ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 30, Number 3, Fall 2000

EXACT LOCATION OF α -BLOCH SPACES IN L_a^p AND H^p OF A COMPLEX UNIT BALL

WEISHENG YANG AND CAIHENG OUYANG

ABSTRACT. In this paper we prove that, on the unit ball of \mathbb{C}^n , (i) for $f \in H(B)$ and $0 < \alpha < \infty$, $f \in \mathcal{B}^{\alpha} \Leftrightarrow \sup_{z \in B} |\mathcal{R}f(z)|(1-|z|^2)^{\alpha} < \infty$; as a corollary, $\mathcal{B}^{\alpha} = A(B) \cap \operatorname{Lip}(1-\alpha)$ for $0 < \alpha < 1$. (ii) $B^{\alpha(<1+(1/p))} \subset L_a^p \subset \mathcal{B}^{1+((n+1)/p)}, \mathcal{B}^{\alpha(<1)} \subset H^p \subset \mathcal{B}^{1+(n/p)}$ for n > 1 and $0 , where <math>L_a^p$, H^p denote the Bergman spaces and Hardy spaces, respectively. And $\mathcal{B}^1 \subset \cap_{0 1)}$, $\mathcal{B}^{\alpha(<1)} \subset (1 - \alpha) \subset \mathcal{B}^{\alpha(>1)}$. Further, it is proved with constructive methods that all of the above containments are strict and best possible.

1. Introduction. Let H(B) denote the class of all holomorphic functions in the unit ball B of \mathbb{C}^n . We say that $f \in \mathcal{B}^{\alpha}$, α -Bloch, if

$$||f||_{\mathcal{B}^{\alpha}(B)} = \sup_{z \in B} |\nabla f(z)| (1 - |z|^2)^{\alpha} < \infty, \quad 0 < \alpha < \infty.$$

It is clear that \mathcal{B}^{α} is a normed linear space, modulo constant functions, and $\mathcal{B}^{\alpha_1} \subset \mathcal{B}^{\alpha_2}$ for $\alpha_1 < \alpha_2$. When n = 1, replace them by H(D) and $\mathcal{B}^{\alpha}(D)$, where D denotes the unit disk of complex plane.

Hardy and Littlewood proved that [3], [2]: $\mathcal{B}^{\alpha}(D) = \text{Lip}(1-\alpha)$. We know that $\text{Lip }\beta$ can be used to describe the dual space of Hardy space $H^{p}(D)$ for $0 [2]. So <math>\mathcal{B}^{\alpha}$ are important in the theory of Hardy spaces. In [15] we gave some invariant gradient characterizations and Bergman-Carleson measure characterization of \mathcal{B}^{α} on the unit ball.

For $\mathcal{B}^1 = \operatorname{Bloch}(B)$, Timoney showed that $H_p \not\subset \operatorname{Bloch}(B)$ for any $p \in (0, \infty)$, but he did not know whether there were Bloch functions which were not in H^p or not, see Example 3.7(3) of [12]. Later on, in [10], Ryll and Wojtaszczyk pointed out that Bloch $(B) \not\subset H^p$;

Received by the editors on May 15, 1998, and in revised form on February 10, 1999. 1991 AMS Mathematics Subject Classification. Primary 32A37, Secondary

³²A35. This project supported by National Natural Science Foundation of China.

therefore, there is no containment between H^p and Bloch. Naturally we want to know the relationships between α -Bloch and some classes of holomorphic functions, such as the exact location of α -Bloch spaces in L^p_a and H^p .

In this paper we will prove that (i) $f \in \mathcal{B}^{\alpha} \Leftrightarrow \sup_{z \in B} |\mathcal{R}f(z)|(1 - |z|^2)^{\alpha} < \infty$. $\mathcal{B}^{\alpha} = A(B) \cap \text{Lip}(1-\alpha)$ for $0 < \alpha < 1$. (ii) $\mathcal{B}^{\alpha(<1+(1/p))} \subset L_a^p \subset \mathcal{B}^{1+((n+1)/p)}$, $\mathcal{B}^{\alpha(<1)} \subset H^p \subset \mathcal{B}^{1+(n/p)}$ for n > 1 and 0 . $Further, <math>\mathcal{B}^1 \subset \bigcap_{0 1)}$, $\mathcal{B}^{\alpha(<1)} \subset \bigcap_{0 < p < \infty} H^p \subset \mathcal{B}^{\alpha(>1)}$. All of the above containments are strict and best possible. For the inclusion chain $\mathcal{B}^{\alpha(<1+(1/p))} \subset L_a^p \subset \mathcal{B}^{1+((n+1)/p)}$, the strictness at the left side and the possibility at the right side show that, for each p, at least one f(z) exists, $f \in L_a^p$, whose growth rate of gradient, or radial derivative, will be larger than, or equal to, $(1 - |z|^2)^{-(1+(1/p))}$, and go so far as to $(1 - |z|^2)^{-(1+((n+1)/p))}$. There is a similar conclusion for H^p in the other inclusion chain. Especially in the proof of the strictness and best possibility in (ii), we will use constructive methods.

2. Radial growth of α -Bloch functions. For $y \in S$, the unit sphere in \mathbb{C}^n , $\langle z, y \rangle = 0$, let $T_y f(z) = \sum_{j=1}^n y_j (\partial f / \partial z_j)(z)$ denote the complex tangential derivative of f in z and $\mathcal{R}f(z) = \sum_{j=1}^n z_j (\partial f / \partial z_j)(z)$ the radial derivative of f.

