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EXACT LOCATION OF α-BLOCH SPACES
IN Lp

a AND Hp OF A
COMPLEX UNIT BALL

WEISHENG YANG AND CAIHENG OUYANG

ABSTRACT. In this paper we prove that, on the unit
ball of Cn, (i) for f ∈ H(B) and 0 < α < ∞, f ∈
Bα ⇔ supz∈B |Rf(z)|(1 − |z|2)α < ∞; as a corollary, Bα =

A(B) ∩ Lip (1 − α) for 0 < α < 1. (ii) Bα(<1+(1/p)) ⊂
Lp

a ⊂ B1+((n+1)/p), Bα(<1) ⊂ Hp ⊂ B1+(n/p) for n > 1 and
0 < p < ∞, where Lp

a, Hp denote the Bergman spaces and
Hardy spaces, respectively. And B1 ⊂ ∩0<p<∞Lp

a ⊂ Bα(>1),

Bα(<1) ⊂ ∩0<p<∞Hp ⊂ Bα(>1). Further, it is proved with
constructive methods that all of the above containments are
strict and best possible.

1. Introduction. Let H(B) denote the class of all holomorphic
functions in the unit ball B of Cn. We say that f ∈ Bα, α-Bloch, if

‖f‖Bα(B) = sup
z∈B

|∇f(z)|(1− |z|2)α < ∞, 0 < α < ∞.

It is clear that Bα is a normed linear space, modulo constant functions,
and Bα1 ⊂ Bα2 for α1 < α2. When n = 1, replace them by H(D) and
Bα(D), where D denotes the unit disk of complex plane.

Hardy and Littlewood proved that [3], [2]: Bα(D) = Lip (1−α). We
know that Lipβ can be used to describe the dual space of Hardy space
Hp(D) for 0 < p < 1 [2]. So Bα are important in the theory of Hardy
spaces. In [15] we gave some invariant gradient characterizations and
Bergman-Carleson measure characterization of Bα on the unit ball.

For B1 = Bloch (B), Timoney showed that Hp 	⊂ Bloch (B) for any
p ∈ (0,∞), but he did not know whether there were Bloch functions
which were not in Hp or not, see Example 3.7(3) of [12]. Later on,
in [10], Ryll and Wojtaszczyk pointed out that Bloch (B) 	⊂ Hp;
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therefore, there is no containment between Hp and Bloch. Naturally
we want to know the relationships between α-Bloch and some classes
of holomorphic functions, such as the exact location of α-Bloch spaces
in Lp

a and Hp.

In this paper we will prove that (i) f ∈ Bα ⇔ supz∈B |Rf(z)|(1 −
|z|2)α < ∞. Bα = A(B)∩Lip (1−α) for 0 < α < 1. (ii) Bα(<1+(1/p)) ⊂
Lp

a ⊂ B1+((n+1)/p), Bα(<1) ⊂ Hp ⊂ B1+(n/p) for n > 1 and 0 < p < ∞.
Further, B1 ⊂ ∩0<p<∞Lp

a ⊂ Bα(>1), Bα(<1) ⊂ ∩0<p<∞Hp ⊂ Bα(>1).
All of the above containments are strict and best possible. For the
inclusion chain Bα(<1+(1/p)) ⊂ Lp

a ⊂ B1+((n+1)/p), the strictness at the
left side and the possibility at the right side show that, for each p, at
least one f(z) exists, f ∈ Lp

a, whose growth rate of gradient, or radial
derivative, will be larger than, or equal to, (1− |z|2)−(1+(1/p)), and go
so far as to (1−|z|2)−(1+((n+1)/p)). There is a similar conclusion for Hp

in the other inclusion chain. Especially in the proof of the strictness
and best possibility in (ii), we will use constructive methods.

2. Radial growth of α-Bloch functions. For y ∈ S, the
unit sphere in Cn, 〈z, y〉 = 0, let Tyf(z) =

∑n
j=1 yj(∂f/∂zj)(z)

denote the complex tangential derivative of f in z and Rf(z) =∑n
j=1 zj(∂f/∂zj)(z) the radial derivative of f .

Lemma 1. Suppose that f ∈ H(B), z ∈ B, y ∈ S, 〈z, y〉 = 0, γ ≥ 0.

