\int_{B}|f(w)|^{p} d v(w)\right)^{1 / p}
\end{aligned}
$$

If $f \in L_{a}^{p}$, then $\left(2^{p+n+1+s} K\right)^{1 / p}\left(\int_{B}|f(w)|^{p} d v(w)\right)^{1 / p} \leq M<\infty$, thus $\sup _{z \in B}\left(1-|z|^{2}\right)^{1+((n+1) / p)}|\nabla f(z)| \leq M<\infty, f \in \mathcal{B}^{1+((n+1) / p)}$.

Suppose $f \in H^{p}$, by Theorem 7.2.5(a) of [9],

$$
|f(z)| \leq 2^{n / p}\|f\|_{p}(1-|z|)^{-n / p}
$$

By Lemma 1(c),

$$
|\mathcal{R} f(z)| \leq 2^{n / p} C\|f\|_{p}\left(1-|z|^{2}\right)^{-(n / p)-1}
$$

By Proposition 1,

$$
f \in \mathcal{B}^{1+(n / p)}
$$

Therefore, when $0<p<\infty$ and $n>1, H^{p} \subset \mathcal{B}^{1+(n / p)}$.
The proof of Theorem (a) is completed.
Next we construct some functions to show that the conclusion (b) is true. Let

$$
f_{t}(z)=\left(1-z_{1}\right)^{-t}, \quad t>0
$$

(i)

$$
\begin{aligned}
& \frac{\partial f_{t}}{\partial z_{j}}=0 \quad \text { for } j=2, \ldots, n \\
& \frac{\partial f_{t}}{\partial z_{1}}=t\left(1-z_{1}\right)^{-t-1}
\end{aligned}
$$

Then,

$$
\left(1-|z|^{2}\right)^{\alpha}\left|\nabla f_{t}(z)\right|=t\left(1-|z|^{2}\right)^{\alpha}\left|1-z_{1}\right|^{-t-1}
$$

Noting

$$
\left|1-z_{1}\right|^{-t-1} \leq\left(1-\left|z_{1}\right|\right)^{-t-1} \leq C\left(1-|z|^{2}\right)^{-t-1}
$$

thus, when $\alpha \geq t+1$,

$$
\left(1-|z|^{2}\right)^{\alpha}\left|\nabla f_{t}(z)\right| \leq C\left(1-|z|^{2}\right)^{\alpha-t-1}<C<\infty
$$

Therefore,

$$
\begin{equation*}
f_{t} \in \mathcal{B}^{\alpha} \quad \text { for } \alpha \geq t+1 \tag{12}
\end{equation*}
$$

When $\alpha<t+1$, put $z=(y, 0, \ldots, 0)$, where $0<y<1$,

$$
\left(1-|z|^{2}\right)^{\alpha}\left|\nabla f_{t}(z)\right|=t(1+y)^{\alpha}(1-y)^{\alpha-t-1}
$$

Let $y \rightarrow 1$. Then

$$
\left(1-|z|^{2}\right)^{\alpha}\left|\nabla f_{t}(z)\right| \longrightarrow \infty
$$

therefore,

$$
\begin{equation*}
f_{t} \notin \mathcal{B}^{\alpha} \quad \text { for } \alpha<t+1 \tag{13}
\end{equation*}
$$

(ii)

$$
\begin{aligned}
\int_{S}\left|f_{t}(r \xi)\right|^{p} d \sigma(\xi) & =\int_{S} \frac{d \sigma(\xi)}{\left|1-r \xi_{1}\right|^{t p}} \\
& =\int_{S} \frac{d \sigma(\xi)}{\left|1-\left\langle r e_{1}, \xi\right\rangle\right|^{t p}}
\end{aligned}
$$

where $e_{1}=(1,0, \ldots, 0) \in \mathbf{C}^{n}$. By Proposition 1.4.10 of [9],

$$
\begin{aligned}
& \int_{S} \frac{d \sigma(\xi)}{\left|1-\left\langle r e_{1}, \xi\right\rangle\right|^{t p}} \leq C<\infty, \quad \text { when } t<\frac{n}{p} \\
& \int_{S} \frac{d \sigma(\xi)}{\left|1-\left\langle r e_{1}, \xi\right\rangle\right|^{t p}} \approx \log \frac{1}{1-r^{2}} \longrightarrow \infty, \quad \text { when } t=\frac{n}{p}, r \longrightarrow 1
\end{aligned}
$$