Lemma 1. Suppose that $f \in H(B)$, $z \in B$, $y \in S$, $\langle z, y \rangle = 0$, $\gamma \ge 0$. (a) If $|f(z)| \le (1 - |z|^2)^{-\gamma}$, then $|T_y f(z)| \le C(1 - |z|^2)^{-\gamma - (1/2)}$.

(b) If $|T_y f(z)| \le (1 - |z|^2)^{-\gamma}$, then

$$|\mathcal{R}f(z)| \le C(1-|z|^2)^{-\gamma-(1/2)}.$$

(c) If
$$|f(z)| \le (1 - |z|^2)^{-\gamma}$$
, then
 $|\mathcal{R}f(z)| \le C(1 - |z|^2)^{-\gamma - 1}$

Proof. (a) and (b) are Lemma 1 and Lemma 2 of [17], respectively. In fact, the method to prove (a) is similar to 6.4.6 of [9] and the idea to prove (b) is due to Lemma 4.8 of [12].

Combining (a) with (b), we can get (c).

Lemma 2. Suppose that $f \in H(B)$, $y \in S$, $\langle z, y \rangle = 0$, $\gamma \ge 0$. If f satisfies

(1)
$$|(T_y \mathcal{R})f(z)| \le (1 - |z|^2)^{-\gamma - (1/2)}$$

when 1/2 < |z| < 1, then

$$|T_y f(z)| (1 - |z|^2)^{\gamma} < C,$$

where C is a positive constant depending only on f.

Proof. When $\xi,y\in S$ and $\langle\xi,y\rangle=0$ by Lemma 6.4.5 of $[\mathbf{9}],$ we have

$$r(D_j f)(r\xi) = \int_0^r (D_j \mathcal{R} f)(t\xi) dt,$$

$$rT_y f(r\xi) = r \sum_{j=1}^n (D_j f)(r\xi) y_j$$

$$= \int_0^r \sum_{j=1}^n (D_j \mathcal{R} f)(t\xi) y_j dt$$

$$= \int_0^r (T_y \mathcal{R} f)(t\xi) dt.$$

Let $z = r\xi$, then by (1), when 1/2 < |z| < 1, we have

$$\begin{aligned} |T_y f(z)| &\leq \frac{1}{|z|} \int_0^{|z|} \left| (T_y \mathcal{R} f) \left(t \frac{z}{|z|} \right) \right| dt \\ &= \frac{1}{|z|} \left(\int_{0 \leq t \leq 1/2} + \int_{1/2 < t \leq |z|} \right) \left| (T_y \mathcal{R} f) \left(t \frac{z}{|z|} \right) \right| dt \\ &\leq 2 \int_{0 \leq t \leq 1/2} \left| (\nabla \mathcal{R} f) \left(t \frac{z}{|z|} \right) \right| dt + 2 \int_{1/2}^{|z|} (1 - t^2)^{-\gamma - (1/2)} dt \\ &\leq C_1 + 2 \int_{1/2}^{|z|} (1 - t^2)^{-\gamma - (1/2)} dt, \end{aligned}$$

since $\mathcal{R}f$ is holomorphic in B. Thus,

$$\begin{aligned} (1-|z|^2)^{\gamma}|T_yf(z)| &\leq 2\int_{1/2}^{|z|} (1-|z|^2)^{\gamma} (1-t^2)^{-\gamma-1/2} \, dt + C_1 (1-|z|^2)^{\gamma} \\ &\leq 2\int_{1/2}^{|z|} (1-t)^{-1/2} \, dt + C_1 \left(\frac{3}{4}\right)^{\gamma} \\ &\leq 2\sqrt{2} + C_1 = C, \end{aligned}$$

noticing that $\gamma \ge 0$ implies that $(3/4)^{\gamma} \le 1$.

In the following, C denotes a positive constant which is not necessarily the same on each appearance.

Proposition 1. For $f \in H(B)$ and $0 < \alpha < \infty$,

$$f \in \mathcal{B}^{\alpha} \iff \sup_{z \in B} |\mathcal{R}f(z)|(1-|z|^2)^{\alpha} < \infty.$$

Proof. Because $|\mathcal{R}f(z)| \leq |\nabla f(z)|$, it is easy to see

$$f \in \mathcal{B}^{\alpha} \Longrightarrow \sup_{z \in B} |\mathcal{R}f(z)| (1 - |z|^2)^{\alpha} < \infty.$$

On the other hand, suppose $\sup_{z \in B} |\mathcal{R}f(z)|(1-|z|^2)^{\alpha} < \infty$. When $|z| \leq 1/2$, because f is holomorphic in B, it is clear that

(2)
$$\sup_{|z| \le 1/2} |\nabla f(z)| (1 - |z|^2)^{\alpha} < \infty.$$

Now, let 1/2 < |z| < 1. For each fixed z, from the vector space $\{y \in \mathbf{C}^n : \langle z, y \rangle = 0\}$, we can find unit vectors y_2, \ldots, y_n so that z/|z|, y_2, \ldots, y_n form a base of vector space \mathbf{C}^n . Of course, $\overline{z}/|z|, \overline{y_2}, \ldots, \overline{y_n}$ form another base of \mathbf{C}^n . Therefore,

$$|\nabla f(z)|^{2} = |\langle \nabla f(z), (\bar{z}/|z|) \rangle|^{2} + |\langle \nabla f(z), \overline{y_{2}} \rangle|^{2} + \dots + |\langle \nabla f(z), \overline{y_{n}} \rangle|^{2}$$

(3)
$$= \frac{1}{|z|^{2}} |\mathcal{R}f(z)|^{2} + |T_{y_{2}}f(z)|^{2} + \dots + |T_{y_{n}}f(z)|^{2}.$$