(a) If |f(z)| ≤ (1− |z|2)−γ, then

|Tyf(z)| ≤ C(1− |z|2)−γ−(1/2).

(b) If |Tyf(z)| ≤ (1− |z|2)−γ, then

|Rf(z)| ≤ C(1− |z|2)−γ−(1/2).

(c) If |f(z)| ≤ (1− |z|2)−γ, then

|Rf(z)| ≤ C(1− |z|2)−γ−1.

Proof. (a) and (b) are Lemma 1 and Lemma 2 of [17], respectively.
In fact, the method to prove (a) is similar to 6.4.6 of [9] and the idea
to prove (b) is due to Lemma 4.8 of [12].
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Combining (a) with (b), we can get (c).

Lemma 2. Suppose that f ∈ H(B), y ∈ S, 〈z, y〉 = 0, γ ≥ 0. If f
satisfies

(1) |(TyR)f(z)| ≤ (1− |z|2)−γ−(1/2)

when 1/2 < |z| < 1, then

|Tyf(z)|(1− |z|2)γ < C,

where C is a positive constant depending only on f .

Proof. When ξ, y ∈ S and 〈ξ, y〉 = 0 by Lemma 6.4.5 of [9], we have

r(Djf)(rξ) =
∫ r

0

(DjRf)(tξ) dt,

rTyf(rξ) = r

n∑
j=1

(Djf)(rξ)yj

=
∫ r

0

n∑
j=1

(DjRf)(tξ)yj dt

=
∫ r

0

(TyRf)(tξ) dt.

Let z = rξ, then by (1), when 1/2 < |z| < 1, we have

|Tyf(z)| ≤ 1
|z|

∫ |z|

0

∣∣∣∣(TyRf)
(
t
z

|z|
)∣∣∣∣ dt

=
1
|z|

( ∫
0≤t≤1/2

+
∫

1/2<t≤|z|

)∣∣∣∣(TyRf)
(
t
z

|z|
)∣∣∣∣ dt

≤ 2
∫

0≤t≤1/2

∣∣∣∣(∇Rf)
(
t
z

|z|
)∣∣∣∣ dt+ 2

∫ |z|

1/2

(1− t2)−γ−(1/2) dt

≤ C1 + 2
∫ |z|

1/2

(1− t2)−γ−(1/2) dt,
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since Rf is holomorphic in B. Thus,

(1−|z|2)γ |Tyf(z)| ≤ 2
∫ |z|

1/2

(1−|z|2)γ(1−t2)−γ−1/2 dt+ C1(1−|z|2)γ

≤ 2
∫ |z|

1/2

(1− t)−1/2 dt+ C1

(
3
4

)γ

≤ 2
√
2 + C1 = C,

noticing that γ ≥ 0 implies that (3/4)γ ≤ 1.

In the following, C denotes a positive constant which is not necessarily
the same on each appearance.

Proposition 1. For f ∈ H(B) and 0 < α < ∞,

f ∈ Bα ⇐⇒ sup
z∈B

|Rf(z)|(1− |z|2)α < ∞.

Proof. Because |Rf(z)| ≤ |∇f(z)|, it is easy to see

f ∈ Bα =⇒ sup
z∈B

|Rf(z)|(1− |z|2)α < ∞.

On the other hand, suppose supz∈B |Rf(z)|(1 − |z|2)α < ∞. When
|z| ≤ 1/2, because f is holomorphic in B, it is clear that

(2) sup
|z|≤1/2

|∇f(z)|(1− |z|2)α < ∞.

Now, let 1/2 < |z| < 1. For each fixed z, from the vector space
{y ∈ Cn : 〈z, y〉 = 0}, we can find unit vectors y2, . . . , yn so that z/|z|,
y2, . . . , yn form a base of vector space Cn. Of course, z̄/|z|, y2, . . . , yn

form another base of Cn. Therefore,

|∇f(z)|2 = |〈∇f(z), (z̄/|z|)〉|2 + |〈∇f(z), y2〉|2 + · · ·+ |〈∇f(z), yn〉|2

=
1

|z|2 |Rf(z)|2 + |Ty2f(z)|2 + · · ·+ |Tyn
f(z)|2.(3)
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By the hypothesis supz∈B |Rf(z)|(1 − |z|2)α < ∞ and 1/2 < |z| < 1,
obviously

(4)
1

|z|2 |Rf(z)|2 ≤ C(1− |z|2)−2α.