Thus, for $0<p<\infty$,

$$
\begin{array}{ll}
f_{t} \in H^{p} & \text { when } t<\frac{n}{p} \\
f_{t} \notin H^{p} & \text { when } t=\frac{n}{p} \tag{15}
\end{array}
$$

(iii) Let P be the orthogonal projection of \mathbf{C}^{n} onto $\mathbf{C}^{1}: \xi=$ $\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right) \rightarrow \xi_{1}$.

$$
J=\int_{B}\left|f_{t}(z)\right|^{p} d v(z)=2 n \int_{0}^{1} r^{2 n-1} d r \int_{S} \frac{d \sigma(\xi)}{|1-r P(\xi)|^{t p}}
$$

Using 1.4.4(1) of [9], we get

$$
\begin{aligned}
\int_{S} \frac{d \sigma(\xi)}{|1-r P(\xi)|^{t p}} & =\binom{n-1}{1} \int_{D} \frac{\left(1-|w|^{2}\right)^{n-2}}{|1-r w|^{t p}} d v_{1}(w) \\
& =(n-1) \int_{D} \frac{\left(1-|w|^{2}\right)^{n-2} d v_{1}(w)}{|1-\langle r, w\rangle|^{2+(n-2)+(t p-n)}}
\end{aligned}
$$

By Lemma 4.2 .2 of [16], when $t p-n<0$, the integral at the end of the above equation is finite, and so $J \leq C<\infty$; when $t p-n=0$,

$$
\int_{D} \frac{\left(1-|w|^{2}\right)^{n-2}}{|1-\langle r, w\rangle|^{n}} d v_{1}(w) \approx \log \frac{1}{1-r^{2}}
$$

Thus

$$
\begin{aligned}
J & =2 n \int_{0}^{1} r^{2 n-1} d r \int_{S} \frac{d \sigma(\xi)}{|1-r P(\xi)|^{n}} \\
& \leq C \int_{0}^{1} r^{2 n-1} \log \frac{1}{1-r^{2}} d r \\
& \leq C \int_{0}^{\infty} \tau\left(1-e^{-\tau}\right)^{n-1} e^{-\tau} d \tau
\end{aligned}
$$

The integral at the end of the above expression is a finite linear combination of gamma functions without poles; therefore, we also have $J \leq C<\infty$. When $t p-n>0$,

$$
\int_{D} \frac{\left(1-|w|^{2}\right)^{n-2} d v_{1}(w)}{|1-\langle r, w\rangle|^{2+(n-2)+(t p-n)}} \approx\left(1-r^{2}\right)^{n-t p}
$$

Thus when $t p-n>0$ and $n-t p>-1$,

$$
J \leq C \int_{0}^{1} r^{2 n-1}\left(1-r^{2}\right)^{n-t p} d r \leq C<\infty
$$

when $n-t p=-1$,

$$
J \approx \int_{0}^{1} r^{2 n-1}\left(1-r^{2}\right)^{-1} d r=\infty
$$

Therefore

$$
\begin{align*}
& f_{t} \in L_{a}^{p} \quad \text { when } t<\frac{n+1}{p} ; \tag{16}\\
& f_{t} \notin L_{a}^{p} \quad \text { when } t=\frac{n+1}{p} . \tag{17}
\end{align*}
$$

(iv) For arbitrary $\varepsilon>0$, let $t=(n / p)-(1 / 2) \varepsilon$. Then $t<n / p$ and $1+(n / p)-\varepsilon<t+1$ by (14) and (13), we get

$$
f_{t} \in H^{p} \quad \text { but } f_{t} \notin \mathcal{B}^{1+(n / p)-\varepsilon}
$$

