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FOURIER-TYPE MINIMAL
EXTENSIONS IN REAL L1-SPACE

GRZEGORZ LEWICKI, GIUSEPPE MARINO

AND PAOLAMARIA PIETRAMALA

ABSTRACT. Let V ⊂ L1([0, 2π]n) be a finite dimensional,
shift-invariant subspace. Fix w ∈ V . In this paper we present
an answer to the problem when the Fourier-type operator
Fw : L1([0, 2π]n) → V defined by

Fw(f) = f ∗ w

is the only minimal extension of its restriction to V . Also the
case of supremum norm will be considered and [5, p. 243] will
be generalized.

0. Introduction. Let πk denote the space of all trigonometric
polynomials of degree less than or equal to k. Let C0(2π) denote the
space of all continuous, real valued 2π-periodic functions. It is well
known by the result of Lozinski [10] that the Fourier projection defined
by

(Fkf)t = (f ∗Dk)t = (1/2π)
∫ 2π

0

f(s)Dk(t− s) ds,

where Dkt =
∑k

j=−k e
ijt, has the minimal norm among all the projec-

tions of C0(2π) onto πk (see also [1], [11]). Also, it has been shown
in [3] that Fk is the only projection from C0(2π) onto πk of minimal
norm. The problem of the unique minimality of the Fourier projection
in more general context has been widely studied in literature (see, e.g.,
[2], [5], [7], [8], [9]).

In this paper we study the problem of the unique minimality of the
Fourier-type extensions in the case of the L1-norm. More precisely, for
u ∈ Rn and f ∈ L1 = L1([0, 2π]n), let

(0.1) (Iuf)t = f(t+ u).

Received by the editors on December 12, 1998, and in revised form on July 16,
1999.

AMS Mathematics Subject Classification. 41A35, 41A52, 46E30.
Key words and phrases. Convolution operator, extension operator, Fourier

projection, minimal extension, uniqueness of minimal extension.

Copyright c©2000 Rocky Mountain Mathematics Consortium

1025



1026 G. LEWICKI, G. MARINO AND P. PIETRAMALA

(We define f(t + u) = f(r) where r = (r1, . . . , rn) ∈ [0, 2π]n and
rj = (tj + uj) mod 2π.) Let V ⊂ L1 be a finite-dimensional, shift-
invariant subspace, i.e., Iu(V ) ⊂ V for any u ∈ Rn. Let w ∈ V . Set

(0.2) (Fwf)(t) = (f ∗ w)(t) = (1/2π)n
∫

[0,2π]n
f(s)w(t− s) ds.

Observe that if V = πk and w = Dk, then Fw is precisely the Fourier
projection onto πk. The main result of this paper, Theorem 1.6, is a
characterization of those elements w ∈ V for which the convolution
operator Fw is the only extension of minimal norm of

(0.3) Rw = Fw|V : V −→ V

onto the whole L1 (compare with [8, Theorem 1]). We also show that if
Fw is not the only minimal extension of Rw, then the affine dimension
of the set of all minimal extensions is infinite (Theorem 1.8). Also,
some examples illustrating the possible applications of Theorems 1.6
and 1.8 will be given.

Now we will present a basic notation and some results and notions
which will be of use later.

To the end of this paper, unless otherwise stated, L1 = L1([0, 2π])n),
L∞ = L∞([0, 2π]n), C = C([0, 2π]n) and V will be a finite-dimensional
shift-invariant subspace of L1. All linear spaces considered in this paper
are real. The symbol

∫
f(s) ds will stand for (1/2π)n

∫
[0,2π]n

f(s) ds.
For any normed space X by S(X) we denote the unit sphere in X. The
symbol L(X,V ) (L(X) if X = V ) stands for the space of all linear,
continuous mappings from a normed space X into a normed space V .
Let V be a finite dimensional subspace of a Banach space X. Fix
A ∈ L(V ). Then

(0.4) PA(X,V ) = {P ∈ L(X,V ) : P |V = A}.

An element P0 ∈ PA(X,V ) is called a minimal extension if

(0.5) ‖P0‖ = inf{‖P‖ : P ∈ PA(X,V )}.

The symbol MinA(X,V ) will stand for the set of all minimal extensions
of A. Observe that if A = id|V , then PA(X,V ) is exactly the set of all
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linear projections from X onto V and each minimal extension is exactly
a minimal projection.

Lemma 0.1 (See, e.g., [6, 1.2]). Let (S,
∑
, µ) be a measure space.

Let P ∈ L(L1(S)), P =
∑k

j=1 uj(·)vj, where vj ∈ L1(S), uj ∈ L∞(S)
for j = 1, . . . , n. Put

(0.6) xP
s =

k∑
j=1

uj(s)vj .