By the hypothesis $\sup_{z\in B}|\mathcal{R}f(z)|(1-|z|^2)^\alpha<\infty$ and 1/2<|z|<1, obviously

(4)
$$\frac{1}{|z|^2} |\mathcal{R}f(z)|^2 \le C(1-|z|^2)^{-2\alpha}.$$

By the hypothesis $\sup_{z \in B} |\mathcal{R}f(z)|(1-|z|^2)^{\alpha} < \infty$ and Lemma 1(a) for $2 \le j \le n$,

$$|T_{y_j} \mathcal{R}f(z)| \le C(1 - |z|^2)^{-\alpha - (1/2)}$$

By Lemma 2,

(5)
$$|T_{y_j}f(z)|(1-|z|^2)^{\alpha} < C.$$

Therefore, by (3), (4) and (5),

(6)
$$\sup_{1/2 < |z| < 1} (1 - |z|^2)^{2\alpha} |\nabla f(z)|^2 \le C < \infty.$$

By (2) and (6), we know

$$\sup_{z \in B} (1 - |z|^2)^{\alpha} |\nabla f(z)| \le C < \infty.$$

Corollary 1. $\mathcal{B}^{\alpha} = A(B) \cap \text{Lip}(1-\alpha)$, for $0 < \alpha < 1$, where A(B) is the ball algebra, see [9].

Proof. If $f \in \mathcal{B}^{\alpha}$, by Proposition 1,

$$|\mathcal{R}f(z)| \le C(1-|z|^2)^{-\alpha} = C(1-|z|^2)^{(1-\alpha)-1}$$

By Theorem 6.4.10 of [9] and $0 < 1 - \alpha < 1$,

$$f \in A(B) \cap \operatorname{Lip}(1-\alpha).$$

If $f \in A(B) \cap \text{Lip}(1-\alpha)$, then by Theorem 6.4.9 and the Remark of 6.4.9 of [9], we can get

$$|\mathcal{R}f(z)| \le C(1-|z|^2)^{(1-\alpha)-1} = C(1-|z|^2)^{-\alpha}.$$

By Proposition 1, $f \in \mathcal{B}^{\alpha}$.

For $\xi \in S$, $\lambda \in D$, let $f_{\xi}(\lambda) = f(\xi \lambda)$ denote the slice function of f.

Corollary 2. $f \in \mathcal{B}^{\alpha} \Leftrightarrow \sup_{\xi \in S} \|f_{\xi}\|_{B^{\alpha}(D)} < \infty.$

Proof. If $f \in \mathcal{B}^{\alpha}$, then $|\mathcal{R}f(z)|(1-|z|^2)^{\alpha} \leq C$ by Proposition 1. Thus, for each $\xi \in S$, $|\mathcal{R}f(\lambda\xi)|(1-|\lambda\xi|^2)^{\alpha} \leq C$ and so $|f'_{\xi}(\lambda)|(1-|\lambda|^2)^{\alpha} \leq C$. Taking $\sup_{\lambda \in D}$ and $\sup_{\xi \in S}$ in order, we get $\sup_{\xi \in S} ||f_{\xi}||_{\mathcal{B}^{\alpha}(D)} < \infty$.

The converse is a similar process.

3. Power series with Hadamard gaps and α -Bloch, L_a^p . Propositions 2 and 3 will be used in the proof of the Theorem and Corollary 3, and are of independent interest.

It is proved in [14] that, if $f(z) = \sum_{k=1}^{\infty} a_k z^{n_k} \in H(D)$ with $n_{k+1}/n_k \ge q, k \ge 1, q > 1$, then for $\alpha > 0$,

(7)
$$f \in \mathcal{B}^{\alpha}(D) \iff \limsup_{k \to \infty} |a_k| n_k^{1-\alpha} < \infty.$$

From [18], we know that, if $0 , <math>\{n_k\}$ is an increasing sequence of positive integers satisfying $n_{k+1}/n_k \ge q > 1$ for all k, then there is a constant A depending only on p and q such that

(8)
$$A^{-1} \bigg(\sum_{k=1}^{\infty} |a_k|^2 \bigg)^{1/2} \le \bigg(\frac{1}{2\pi} \int_0^{2\pi} \bigg| \sum_{k=1}^{\infty} a_k e^{in_k \theta} \bigg|^p d\theta \bigg)^{1/p} \le A \bigg(\sum_{k=1}^{\infty} |a_k|^2 \bigg)^{1/2},$$

for any number $a_k, k = 1, 2, \ldots$.

In [4], it is proved that if $\alpha > 0$, p > 0, $n \ge 0$, $a_n \ge 0$, $I_n = \{k : 2^n \le k < 2^{n+1}, k \in \mathbf{N}\}$, $t_n = \sum_{k \in I_n} a_k$ and $f(x) = \sum_{n=1}^{\infty} a_n x^n$. Then there is a constant K depending only on p and α such that

(9)
$$\frac{1}{K} \sum_{n=0}^{\infty} 2^{-n\alpha} t_n^p \le \int_0^1 (1-x)^{\alpha-1} f(x)^p \, dx \le K \sum_{n=0}^{\infty} 2^{-n\alpha} t_n^p.$$

A holomorphic function $f(z) = \sum_{k=1}^{\infty} P_{n_k}(z)$ on B, P_{n_k} is a homogeneous polynomial of degree $n_k \in \mathbf{N}$, the set of natural numbers is said to have Hadamard gaps if $n_{k+1}/n_k \ge q > 1$ for all $k = 1, 2, \ldots$.

Based on (7) and Corollary 2, we can give a sufficient condition for a power series in B with Hadamard gaps, to belong to α -Bloch spaces $\mathcal{B}^{\alpha}(B)$.