By the hypothesis supz∈B |Rf(z)|(1− |z|2)α < ∞ and Lemma 1(a) for
2 ≤ j ≤ n,

|Tyj
Rf(z)| ≤ C(1− |z|2)−α−(1/2).

By Lemma 2,

(5) |Tyj
f(z)|(1− |z|2)α < C.

Therefore, by (3), (4) and (5),

(6) sup
1/2<|z|<1

(1− |z|2)2α|∇f(z)|2 ≤ C < ∞.

By (2) and (6), we know

sup
z∈B

(1− |z|2)α|∇f(z)| ≤ C < ∞.

Corollary 1. Bα = A(B) ∩ Lip (1− α), for 0 < α < 1, where A(B)
is the ball algebra, see [9].

Proof. If f ∈ Bα, by Proposition 1,

|Rf(z)| ≤ C(1− |z|2)−α = C(1− |z|2)(1−α)−1.

By Theorem 6.4.10 of [9] and 0 < 1− α < 1,

f ∈ A(B) ∩ Lip (1− α).

If f ∈ A(B)∩ Lip (1−α), then by Theorem 6.4.9 and the Remark of
6.4.9 of [9], we can get

|Rf(z)| ≤ C(1− |z|2)(1−α)−1 = C(1− |z|2)−α.



1156 W. YANG AND C. OUYANG

By Proposition 1, f ∈ Bα.

For ξ ∈ S, λ ∈ D, let fξ(λ) = f(ξλ) denote the slice function of f .

Corollary 2. f ∈ Bα ⇔ supξ∈S ‖fξ‖Bα(D) < ∞.

Proof. If f ∈ Bα, then |Rf(z)|(1−|z|2)α ≤ C by Proposition 1. Thus,
for each ξ ∈ S, |Rf(λξ)|(1−|λξ|2)α ≤ C and so |f ′

ξ(λ)|(1−|λ|2)α ≤ C.
Taking supλ∈D and supξ∈S in order, we get supξ∈S ‖fξ‖Bα(D) < ∞.

The converse is a similar process.

3. Power series with Hadamard gaps and α-Bloch, Lp
a.

Propositions 2 and 3 will be used in the proof of the Theorem and
Corollary 3, and are of independent interest.

It is proved in [14] that, if f(z) =
∑∞

k=1 akz
nk ∈ H(D) with

nk+1/nk ≥ q, k ≥ 1, q > 1, then for α > 0,

(7) f ∈ Bα(D) ⇐⇒ lim sup
k→∞

|ak|n1−α
k < ∞.

From [18], we know that, if 0 < p < ∞, {nk} is an increasing sequence
of positive integers satisfying nk+1/nk ≥ q > 1 for all k, then there is
a constant A depending only on p and q such that

(8)

A−1

( ∞∑
k=1

|ak|2
)1/2

≤
(

1
2π

∫ 2π

0

∣∣∣∣
∞∑

k=1

ake
inkθ

∣∣∣∣
p

dθ

)1/p

≤ A

( ∞∑
k=1

|ak|2
)1/2

,

for any number ak, k = 1, 2, . . . .

In [4], it is proved that if α > 0, p > 0, n ≥ 0, an ≥ 0, In = {k : 2n ≤
k < 2n+1, k ∈ N}, tn =

∑
k∈In

ak and f(x) =
∑∞

n=1 anx
n. Then there

is a constant K depending only on p and α such that

(9)
1
K

∞∑
n=0

2−nαtpn ≤
∫ 1

0

(1− x)α−1f(x)p dx ≤ K

∞∑
n=0

2−nαtpn.
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A holomorphic function f(z) =
∑∞

k=1 Pnk
(z) on B,Pnk

is a homoge-
neous polynomial of degree nk ∈ N, the set of natural numbers is said
to have Hadamard gaps if nk+1/nk ≥ q > 1 for all k = 1, 2, . . . .

Based on (7) and Corollary 2, we can give a sufficient condition for
a power series in B with Hadamard gaps, to belong to α-Bloch spaces
Bα(B).