That means the inclusion $H^{p} \subset \mathcal{B}^{1+(n / p)}$ is best possible. At the same time, it also shows that the inclusion $\mathcal{B}^{\alpha(<1)} \subset H^{p}$ is strict because

$$
\mathcal{B}^{\alpha(<1)} \subset \mathcal{B}^{1+(n / p)-\varepsilon} \quad \text { for } \varepsilon \leq \frac{n}{p}
$$

leads to $f_{t} \notin \mathcal{B}^{\alpha(<1)}$.
For another arbitrary $\varepsilon>0$, let $t=((n+1) / p)-(1 / 2) \varepsilon$, then $t<(n+1) / p$ and $1+((n+1) / p)-\varepsilon<t+1$ by (16) and (13), it is easy to see that

$$
f_{t} \in L_{a}^{p} \quad \text { but } f_{t} \notin \mathcal{B}^{1+((n+1) / p)-\varepsilon}
$$

Thus the inclusion $L_{a}^{p} \subset \mathcal{B}^{1+((n+1) / p)}$ is best possible. At the same time, it also shows that the inclusion $B^{\alpha(<1+(1 / p))} \subset L_{a}^{p}$ is strict, because

$$
\mathcal{B}^{\alpha(<1+(1 / p))} \subset \mathcal{B}^{1+((n+1) / p)-\varepsilon} \quad \text { for } \varepsilon \leq \frac{n}{p}
$$

leads to $f_{t} \notin \mathcal{B}^{\alpha(<1+(1 / p))}$.
Let $t=n / p$. By (12) and (15), we get

$$
f_{n / p} \notin H^{p} \quad \text { but } f_{n / p} \in \mathcal{B}^{1+(n / p)}
$$

They mean the inclusion $H^{p} \subset \mathcal{B}^{1+(n / p)}$ is strict.
Let $t=(n+1) / p$. By (12) and (17), we get

$$
f_{(n+1) / p} \notin L_{a}^{P} \quad \text { but } f_{(n+1) / p} \in \mathcal{B}^{1+((n+1) / p)}
$$

Thus, the inclusion $L_{a}^{p} \subset \mathcal{B}^{1+((n+1) / p)}$ is strict.
Finally we prove the inclusions at the left sides of (a) are best possible.
Corollary 1.9 of $[\mathbf{1 0}]$ states that \mathcal{B}^{1} is not contained in H^{p}. Therefore $\mathcal{B}^{\alpha(<1)} \subset H^{p}$ is best possible for H^{p} and \mathcal{B}^{α}. In fact, we will see that some spaces are inserted between H^{p} and $\mathcal{B}_{0<\alpha<1}^{\alpha}$ later.

For $0<p<\infty$, let

$$
f_{p}(z)=\sum_{k=1}^{\infty} P_{n_{k}}(z)=\sum_{k=1}^{\infty} 2^{k / p} W_{2^{k}}(z)
$$

where $\left\{W_{2^{k}}(z)\right\}$ is a sequence of Ryll-Wojtaszczyk polynomials with Hadamard gaps in Theorem 1.2 of [10] and Corollary 1 of [13]: $\left\|W_{2^{k}}\right\|_{\infty}=1$ and $\left\|W_{2^{k}}\right\|_{p} \geq C(n, p)$. Since

$$
\left\|P_{n_{k}}\right\|_{\infty}=2^{k / p}\left\|W_{2^{k}}\right\|_{\infty}=\left(2^{k}\right)^{1+(1 / p)-1}
$$

for all $k \geq 1$, thus $f_{p} \in \mathcal{B}^{1+(1 / p)}$ by Proposition 2 . On the other hand, for each $0<p<\infty$, by Corollary 1 of [13], we have

$$
\begin{aligned}
\sum_{k=0}^{\infty} 2^{-k} \sum_{n_{j} \in I_{k}}\left\|P_{n_{j}}\right\|_{p}^{p} & =\sum_{k=1}^{\infty} 2^{-k} \cdot\left(2^{k / p}\right)^{p}\left\|W_{2^{k}}\right\|_{p}^{p} \\
& \geq C(n, p) \sum_{k=1}^{\infty} 1=\infty
\end{aligned}
$$

By Proposition 3, $f_{p} \notin L_{a}^{p}$. This shows that $\mathcal{B}^{\alpha(<1+(1 / p))} \subset L_{a}^{p}$ is best possible.