Proposition 2. Let $f(z) = \sum_{k=1}^{\infty} P_{n_k}(z)$ be a power series on B with Hadamard gaps. Suppose that

$$||P_{n_k}||_{\infty} = \sup\{|P_{n_k}(\xi)| : \xi \in S\} \le n_k^{\alpha - 1}$$

for all $k \geq 1$. Then $f \in \mathcal{B}^{\alpha}(B)$, $0 < \alpha < \infty$.

Proof. Considering $\lim_{k\to\infty} \sup A_k = \inf_k \sup_{j\geq k} A_j$ for sequence $\{A_k\}_{k=1}^{\infty}$, the condition of (7) can be written as

$$\inf_k \sup_{j \ge k} |a_j| n_j^{1-\alpha} < \infty$$

for all $k \geq 1$. For each $\xi \in S$, observe that the slice function

$$f_{\xi}(\lambda) = \sum_{k=1}^{\infty} P_{n_k}(\xi) \lambda^{n_k}, \quad \lambda \in D.$$

If $||P_{n_k}||_{\infty} \leq n_k^{\alpha-1}$ for all $k \geq 1$, then

$$\inf_k \sup_{j \ge k} |P_{n_j}(\xi)| n_j^{1-\alpha} \le \inf_k \sup_{j \ge k} ||P_{n_j}||_{\infty} n_j^{1-\alpha} \le 1.$$

Therefore, by (7), $||f_{\xi}||_{\mathcal{B}^{\alpha}(D)} \leq C$; here *C* is a positive constant depending only on *q* and α , not on *f*. Taking $\sup_{\xi \in S}$, we see $\sup_{\xi \in S} ||f_{\xi}||_{\mathcal{B}^{\alpha}(D)} < \infty$, and so $f \in \mathcal{B}^{\alpha}(B)$ by Corollary 2.

Remark 1. This result generalizes Proposition 4.16 of [12].

Next we give a necessary and sufficient condition for a function on B, with Hadamard gaps, to belong to Bergman spaces $L^p_a(B)$.

Proposition 3. Let $f(z) = \sum_{k=1}^{\infty} P_{n_k}(z)$ be a power series on B with Hadamard gaps. Then the following are equivalent:

- (i) $f \in L^p_a, 0$
- (ii) $\sum_{k=0}^{\infty} 2^{-k} \sum_{n_j \in I_k} \|P_{n_j}\|_p^p < \infty$, where $I_k = \{n_j : 2^k \le n_j < 2^{k+1}, n_j \in \mathbf{N}\}, \|P_{n_j}\|_p^p = \int_S |P_{n_j}(\xi)|^p d\sigma(\xi)$.

Proof. By integration in polar coordinates and 1.4.7 Proposition (1) of $[\mathbf{9}],$

$$\begin{split} \|f\|_{L^p_a}^p &= 2n \int_0^1 r^{2n-1} \, dr \int_S |f(r\xi)|^p \, d\sigma(\xi) \\ &= 2n \int_0^1 r^{2n-1} \, dr \int_S \, d\sigma(\xi) \int_0^{2\pi} |f(re^{i\theta}\xi)|^p \frac{d\theta}{2\pi} \\ &= 2n \int_S \, d\sigma(\xi) \int_0^1 r^{2n-1} \, dr \int_0^{2\pi} \left| \sum_{k=1}^\infty P_{n_k}(\xi) r^{n_k} e^{in_k \theta} \right|^p \frac{d\theta}{2\pi}. \end{split}$$

Applying (8) to the end of the above, we get

(10)
$$||f||_{L^p_a}^p \le nA^p \int_S d\sigma(\xi) \int_0^1 \left(\sum_{k=1}^\infty |P_{n_k}(\xi)|^2 (r^2)^{n_k}\right)^{p/2} dr^2.$$

On the other hand, applying (8) once more and integrating by parts twice, we have

$$\begin{split} \|f\|_{L^p_a}^p &\ge nA^{-p} \int_S d\sigma(\xi) \int_0^1 (r^2)^{n-1} \bigg(\sum_{k=1}^\infty |P_{n_k}(\xi)|^2 (r^2)^{n_k}\bigg)^{p/2} dr^2 \\ &= A^{-p} \int_S d\sigma(\xi) \int_0^1 \bigg(\sum_{k=1}^\infty |P_{n_k}(\xi)|^2 x^{n_k}\bigg)^{p/2} dx^n \\ &= A^{-p} \int_S d\sigma(\xi) \bigg[\bigg(\sum_{k=1}^\infty |P_{n_k}(\xi)|^2 x^{n_k}\bigg)^{p/2} x^n \Big|_0^1 \\ &\quad - \int_0^1 x^n d\bigg(\sum_{k=1}^\infty |P_{n_k}(\xi)|^2 x^{n_k}\bigg)^{p/2} \bigg] \end{split}$$

1158

$$\geq A^{-p} \int_{S} d\sigma(\xi) \left[\left(\sum_{k=1}^{\infty} |P_{n_{k}}(\xi)|^{2} x^{n_{k}} \right)^{p/2} x \Big|_{0}^{1} - \int_{0}^{1} x d \left(\sum_{k=1}^{\infty} |P_{n_{k}}(\xi)|^{2} x^{n_{k}} \right)^{p/2} \right]$$

$$(11) \qquad = A^{-p} \int_{S} d\sigma(\xi) \int_{0}^{1} \left(\sum_{k=1}^{\infty} |P_{n_{k}}(\xi)|^{2} x^{n_{k}} \right)^{p/2} dx.$$