Proposition 2. Let f(z) =
∑∞

k=1 Pnk
(z) be a power series on B

with Hadamard gaps. Suppose that

‖Pnk
‖∞ = sup{|Pnk

(ξ)| : ξ ∈ S} ≤ nα−1
k

for all k ≥ 1. Then f ∈ Bα(B), 0 < α < ∞.

Proof. Considering limk→∞ supAk = infk supj≥k Aj for sequence
{Ak}∞k=1, the condition of (7) can be written as

inf
k
sup
j≥k

|aj |n1−α
j < ∞

for all k ≥ 1. For each ξ ∈ S, observe that the slice function

fξ(λ) =
∞∑

k=1

Pnk
(ξ)λnk , λ ∈ D.

If ‖Pnk
‖∞ ≤ nα−1

k for all k ≥ 1, then

inf
k
sup
j≥k

|Pnj
(ξ)|n1−α

j ≤ inf
k
sup
j≥k

‖Pnj
‖∞n1−α

j ≤ 1.

Therefore, by (7), ‖fξ‖Bα(D) ≤ C; here C is a positive constant
depending only on q and α, not on f . Taking supξ∈S , we see
supξ∈S ‖fξ‖Bα(D) < ∞, and so f ∈ Bα(B) by Corollary 2.

Remark 1. This result generalizes Proposition 4.16 of [12].

Next we give a necessary and sufficient condition for a function on
B, with Hadamard gaps, to belong to Bergman spaces Lp

a(B).
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Proposition 3. Let f(z) =
∑∞

k=1 Pnk
(z) be a power series on B

with Hadamard gaps. Then the following are equivalent:

(i) f ∈ Lp
a, 0 < p < ∞;

(ii)
∑∞

k=0 2
−k

∑
nj∈Ik

‖Pnj
‖p

p < ∞,

where Ik = {nj : 2k ≤ nj < 2k+1, nj ∈ N}, ‖Pnj
‖p

p =
∫

S
|Pnj

(ξ)|p dσ(ξ).

Proof. By integration in polar coordinates and 1.4.7 Proposition (1)
of [9],

‖f‖p
Lp

a
= 2n

∫ 1

0

r2n−1 dr

∫
S

|f(rξ)|p dσ(ξ)

= 2n
∫ 1

0

r2n−1 dr

∫
S

dσ(ξ)
∫ 2π

0

|f(reiθξ)|p dθ
2π

= 2n
∫

S

dσ(ξ)
∫ 1

0

r2n−1 dr

∫ 2π

0

∣∣∣∣
∞∑

k=1

Pnk
(ξ)rnkeinkθ

∣∣∣∣
p
dθ

2π
.

Applying (8) to the end of the above, we get

(10) ‖f‖p
Lp

a
≤ nAp

∫
S

dσ(ξ)
∫ 1

0

( ∞∑
k=1

|Pnk
(ξ)|2(r2)nk

)p/2

dr2.

On the other hand, applying (8) once more and integrating by parts
twice, we have

‖f‖p
Lp

a
≥ nA−p

∫
S

dσ(ξ)
∫ 1

0

(r2)n−1

( ∞∑
k=1

|Pnk
(ξ)|2(r2)nk

)p/2

dr2

= A−p

∫
S

dσ(ξ)
∫ 1

0

( ∞∑
k=1

|Pnk
(ξ)|2xnk

)p/2

dxn

= A−p

∫
S

dσ(ξ)
[( ∞∑

k=1

|Pnk
(ξ)|2xnk

)p/2

xn
∣∣∣1
0

−
∫ 1

0

xnd

( ∞∑
k=1

|Pnk
(ξ)|2xnk

)p/2]
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≥ A−p

∫
S

dσ(ξ)
[( ∞∑

k=1

|Pnk
(ξ)|2xnk

)p/2

x
∣∣∣1
0

−
∫ 1

0

xd

( ∞∑
k=1

|Pnk
(ξ)|2xnk

)p/2]

= A−p

∫
S

dσ(ξ)
∫ 1

0

( ∞∑
k=1

|Pnk
(ξ)|2xnk

)p/2

dx.(11)

Combining (10) and (11), we get

‖f‖p
Lp

a
≈

∫
S

dσ(ξ)
∫ 1

0

( ∞∑
k=1

|Pnk
(ξ)|2xnk

)p/2

dx.