The proof of the Theorem is finished.

Corollary 3. For the unit ball B of \mathbf{C}^{n}, we have

$$
\begin{array}{r}
\mathcal{B}^{1} \subset \bigcap_{0<p<\infty} L_{a}^{p} \subset \mathcal{B}^{\alpha(>1)} ; \tag{i}\\
\mathcal{B}^{\alpha(<1)} \subset \bigcap_{0<p<\infty} H^{p} \subset \mathcal{B}^{\alpha(>1)} .
\end{array}
$$

(ii) For \mathcal{B}^{α} and $\cap_{0<p<\infty} L_{a}^{p}, \cap_{0<p<\infty} H^{p}$, all of the inclusions in (i) are strict and best possible in the sense that the index α of \mathcal{B}^{α} cannot be increased (reduced) further.

Proof. It is easy to see that the inclusions in (i) hold from Theorem (a).

Next we prove the conclusion (ii). For $1<\alpha<\infty$, let

$$
f_{\alpha}(z)=\sum_{k=1}^{\infty} P_{n_{k}}(z)=\sum_{k=1}^{\infty} 2^{k(\alpha-1)} W_{2^{k}}(z)
$$

where $\left\{W_{2^{k}}(z)\right\}$ is a sequence of Ryll-Wojtaszczyk polynomials with Hadamard gaps as mentioned above. Similar to the argument about the best possible of " $\mathcal{B}^{\alpha(<1+(1 / p))} \subset L_{a}^{p}$ " in the Theorem, we get

$$
f_{\alpha} \in \mathcal{B}^{\alpha(>1)} \quad \text { but } f_{\alpha} \notin L_{a}^{p}
$$

provided that $p=1 /(\alpha-1)$, and thus $f_{\alpha} \notin \cap_{0<p<\infty} L_{a}^{p}$. Of course, we know $f_{\alpha} \notin \cap_{0<p<\infty} H^{p}$. Therefore the strictness of both inclusions at the right sides in (i) is proved.

In [1] it was shown that $g \in \cap_{0<p<\infty} H^{p}(D)$ exists but $g \notin \mathcal{B}^{1}(D)$. Let

$$
f\left(z_{1}, \ldots, z_{n}\right)=g\left(z_{1}\right)
$$

It follows from 1.4.5(2) of [9] that $f \in \cap_{0<p<\infty} H^{p}(B)$. On the other hand, we see $f \notin \mathcal{B}^{1}(B)$, since for a function f depending only on z_{1},

$$
f \in \mathcal{B}^{1}(B) \quad \text { if and only if } g \in \mathcal{B}^{1}(D)
$$

see $3.7(1)$ of [12]. This proves the strictness of both inclusions at the left sides in (i). At the same time, it shows that $\cap_{0<p<\infty} H^{p} \subset \mathcal{B}^{\alpha(>1)}$ is best possible in the sense that the index α of \mathcal{B}^{α} cannot be reduced further.

From Corollary 1.9 of $[\mathbf{1 0}], \mathcal{B}^{\alpha(<1)} \subset \cap_{0<p<\infty} H^{p}$ is best possible in the sense that the index α of \mathcal{B}^{α} cannot be increased further.