Combining (10) and (11), we get

$$||f||_{L^p_a}^p \approx \int_S d\sigma(\xi) \int_0^1 \left(\sum_{k=1}^\infty |P_{n_k}(\xi)|^2 x^{n_k}\right)^{p/2} dx.$$

Using (9), we have

$$\|f\|_{L^p_a}^p \cong \int_S \left(\sum_{k=1}^\infty 2^{-k} t_k^{p/2}\right) d\sigma(\xi),$$

where

$$t_k = \sum_{n_j \in I_k} |P_{n_j}(\xi)|^2.$$

Since $n_{j+1} \ge qn_j \ge q2^k$, so $q^N 2^k \le n_{j+N} < 2^{k+1}$. Thus the number N of P_{n_j} when $n_j \in I_k$ is at most $\lfloor \log_q 2 \rfloor + 1$ for $k = 0, 1, 2, \ldots$. Therefore, by (9) for p < 2 and (10) for $p \ge 2$ of [5],

$$\begin{split} \|f\|_{L^p_a}^p &\approx \int_S \left(\sum_{k=1}^\infty 2^{-k} \left(\sum_{n_j \in I_k} |P_{n_j}(\xi)|^2\right)^{p/2}\right) d\sigma(\xi) \\ &\approx \sum_{k=0}^\infty 2^{-k} \sum_{n_j \in I_k} \|P_{n_j}\|_p^p. \end{split}$$

This proves Proposition 3. \Box

Remark 2. In [6], we proved Proposition 3 for p = 2 by a slightly different method.

1159

4. Strict and best possible inclusions for α -Bloch and L^p_a, H^p .

Theorem. When 0 and <math>n > 1, we have (a)

$$\begin{aligned} \mathcal{B}^{\alpha(<1+(1/p))} \subset L^p_a \subset \mathcal{B}^{1+((n+1)/p)};\\ \mathcal{B}^{\alpha(<1)} \subset H^p \subset \mathcal{B}^{1+(n/p)}. \end{aligned}$$

(b) For L^p_a , H^p and \mathcal{B}^{α} , all of the inclusion relationships in (a) are strict and best possible, where "best possible" means that, for each p, the indices α of \mathcal{B}^{α} at the left sides cannot be larger and those at the right sides cannot be smaller.

Proof. Since

$$f(z) - f(0) = \int_0^1 \nabla f(tz) z \, dt,$$

thus

$$|f(z)|^{p} \leq C \bigg\{ |f(0)|^{p} + \bigg(\int_{0}^{1} |\nabla f(tz)| |z| \, dt \bigg)^{p} \bigg\}.$$

If $f \in \mathcal{B}^{\alpha}_{1 < \alpha < 1 + (1/p)}$, then

$$\begin{split} \int_{B} |f(z)|^{p} \, dv(z) &\leq C |f(0)|^{p} + C \int_{B} \left(\int_{0}^{1} |\nabla f(tz)| |z| \, dt \right)^{p} dv(z) \\ &\leq C |f(0)|^{p} + C \int_{B} \left(\int_{0}^{1} (1 - t^{2} |z|^{2})^{-\alpha} |z| \, dt \right)^{p} dv(z) \\ &\leq C |f(0)|^{p} + C (\alpha - 1)^{-1} \int_{B} (1 - |z|)^{p(1 - \alpha)} \, dv(z) \\ &\leq C |f(0)|^{p} + 2nC(\alpha - 1)^{-1} \\ &\cdot \int_{0}^{1} r^{2n - 1} (1 - r)^{p(1 - \alpha)} \, dr < \infty. \end{split}$$

Thus, $f \in L^p_a$. This means $\mathcal{B}^{\alpha}_{1 < \alpha < 1 + (1/p))} \subset L^p_a$. By the monotonicity of α -Bloch, we get

$$\mathcal{B}^{\alpha}_{0 < \alpha < 1 + (1/p)} \subset L^p_a, \quad 0 < p < \infty.$$

1160

Let $\alpha = 1$; then $\mathcal{B}^{\alpha} = \mathcal{B}^1$, the usual Bloch space. By this conclusion we see $\mathcal{B}^1 \subset L^p_a$, for 0 . This is a well-known result.

By Corollary 1, we can easily see that

$$\mathcal{B}^{\alpha}_{0 < \alpha < 1} \subset H^p, \quad 0 < p < \infty.$$

Lemma 2 of [11] states that, let $f \in H(B)$ and $0 , <math>s \ge 0$, $n + s + 1 \ge p$. Then, for $z \in B$,

$$|\nabla f(z)|^{p} \leq K \int_{B} |f(w)|^{p} \frac{(1-|w|^{2})^{s}}{|1-\langle z,w\rangle|^{n+s+p+1}} \, dv(w).$$

Using this lemma we have

$$\begin{aligned} (1-|z|^2)^{1+((n+1)/p)} |\nabla f(z)| \\ &\leq K^{1/p} \bigg(\int_B |f(w)|^p \frac{(1-|z|^2)^{p+n+1}(1-|w|^2)^s}{|1-\langle z,w\rangle|^{n+s+p+1}} \, dv(w) \bigg)^{1/p} \\ &\leq (2^{p+n+1+s}K)^{1/p} \bigg(\int_B |f(w)|^p \, dv(w) \bigg)^{1/p}. \end{aligned}$$

If $f \in L^p_a$, then $(2^{p+n+1+s}K)^{1/p} (\int_B |f(w)|^p dv(w))^{1/p} \le M < \infty$, thus $\sup_{z \in B} (1-|z|^2)^{1+((n+1)/p)} |\nabla f(z)| \le M < \infty$, $f \in \mathcal{B}^{1+((n+1)/p)}$.