Using (9), we have

‖f‖p
Lp

a

∼=
∫

S

( ∞∑
k=1

2−kt
p/2
k

)
dσ(ξ),

where
tk =

∑
nj∈Ik

|Pnj
(ξ)|2.

Since nj+1 ≥ qnj ≥ q2k, so qN2k ≤ nj+N < 2k+1. Thus the number N
of Pnj

when nj ∈ Ik is at most [logq 2]+1 for k = 0, 1, 2, . . . . Therefore,
by (9) for p < 2 and (10) for p ≥ 2 of [5],

‖f‖p
Lp

a
≈

∫
S

( ∞∑
k=1

2−k

( ∑
nj∈Ik

|Pnj
(ξ)|2

)p/2)
dσ(ξ)

≈
∞∑

k=0

2−k
∑

nj∈Ik

‖Pnj
‖p

p.

This proves Proposition 3.

Remark 2. In [6], we proved Proposition 3 for p = 2 by a slightly
different method.
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4. Strict and best possible inclusions for α-Bloch and Lp
a, H

p.

Theorem. When 0 < p < ∞ and n > 1, we have

(a)
Bα(<1+(1/p)) ⊂ Lp

a ⊂ B1+((n+1)/p);

Bα(<1) ⊂ Hp ⊂ B1+(n/p).

(b) For Lp
a, H

p and Bα, all of the inclusion relationships in (a) are
strict and best possible, where “best possible” means that, for each p,
the indices α of Bα at the left sides cannot be larger and those at the
right sides cannot be smaller.

Proof. Since

f(z)− f(0) =
∫ 1

0

∇f(tz)z dt,

thus

|f(z)|p ≤ C

{
|f(0)|p +

( ∫ 1

0

|∇f(tz)||z| dt
)p}

.

If f ∈ Bα
1<α<1+(1/p), then

∫
B

|f(z)|p dv(z) ≤ C|f(0)|p + C

∫
B

( ∫ 1

0

|∇f(tz)||z| dt
)p

dv(z)

≤ C|f(0)|p + C

∫
B

( ∫ 1

0

(1− t2|z|2)−α|z| dt
)p

dv(z)

≤ C|f(0)|p + C(α− 1)−1

∫
B

(1− |z|)p(1−α) dv(z)

≤ C|f(0)|p + 2nC(α− 1)−1

·
∫ 1

0

r2n−1(1− r)p(1−α) dr < ∞.

Thus, f ∈ Lp
a. This means Bα

1<α<1+(1/p)) ⊂ Lp
a. By the monotonicity

of α-Bloch, we get

Bα
0<α<1+(1/p) ⊂ Lp

a, 0 < p < ∞.
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Let α = 1; then Bα = B1, the usual Bloch space. By this conclusion
we see B1 ⊂ Lp

a, for 0 < p < ∞. This is a well-known result.

By Corollary 1, we can easily see that

Bα
0<α<1 ⊂ Hp, 0 < p < ∞.

Lemma 2 of [11] states that, let f ∈ H(B) and 0 < p < ∞, s ≥ 0,
n+ s+ 1 ≥ p. Then, for z ∈ B,

|∇f(z)|p ≤ K

∫
B

|f(w)|p (1− |w|2)s
|1− 〈z, w〉|n+s+p+1

dv(w).

Using this lemma we have

(1− |z|2)1+((n+1)/p)|∇f(z)|

≤ K1/p

( ∫
B

|f(w)|p (1− |z|2)p+n+1(1− |w|2)s
|1− 〈z, w〉|n+s+p+1

dv(w)
)1/p

≤ (2p+n+1+sK)1/p

( ∫
B

|f(w)|p dv(w)
)1/p

.

If f ∈ Lp
a, then (2p+n+1+sK)1/p(

∫
B
|f(w)|p dv(w))1/p ≤ M < ∞, thus

supz∈B(1− |z|2)1+((n+1)/p)|∇f(z)| ≤ M < ∞, f ∈ B1+((n+1)/p).

Suppose f ∈ Hp, by Theorem 7.2.5(a) of [9],

|f(z)| ≤ 2n/p‖f‖p(1− |z|)−n/p.