Then
‖P‖ = max{P s : s ∈ S},

where

(0.7) P s =
∫

S

∣∣∣∣
k∑

j=1

uj(s)vj(t)
∣∣∣∣ dt =

∫
S

|xP
s (t)| dt.

Lemma 0.2. Let w ∈ V . Then Fw ◦ Iu = Iu ◦ Fw for any u ∈ Rn.

Proof. Note that for any t, u ∈ Rn and f ∈ L1,

(Iu ◦ Fwf)t = (Fwf)(t+ u) =
∫
f(s)w(t+ u− s) ds

=
∫
f(u+ s)w(t− s) ds = (Fw ◦ Iuf)t,

as required.

Lemma 0.3. Let V ⊂ L1, and let w ∈ V . Then, for any s ∈ [0, 2π]n,

(0.8) F s
w =

∫
|w(t− s)| dt = ‖Fw‖ = ‖w‖1.

Proof. Note that w =
∑

j λjvj , where {vj} is a fixed basis of V .
Since V is an invariant subspace, for every t, s ∈ [0, 2π]n, w(t − s) =
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∑
j λj(s)vj , where λ(s) ∈ L∞. By (0.7),

F s
w =

∫ ∣∣∣∣
∑

j

λj(s)vj(t)
∣∣∣∣ dt =

∫
|w(t− s)| dt = ‖w‖1 = ‖Fw‖,

as required.

Lemma 0.4 [2, 1.3]. Let w ∈ V . If P and Fw are minimal extensions
of Rw, then for all s ∈ [0, 2π]n,

(0.9) sgn (xP
s ) = sgn (xFw

s ).

Definition 0.5. Let V ⊂ L1. V is said to be a smooth subspace if
0 is the only element of V vanishing on a set of positive measure.

Theorem 0.6 [4]. Let T be a compact set without isolated points. If
L : C(T ) → C(T ) is a compact operator, then

(0.10) ‖I + L‖ = 1 + ‖L‖.

1. The results. First we prove some lemmas which will be of use
later.

Lemma 1.1. Let w ∈ V . Suppose that Fw is the only extension of
Rw which commutes with each operator Iu (see Lemma 0.2). Then Fw

is a minimal extension of its restriction to V , Rw, in PRw
(L1, V ).

Proof. The proof goes on the same line as the proof of the minimality
of the Fourier projection from C0(2π) onto πn (see [10]), but we present
a sketch of it for the sake of completeness. Let P ∈ PRw

(L1, V ) be a
minimal extension of Rw. Let us define

(1.1) Q =
∫

(Iu)−1PIu du,

Note that, by (0.1), each operator Iu is a linear isometry of L1. Hence
it is easy to check that Q is an extension of Rw of minimal norm.
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Moreover, by the properties of the Haar measure, Iu ◦ Q = Q ◦ Iu for
any u ∈ Rn. Hence Fw = Q, as required.

Lemma 1.2 (See, e.g., [5]). Suppose that Fw is not the unique
minimal extension of Rw. Then Fw is not an extreme point of
MinRw

(L1, V ).

Proof. Suppose that P ∈ MinRw
(L1, V ), P �= Fw, exists. Then there

is a v ∈ L1\V such that Pv �= Fwv. By the proof of Lemma 1.1, for
any set of positive measure A ⊂ [0, 2π]n,

Fw =
∫

(Iu)−1PIu du

= m(A)
(∫

A

(Iu)−1PIu du

)/
m(A)

+ (1−m(A))
(∫

[0,2π]n\A

(Iu)−1PIu du

)/
(1−m(A)).

Put

QA
1 =

( ∫
A

(Iu)−1PIu du

)/
m(A)

and

QA
2 =

( ∫
[0,2π]n\A

(Iu)−1PIu du

)/
(1−m(A)).

By Lemma 0.2, QA
1 and QA

2 are both minimal extensions of Rw for any
set A of positive measure. Moreover, since Pv �= Fwv, QA

1 v �= Fwv
for A being a sufficiently small neighborhood of (0, . . . , 0) in [0, 2π]n.
Hence QA

1 �= Fw, which completes the proof.

Lemma 1.3. Let W be a finite dimensional subspace of L∞. Then
a real valued function f ∈ L∞, f �= 0, exists such that

(1.2)
∫
g(t)f(t) dt = 0

for any g ∈W .
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Proof. Note that, in our case, W ⊂ L∞ ⊂ L2([0, 2π]n). Hence
the result follows easily from the Gram-Schmidt orthonormalization
procedure.