Suppose $f \in H^p$, by Theorem 7.2.5(a) of [9],

$$|f(z)| \le 2^{n/p} ||f||_p (1 - |z|)^{-n/p}.$$

By Lemma 1(c),

$$|\mathcal{R}f(z)| \le 2^{n/p} C ||f||_p (1-|z|^2)^{-(n/p)-1}.$$

By Proposition 1,

$$f \in \mathcal{B}^{1+(n/p)}.$$

Therefore, when 0 and <math>n > 1, $H^p \subset \mathcal{B}^{1+(n/p)}$.

The proof of Theorem (a) is completed.

Next we construct some functions to show that the conclusion (b) is true. Let

$$f_t(z) = (1 - z_1)^{-t}, \quad t > 0.$$

(i)

$$\frac{\partial f_t}{\partial z_j} = 0 \quad \text{for } j = 2, \dots, n;$$
$$\frac{\partial f_t}{\partial z_1} = t(1-z_1)^{-t-1}.$$

Then,

$$(1-|z|^2)^{\alpha}|\nabla f_t(z)| = t(1-|z|^2)^{\alpha}|1-z_1|^{-t-1}.$$

Noting

$$|1 - z_1|^{-t-1} \le (1 - |z_1|)^{-t-1} \le C(1 - |z|^2)^{-t-1}$$

thus, when $\alpha \ge t+1$,

$$(1 - |z|^2)^{\alpha} |\nabla f_t(z)| \le C(1 - |z|^2)^{\alpha - t - 1} < C < \infty.$$

Therefore,

(12)
$$f_t \in \mathcal{B}^{\alpha} \quad \text{for } \alpha \ge t+1.$$

When $\alpha < t + 1$, put z = (y, 0, ..., 0), where 0 < y < 1,

$$(1 - |z|^2)^{\alpha} |\nabla f_t(z)| = t(1 + y)^{\alpha} (1 - y)^{\alpha - t - 1}.$$

Let $y \to 1$. Then

$$(1-|z|^2)^{\alpha}|\nabla f_t(z)| \longrightarrow \infty;$$

therefore,

(13)
$$f_t \notin \mathcal{B}^{\alpha} \quad \text{for } \alpha < t+1.$$

(ii)

$$\int_{S} |f_t(r\xi)|^p \, d\sigma(\xi) = \int_{S} \frac{d\sigma(\xi)}{|1 - r\xi_1|^{tp}}$$
$$= \int_{S} \frac{d\sigma(\xi)}{|1 - \langle re_1, \xi \rangle|^{tp}},$$

1162

where $e_1 = (1, 0, ..., 0) \in \mathbf{C}^n$. By Proposition 1.4.10 of [9],

$$\int_{S} \frac{d\sigma(\xi)}{|1 - \langle re_1, \xi \rangle|^{tp}} \le C < \infty, \quad \text{when } t < \frac{n}{p},$$
$$\int_{S} \frac{d\sigma(\xi)}{|1 - \langle re_1, \xi \rangle|^{tp}} \approx \log \frac{1}{1 - r^2} \longrightarrow \infty, \quad \text{when } t = \frac{n}{p}, \ r \longrightarrow 1.$$

Thus, for 0 ,

(14)
$$f_t \in H^p \quad \text{when } t < \frac{n}{p};$$

(15) $f_t \notin H^p \quad \text{when } t = \frac{n}{p}.$

(iii) Let P be the orthogonal projection of \mathbf{C}^n onto \mathbf{C}^1 : $\xi = (\xi_1, \xi_2, \dots, \xi_n) \to \xi_1$.

$$J = \int_{B} |f_t(z)|^p \, dv(z) = 2n \int_0^1 r^{2n-1} \, dr \int_S \frac{d\sigma(\xi)}{|1 - rP(\xi)|^{t_p}}.$$

Using 1.4.4(1) of [9], we get

$$\int_{S} \frac{d\sigma(\xi)}{|1 - rP(\xi)|^{tp}} = \binom{n-1}{1} \int_{D} \frac{(1 - |w|^2)^{n-2}}{|1 - rw|^{tp}} dv_1(w)$$
$$= (n-1) \int_{D} \frac{(1 - |w|^2)^{n-2} dv_1(w)}{|1 - \langle r, w \rangle|^{2+(n-2)+(tp-n)}}.$$

By Lemma 4.2.2 of [16], when tp - n < 0, the integral at the end of the above equation is finite, and so $J \leq C < \infty$; when tp - n = 0,

$$\int_D \frac{(1-|w|^2)^{n-2}}{|1-\langle r,w\rangle|^n} \, dv_1(w) \approx \log \frac{1}{1-r^2}.$$

Thus

$$J = 2n \int_0^1 r^{2n-1} dr \int_S \frac{d\sigma(\xi)}{|1 - rP(\xi)|^n}$$

$$\leq C \int_0^1 r^{2n-1} \log \frac{1}{1 - r^2} dr$$

$$\leq C \int_0^\infty \tau (1 - e^{-\tau})^{n-1} e^{-\tau} d\tau.$$

1163

The integral at the end of the above expression is a finite linear combination of gamma functions without poles; therefore, we also have $J \leq C < \infty$. When tp - n > 0,

$$\int_D \frac{(1-|w|^2)^{n-2} \, dv_1(w)}{|1-\langle r, w \rangle|^{2+(n-2)+(tp-n)}} \approx (1-r^2)^{n-tp}.$$

Thus when tp - n > 0 and n - tp > -1,

$$J \le C \int_0^1 r^{2n-1} (1-r^2)^{n-tp} \, dr \le C < \infty;$$

when n - tp = -1,

$$J \approx \int_0^1 r^{2n-1} (1-r^2)^{-1} \, dr = \infty.$$

Therefore

(16)
$$f_t \in L^p_a \quad \text{when } t < \frac{n+1}{p};$$

(17)
$$f_t \notin L_a^p \quad \text{when } t = \frac{n+1}{p}.$$

(iv) For arbitrary $\varepsilon > 0$, let $t = (n/p) - (1/2)\varepsilon$. Then t < n/p and $1 + (n/p) - \varepsilon < t + 1$ by (14) and (13), we get

$$f_t \in H^p$$
 but $f_t \notin \mathcal{B}^{1+(n/p)-\varepsilon}$.