By Lemma 1(c),

|Rf(z)| ≤ 2n/pC‖f‖p(1− |z|2)−(n/p)−1.

By Proposition 1,
f ∈ B1+(n/p).

Therefore, when 0 < p < ∞ and n > 1, Hp ⊂ B1+(n/p).

The proof of Theorem (a) is completed.

Next we construct some functions to show that the conclusion (b) is
true. Let

ft(z) = (1− z1)−t, t > 0.
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(i)

∂ft

∂zj
= 0 for j = 2, . . . , n;

∂ft

∂z1
= t(1− z1)−t−1.

Then,
(1− |z|2)α|∇ft(z)| = t(1− |z|2)α|1− z1|−t−1.

Noting

|1− z1|−t−1 ≤ (1− |z1|)−t−1 ≤ C(1− |z|2)−t−1,

thus, when α ≥ t+ 1,

(1− |z|2)α|∇ft(z)| ≤ C(1− |z|2)α−t−1 < C < ∞.

Therefore,

(12) ft ∈ Bα for α ≥ t+ 1.

When α < t+ 1, put z = (y, 0, . . . , 0), where 0 < y < 1,

(1− |z|2)α|∇ft(z)| = t(1 + y)α(1− y)α−t−1.

Let y → 1. Then
(1− |z|2)α|∇ft(z)| −→ ∞;

therefore,

(13) ft /∈ Bα for α < t+ 1.

(ii) ∫
S

|ft(rξ)|p dσ(ξ) =
∫

S

dσ(ξ)
|1− rξ1|tp

=
∫

S

dσ(ξ)
|1− 〈re1, ξ〉|tp ,
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where e1 = (1, 0, . . . , 0) ∈ Cn. By Proposition 1.4.10 of [9],
∫

S

dσ(ξ)
|1− 〈re1, ξ〉|tp ≤ C < ∞, when t <

n

p
,

∫
S

dσ(ξ)
|1− 〈re1, ξ〉|tp ≈ log

1
1− r2

−→ ∞, when t =
n

p
, r −→ 1.

Thus, for 0 < p < ∞,

ft ∈ Hp when t <
n

p
;(14)

ft /∈ Hp when t =
n

p
.(15)

(iii) Let P be the orthogonal projection of Cn onto C1 : ξ =
(ξ1, ξ2, . . . , ξn) → ξ1.

J =
∫

B

|ft(z)|p dv(z) = 2n
∫ 1

0

r2n−1 dr

∫
S

dσ(ξ)
|1− rP (ξ)|tp .

Using 1.4.4(1) of [9], we get
∫

S

dσ(ξ)
|1− rP (ξ)|tp =

(
n− 1
1

)∫
D

(1− |w|2)n−2

|1− rw|tp dv1(w)

= (n− 1)
∫

D

(1− |w|2)n−2 dv1(w)
|1− 〈r, w〉|2+(n−2)+(tp−n)

.

By Lemma 4.2.2 of [16], when tp − n < 0, the integral at the end of
the above equation is finite, and so J ≤ C < ∞; when tp− n = 0,

∫
D

(1− |w|2)n−2

|1− 〈r, w〉|n dv1(w) ≈ log
1

1− r2
.

Thus

J = 2n
∫ 1

0

r2n−1 dr

∫
S

dσ(ξ)
|1− rP (ξ)|n

≤ C

∫ 1

0

r2n−1 log
1

1− r2
dr

≤ C

∫ ∞

0

τ (1− e−τ )n−1e−τ dτ.
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The integral at the end of the above expression is a finite linear
combination of gamma functions without poles; therefore, we also have
J ≤ C < ∞. When tp− n > 0,

∫
D

(1− |w|2)n−2 dv1(w)
|1− 〈r, w〉|2+(n−2)+(tp−n)

≈ (1− r2)n−tp.

Thus when tp− n > 0 and n− tp > −1,

J ≤ C

∫ 1

0

r2n−1(1− r2)n−tp dr ≤ C < ∞;

when n− tp = −1,

J ≈
∫ 1

0

r2n−1(1− r2)−1 dr = ∞.