It follows that the inclusions $\mathcal{B}^{1} \subset \cap_{0<p<\infty} L_{a}^{p} \subset \mathcal{B}^{\alpha(>1)}$ are best possible immediately from their strictness.
5. Concluding remarks. Based on [7], in [8], we introduced a class of function spaces $Q_{p}(B)$ and $Q_{p, 0}(B)$, associated with the Green's function for the unit ball of \mathbf{C}^{n} and proved that $Q_{p}=$ Bloch, $Q_{p, 0}=$ little Bloch when $1<p<n /(n-1), Q_{1}=$ BMOA and $Q_{1,0}=$ VMOA. This fact makes it possible for us to deal with Bloch (little Bloch) and BMOA (VMOA) spaces in a unified expression.
By Corollary 1 and the definition of VMOA, it is easy to see that $\mathcal{B}^{\alpha(<1)} \subset$ VMOA.

Summarizing the results in this article, for $0<p<\infty$, we can get the diagram as follows

Acknowledgments. The authors would like to express their thanks to the referee for noting an error in the original proof of Lemma 2 and suggesting an idea for the present proof.

REFERENCES

1. D.M. Campbell, Functions in all H^{p} spaces, $p<\infty$, Canad. Math. Bull. 25 (1982), 110-113.
2. P.L. Durem, Theory of H^{p} spaces, Academic Press, New York, 1970.
3. G.H. Hardy and J.E. Littlewood, Some properties of fractional integrals II, Math. Z. 34 (1932), 403-439.
4. M. Mateljević and M. Pavlović, L^{p}-behavior of power series with positive coefficients and Hardy spaces, Proc. Amer. Math. Soc. 87 (1983), 309-316.
5. J. Miao, A property of analytic functions with Hadamard gaps, Bull. Austral. Math. Soc. 45 (1992), 105-112.
6. C.H. Ouyang, Proper inclusions of function spaces and Ryll-Wojtaszczyk polynomials on the unit ball of \mathbf{C}^{n}, to appear.
7. C.H. Ouyang, W.S. Yang and R.H. Zhao, Characterizations of Bergman spaces and Bloch space in the unit ball of \mathbf{C}^{n}, Trans. Amer. Math. Soc. 347 (1995), 4301-4313.
8. - Möbius invariant Q_{p} spaces associated with the Green's function on the unit ball of \mathbf{C}^{n}, Pacific J. Math. 182 (1998), 69-99.
9. W. Rudin, Function theory in the unit ball of \mathbf{C}^{n}, Springer-Verlag, New York, 1980.
10. J. Ryll and P. Wojtaszczyk, On homogeneous polynomials on a complex ball, Trans. Amer. Math. Soc. 276 (1983), 107-116.
11. J.H. Shi, Inequalities for the integral means of holomorphic functions and their derivatives in the unit ball of \mathbf{C}^{n}, Trans. Amer. Math. Soc. 328 (1991), 619-637.
12. R.M. Timoney, Bloch functions in several complex variables, I, Bull. London Math. Soc. 12 (1980), 241-267.
13. D. Ullrich, Radial divergence in BMOA, Proc. London Math. Soc. 68 (1994), 145-160.
14. S. Yamashita, Gap series and α-Bloch functions, Yokohama Math. J. 28 (1980), 31-36.
15. W.S. Yang, Characterizations of α-Bloch spaces, Acta Math. Sci. 17 (1997), 471-477.
16. Kehe Zhu, Operator theory in function spaces, Marcel Dekker, Inc., New York, 1990.
17. W.X. Zhuo, Derivatives of Bloch functions and α-Carleson measure on the unit ball, Acta Math. Sci. (Chinese edition) 14 (1994), 351-360.
18. A. Zygmund, Trigonometric series, Cambridge Univ. Press, London, 1959.

Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, P.O. Box 71010, Wuhan 430071, P.R. China
Current E-mail address: wy7639@csc.albany.edu
Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, P.O. Box 71010, Wuhan 430071, P.R. China
E-mail address: ouyang@wipm.whenc.ac.cn

[^0]: Received by the editors on May 15, 1998, and in revised form on February 10, 1999.

 1991 AMS Mathematics Subject Classification. Primary 32A37, Secondary 32A35.

 This project supported by National Natural Science Foundation of China.