That means the inclusion $H^p \subset \mathcal{B}^{1+(n/p)}$ is best possible. At the same time, it also shows that the inclusion $\mathcal{B}^{\alpha(<1)} \subset H^p$ is strict because

$$\mathcal{B}^{\alpha(<1)} \subset \mathcal{B}^{1+(n/p)-\varepsilon} \quad \text{for } \varepsilon \leq \frac{n}{p}$$

leads to $f_t \notin \mathcal{B}^{\alpha(<1)}$.

For another arbitrary $\varepsilon > 0$, let $t = ((n+1)/p) - (1/2)\varepsilon$, then t < (n+1)/p and $1 + ((n+1)/p) - \varepsilon < t+1$ by (16) and (13), it is easy to see that

$$f_t \in L^p_a$$
 but $f_t \notin \mathcal{B}^{1+((n+1)/p)-\varepsilon}$.

Thus the inclusion $L_a^p \subset \mathcal{B}^{1+((n+1)/p)}$ is best possible. At the same time, it also shows that the inclusion $B^{\alpha(<1+(1/p))} \subset L_a^p$ is strict, because

$$\mathcal{B}^{\alpha(<1+(1/p))} \subset \mathcal{B}^{1+((n+1)/p)-\varepsilon} \quad \text{for } \varepsilon \leq \frac{n}{p}$$

leads to $f_t \notin \mathcal{B}^{\alpha(<1+(1/p))}$.

Let t = n/p. By (12) and (15), we get

$$f_{n/p} \notin H^p$$
 but $f_{n/p} \in \mathcal{B}^{1+(n/p)}$.

They mean the inclusion $H^p \subset \mathcal{B}^{1+(n/p)}$ is strict.

Let t = (n+1)/p. By (12) and (17), we get

$$f_{(n+1)/p} \notin L_a^P$$
 but $f_{(n+1)/p} \in \mathcal{B}^{1+((n+1)/p)}$.

Thus, the inclusion $L^p_a \subset \mathcal{B}^{1+((n+1)/p)}$ is strict.

Finally we prove the inclusions at the left sides of (a) are best possible.

Corollary 1.9 of [10] states that \mathcal{B}^1 is not contained in H^p . Therefore $\mathcal{B}^{\alpha(<1)} \subset H^p$ is best possible for H^p and \mathcal{B}^{α} . In fact, we will see that some spaces are inserted between H^p and $\mathcal{B}^{\alpha}_{0<\alpha<1}$ later.

For 0 , let

$$f_p(z) = \sum_{k=1}^{\infty} P_{n_k}(z) = \sum_{k=1}^{\infty} 2^{k/p} W_{2^k}(z)$$

where $\{W_{2^k}(z)\}$ is a sequence of Ryll-Wojtaszczyk polynomials with Hadamard gaps in Theorem 1.2 of [10] and Corollary 1 of [13]: $||W_{2^k}||_{\infty} = 1$ and $||W_{2^k}||_p \ge C(n, p)$. Since

$$||P_{n_k}||_{\infty} = 2^{k/p} ||W_{2^k}||_{\infty} = (2^k)^{1+(1/p)-1}$$

for all $k \ge 1$, thus $f_p \in \mathcal{B}^{1+(1/p)}$ by Proposition 2. On the other hand, for each 0 , by Corollary 1 of [13], we have

$$\sum_{k=0}^{\infty} 2^{-k} \sum_{n_j \in I_k} \|P_{n_j}\|_p^p = \sum_{k=1}^{\infty} 2^{-k} \cdot (2^{k/p})^p \|W_{2^k}\|_p^p$$
$$\ge C(n,p) \sum_{k=1}^{\infty} 1 = \infty.$$

By Proposition 3, $f_p \notin L_a^p$. This shows that $\mathcal{B}^{\alpha(<1+(1/p))} \subset L_a^p$ is best possible.

The proof of the Theorem is finished. \Box

Corollary 3. For the unit ball B of \mathbf{C}^n , we have

(i)

$$\mathcal{B}^{1} \subset \bigcap_{0 1)};$$
$$\mathcal{B}^{\alpha(<1)} \subset \bigcap_{0 < p < \infty} H^{p} \subset \mathcal{B}^{\alpha(>1)}.$$

(ii) For \mathcal{B}^{α} and $\bigcap_{0 , <math>\bigcap_{0 , all of the inclusions in (i) are strict and best possible in the sense that the index <math>\alpha$ of \mathcal{B}^{α} cannot be increased (reduced) further.

Proof. It is easy to see that the inclusions in (i) hold from Theorem (a).