Therefore

ft ∈ Lp
a when t <

n+ 1
p

;(16)

ft /∈ Lp
a when t =

n+ 1
p

.(17)

(iv) For arbitrary ε > 0, let t = (n/p) − (1/2)ε. Then t < n/p and
1 + (n/p)− ε < t+ 1 by (14) and (13), we get

ft ∈ Hp but ft /∈ B1+(n/p)−ε.

That means the inclusion Hp ⊂ B1+(n/p) is best possible. At the same
time, it also shows that the inclusion Bα(<1) ⊂ Hp is strict because

Bα(<1) ⊂ B1+(n/p)−ε for ε ≤ n

p

leads to ft /∈ Bα(<1).

For another arbitrary ε > 0, let t = ((n + 1)/p) − (1/2)ε, then
t < (n + 1)/p and 1 + ((n + 1)/p) − ε < t + 1 by (16) and (13), it
is easy to see that

ft ∈ Lp
a but ft /∈ B1+((n+1)/p)−ε.
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Thus the inclusion Lp
a ⊂ B1+((n+1)/p) is best possible. At the same

time, it also shows that the inclusion Bα(<1+(1/p)) ⊂ Lp
a is strict,

because
Bα(<1+(1/p)) ⊂ B1+((n+1)/p)−ε for ε ≤ n

p

leads to ft /∈ Bα(<1+(1/p)).

Let t = n/p. By (12) and (15), we get

fn/p /∈ Hp but fn/p ∈ B1+(n/p).

They mean the inclusion Hp ⊂ B1+(n/p) is strict.

Let t = (n+ 1)/p. By (12) and (17), we get

f(n+1)/p /∈ LP
a but f(n+1)/p ∈ B1+((n+1)/p).

Thus, the inclusion Lp
a ⊂ B1+((n+1)/p) is strict.

Finally we prove the inclusions at the left sides of (a) are best possible.

Corollary 1.9 of [10] states that B1 is not contained in Hp. Therefore
Bα(<1) ⊂ Hp is best possible for Hp and Bα. In fact, we will see that
some spaces are inserted between Hp and Bα

0<α<1 later.

For 0 < p < ∞, let

fp(z) =
∞∑

k=1

Pnk
(z) =

∞∑
k=1

2k/pW2k(z)

where {W2k(z)} is a sequence of Ryll-Wojtaszczyk polynomials with
Hadamard gaps in Theorem 1.2 of [10] and Corollary 1 of [13]:
‖W2k‖∞ = 1 and ‖W2k‖p ≥ C(n, p). Since

‖Pnk
‖∞ = 2k/p‖W2k‖∞ = (2k)1+(1/p)−1

for all k ≥ 1, thus fp ∈ B1+(1/p) by Proposition 2. On the other hand,
for each 0 < p < ∞, by Corollary 1 of [13], we have

∞∑
k=0

2−k
∑

nj∈Ik

‖Pnj
‖p

p =
∞∑

k=1

2−k · (2k/p)p‖W2k‖p
p

≥ C(n, p)
∞∑

k=1

1 = ∞.



1166 W. YANG AND C. OUYANG

By Proposition 3, fp /∈ Lp
a. This shows that Bα(<1+(1/p)) ⊂ Lp

a is best
possible.

The proof of the Theorem is finished.

Corollary 3. For the unit ball B of Cn, we have

(i)
B1 ⊂

⋂
0<p<∞

Lp
a ⊂ Bα(>1);

Bα(<1) ⊂
⋂

0<p<∞
Hp ⊂ Bα(>1).

(ii) For Bα and ∩0<p<∞Lp
a, ∩0<p<∞Hp, all of the inclusions in (i)

are strict and best possible in the sense that the index α of Bα cannot
be increased (reduced) further.

Proof. It is easy to see that the inclusions in (i) hold from Theorem
(a).

Next we prove the conclusion (ii). For 1 < α < ∞, let

fα(z) =
∞∑

k=1

Pnk
(z) =

∞∑
k=1

2k(α−1)W2k(z)

where {W2k(z)} is a sequence of Ryll-Wojtaszczyk polynomials with
Hadamard gaps as mentioned above. Similar to the argument about
the best possible of “Bα(<1+(1/p)) ⊂ Lp

a” in the Theorem, we get

fα ∈ Bα(>1) but fα /∈ Lp
a

provided that p = 1/(α− 1), and thus fα /∈ ∩0<p<∞Lp
a. Of course, we

know fα /∈ ∩0<p<∞Hp. Therefore the strictness of both inclusions at
the right sides in (i) is proved.