Next we prove the conclusion (ii). For $1 < \alpha < \infty$, let

$$f_{\alpha}(z) = \sum_{k=1}^{\infty} P_{n_k}(z) = \sum_{k=1}^{\infty} 2^{k(\alpha-1)} W_{2^k}(z)$$

where $\{W_{2^k}(z)\}$ is a sequence of Ryll-Wojtaszczyk polynomials with Hadamard gaps as mentioned above. Similar to the argument about the best possible of " $\mathcal{B}^{\alpha(<1+(1/p))} \subset L_a^p$ " in the Theorem, we get

$$f_{\alpha} \in \mathcal{B}^{\alpha(>1)}$$
 but $f_{\alpha} \notin L^p_a$

provided that $p = 1/(\alpha - 1)$, and thus $f_{\alpha} \notin \bigcap_{0 . Of course, we know <math>f_{\alpha} \notin \bigcap_{0 . Therefore the strictness of both inclusions at the right sides in (i) is proved.$

In [1] it was shown that $g \in \bigcap_{0 exists but <math>g \notin \mathcal{B}^1(D)$. Let

$$f(z_1,\ldots,z_n)=g(z_1).$$

It follows from 1.4.5(2) of [9] that $f \in \bigcap_{0 . On the other hand, we see <math>f \notin \mathcal{B}^1(B)$, since for a function f depending only on z_1 ,

$$f \in \mathcal{B}^1(B)$$
 if and only if $g \in \mathcal{B}^1(D)$,

see 3.7(1) of [12]. This proves the strictness of both inclusions at the left sides in (i). At the same time, it shows that $\bigcap_{0 1)}$ is best possible in the sense that the index α of \mathcal{B}^{α} cannot be reduced further.

From Corollary 1.9 of [10], $\mathcal{B}^{\alpha(<1)} \subset \bigcap_{0 < p < \infty} H^p$ is best possible in the sense that the index α of \mathcal{B}^{α} cannot be increased further.

It follows that the inclusions $\mathcal{B}^1 \subset \bigcap_{0 1)}$ are best possible immediately from their strictness.

5. Concluding remarks. Based on [7], in [8], we introduced a class of function spaces $Q_p(B)$ and $Q_{p,0}(B)$, associated with the Green's function for the unit ball of \mathbb{C}^n and proved that $Q_p = \text{Bloch}$, $Q_{p,0} = \text{little Bloch}$ when $1 , <math>Q_1 = \text{BMOA}$ and $Q_{1,0} = \text{VMOA}$. This fact makes it possible for us to deal with Bloch (little Bloch) and BMOA (VMOA) spaces in a unified expression.

By Corollary 1 and the definition of VMOA, it is easy to see that $\mathcal{B}^{\alpha(<1)} \subset \text{VMOA}$.

Summarizing the results in this article, for 0 , we can get the diagram as follows

Acknowledgments. The authors would like to express their thanks to the referee for noting an error in the original proof of Lemma 2 and suggesting an idea for the present proof.

REFERENCES

1. D.M. Campbell, Functions in all H^p spaces, $p < \infty$, Canad. Math. Bull. **25** (1982), 110–113.

2. P.L. Durem, Theory of H^p spaces, Academic Press, New York, 1970.

3. G.H. Hardy and J.E. Littlewood, Some properties of fractional integrals II, Math. Z. **34** (1932), 403–439.

4. M. Mateljević and M. Pavlović, L^p -behavior of power series with positive coefficients and Hardy spaces, Proc. Amer. Math. Soc. **87** (1983), 309–316.

5. J. Miao, A property of analytic functions with Hadamard gaps, Bull. Austral. Math. Soc. **45** (1992), 105–112.

6. C.H. Ouyang, Proper inclusions of function spaces and Ryll-Wojtaszczyk polynomials on the unit ball of \mathbf{C}^n , to appear.

7. C.H. Ouyang, W.S. Yang and R.H. Zhao, Characterizations of Bergman spaces and Bloch space in the unit ball of \mathbb{C}^n , Trans. Amer. Math. Soc. **347** (1995), 4301–4313.

8. — , Möbius invariant Q_p spaces associated with the Green's function on the unit ball of \mathbb{C}^n , Pacific J. Math. **182** (1998), 69–99.

9. W. Rudin, Function theory in the unit ball of \mathbb{C}^n , Springer-Verlag, New York, 1980.

10. J. Ryll and P. Wojtaszczyk, On homogeneous polynomials on a complex ball, Trans. Amer. Math. Soc. 276 (1983), 107–116.

11. J.H. Shi, Inequalities for the integral means of holomorphic functions and their derivatives in the unit ball of \mathbb{C}^n , Trans. Amer. Math. Soc. 328 (1991), 619–637.

12. R.M. Timoney, *Bloch functions in several complex variables*, I, Bull. London Math. Soc. **12** (1980), 241–267.

13. D. Ullrich, Radial divergence in BMOA, Proc. London Math. Soc. 68 (1994), 145–160.

14. S. Yamashita, Gap series and α -Bloch functions, Yokohama Math. J. 28 (1980), 31–36.

15. W.S. Yang, Characterizations of $\alpha\text{-Bloch spaces},$ Acta Math. Sci. 17 (1997), 471–477.

16. Kehe Zhu, *Operator theory in function spaces*, Marcel Dekker, Inc., New York, 1990.

17. W.X. Zhuo, Derivatives of Bloch functions and α -Carleson measure on the unit ball, Acta Math. Sci. (Chinese edition) 14 (1994), 351–360.

18. A. Zygmund, Trigonometric series, Cambridge Univ. Press, London, 1959.

EXACT LOCATION OF α -BLOCH SPACES

WUHAN INSTITUTE OF PHYSICS AND MATHEMATICS, CHINESE ACADEMY OF SCI-ENCES, P.O. BOX 71010, WUHAN 430071, P.R. CHINA *Current E-mail address:* wy7639@csc.albany.edu

Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, P.O. Box 71010, Wuhan 430071, P.R. China $E\text{-}mail\ address: \texttt{ouyang@wipm.whcnc.ac.cn}$