In [1] it was shown that g ∈ ∩0<p<∞Hp(D) exists but g /∈ B1(D).
Let

f(z1, . . . , zn) = g(z1).

It follows from 1.4.5(2) of [9] that f ∈ ∩0<p<∞Hp(B). On the other
hand, we see f /∈ B1(B), since for a function f depending only on z1,

f ∈ B1(B) if and only if g ∈ B1(D),
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see 3.7(1) of [12]. This proves the strictness of both inclusions at the
left sides in (i). At the same time, it shows that ∩0<p<∞Hp ⊂ Bα(>1)

is best possible in the sense that the index α of Bα cannot be reduced
further.

From Corollary 1.9 of [10], Bα(<1) ⊂ ∩0<p<∞Hp is best possible in
the sense that the index α of Bα cannot be increased further.

It follows that the inclusions B1 ⊂ ∩0<p<∞Lp
a ⊂ Bα(>1) are best

possible immediately from their strictness.

5. Concluding remarks. Based on [7], in [8], we introduced
a class of function spaces Qp(B) and Qp,0(B), associated with the
Green’s function for the unit ball of Cn and proved that Qp = Bloch ,
Qp,0 = little Bloch when 1 < p < n/(n − 1), Q1 = BMOA and
Q1,0 = VMOA. This fact makes it possible for us to deal with Bloch
(little Bloch) and BMOA (VMOA) spaces in a unified expression.

By Corollary 1 and the definition of VMOA, it is easy to see that
Bα(<1) ⊂ VMOA.

Summarizing the results in this article, for 0 < p < ∞, we can get
the diagram as follows

little Bloch = Qp,0
1<p< n

n−1

⊃ Q1,0 ⊂ Q1 ⊂ Qp,1<p< n
n−1

= Bloch

∥∥∥ ∥∥∥ ∩
VMOA ⊂ BMOA ⊂ Bα

1≤α<1+ 1
p

∪ ∩ ∩
Bα

0<α<1 ⊂ Hp ⊂ Lp
a ⊂ B1+ n+1

p

∩
B1+ n

p .
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8. , Möbius invariant Qp spaces associated with the Green’s function on
the unit ball of Cn, Pacific J. Math. 182 (1998), 69 99.

9. W. Rudin, Function theory in the unit ball of Cn, Springer-Verlag, New York,
1980.

10. J. Ryll and P. Wojtaszczyk, On homogeneous polynomials on a complex ball,
Trans. Amer. Math. Soc. 276 (1983), 107 116.

11. J.H. Shi, Inequalities for the integral means of holomorphic functions and
their derivatives in the unit ball of Cn, Trans. Amer. Math. Soc. 328 (1991),
619 637.

12. R.M. Timoney, Bloch functions in several complex variables, I, Bull. London
Math. Soc. 12 (1980), 241 267.

13. D. Ullrich, Radial divergence in BMOA, Proc. London Math. Soc. 68 (1994),
145 160.

14. S. Yamashita, Gap series and α-Bloch functions, Yokohama Math. J. 28
(1980), 31 36.

15. W.S. Yang, Characterizations of α-Bloch spaces, Acta Math. Sci. 17 (1997),
471 477.

16. Kehe Zhu, Operator theory in function spaces, Marcel Dekker, Inc., New
York, 1990.

17. W.X. Zhuo, Derivatives of Bloch functions and α-Carleson measure on the
unit ball, Acta Math. Sci. (Chinese edition) 14 (1994), 351 360.

18. A. Zygmund, Trigonometric series, Cambridge Univ. Press, London, 1959.



EXACT LOCATION OF α-BLOCH SPACES 1169

Wuhan Institute of Physics and Mathematics, Chinese Academy of Sci-

ences, P.O. Box 71010, Wuhan 430071, P.R. China

Current E-mail address: wy7639@csc.albany.edu

Wuhan Institute of Physics and Mathematics, Chinese Academy of Sci-

ences, P.O. Box 71010, Wuhan 430071, P.R. China

E-mail address: ouyang@wipm.whcnc.ac.cn