Lemma 1.4. Suppose w ∈ S(V ), g ∈ V and g/w ∈ L∞. Assume
additionally that V is a smooth subspace of L1 (see Definition 0.5).
Then, for any ε ∈ R with

(1.3) |ε| < (‖(g − w)/w‖∞)−1,

sgn (w + ε(g − w)) = sgn (w) almost everywhere.

Proof. Take any t ∈ [0, 2π]n with w(t) �= 0. By (1.3),

(1.4)
|ε sgn (w(t))(g(t)− w(t))| ≤ |ε| |g(t)− w(t)|

= |ε|(|g(t)− w(t)|/|w(t)|)|w(t)|
≤ |ε| ‖(g − w)/w‖∞|w(t)| < |w(t)|.

Consequently, by (1.4),

sgn (w(t))(w(t) + ε(g(t)− w(t))) > 0,

which completes the proof.

Definition 1.5. Let V ⊂ L1, and let w ∈ V , w �= 0. It is said that
w is determined by its roots if and only if, for any g ∈ V , if g/w ∈ L∞,
then g is a constant multiple of w. Now we will prove the main result
of this section.

Theorem 1.6. Let V ⊂ L∞ be a smooth subspace equipped with the
L1-norm, and let w ∈ V . Suppose that Fw satisfies the assumptions of
Lemma 1.1. Then Fw is the only minimal extension of Rw if and only
if w is determined by its roots.

Proof. Without loss, to the end of this proof we can assume that
‖w‖1 = 1. Suppose that Fw is not the only minimal extension. By
Lemma 1.2, Fw is not an extreme point in the set MinRw

(L1, V ) of all
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minimal extensions of Rw. Hence, Fw = (Q1+Q2)/2, where Q1 and Q2

are two different elements from MinRw
(L1, V ). Put L = (Q1−Q2)/2 =∑k

j=1 uj(·)vj , where {vj : j = 1, . . . , k} is a fixed basis of V . Then
Q1 = Fw + L and Q2 = Fw − L. Consequently, by Lemma 0.3,

(1.5) 1 = ‖Fw − L‖ = ‖Fw‖ = ‖Fw + L‖.

By Lemma 0.4,

(1.6) sgn (xFw
t ) = sgn (xFw+L

t ) = sgn (xFw−L
t )

for all t ∈ [0, 2π]n, where x(·)
t is defined by (0.6). Now fix t ∈ [0, 2π]n

satisfying (1.6) with xL
t �= 0. Note that, by Lemma 0.3, for any

s ∈ [0, 2π]n, xFw
t (s) = w(s − t). Put h = It(xL

t ) and set g = (w + h),
where It is defined by (0.1). Since xL

t �= 0 and It is a linear isometry,
h �= 0. By (1.6), sgn (g) = sgn (w) = sgn (w − h) almost everywhere.
Note that, by Lemma 0.1,

‖g‖1 = (Fw + L)t ≤ ‖Fw + L‖ = 1
and

‖w − h‖1 = (Fw − L)t ≤ ‖Fw − L‖ = 1.

Since w = (g + (w − h))/2 and ‖w‖1 = 1, ‖g‖1 = 1.

Now we show that g/w ∈ L∞. If not, then for every k ∈ N there is
a measurable set Ak of positive measure, such that

(1.7) |g(s)|/|w(s)| > k

for any s ∈ Ak. Put, for s ∈ [0, 2π]n, as = sgn (w(s)). By (1.7) we
easily get

ash(s) > (k − 1)asw(s).

Hence,
as(w(s)− h(s)) < (2− k)|w(s)| < 0.

Consequently, sgn (w−h) �= sgn (w) on Ak for k > 2; a contradiction
with (1.6). Since w is determined by its roots, g= cw. Since sgn (g)=
sgn (w) almost everywhere and ‖g‖1=1, g=w and, consequently, h=0,
a contradiction.
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To prove the converse, suppose Fw is the only minimal extension of
Rw. Take g ∈ V such that g/w ∈ L∞. We will show that g = cw for
some c ∈ R. Note that, by Lemma 1.4, for ε > 0 sufficiently small
sgn (w + ε(g − w)) = sgn (w) almost everywhere. Put

g1 = (w + ε(g − w))/‖w + ε(g − w)‖1

and h = g1 −w. Since ‖g‖1 = ‖w‖1 = 1 and sgn (g1) = sgn (w), almost
everywhere,

(1.8)
∫
h(t)sgn (w(t)) = 0.

Let

(1.9) W = span [v(·)h(t− ·) : v ∈ V, t ∈ [0, 2π]n].

Since V is an invariant subspace, dim (W ) < ∞. Moreover, since
V ⊂ L∞, W ⊂ L∞. By Lemma 1.3, we can find a real-valued function
f ∈ L∞ such that 0 < ‖f‖∞ < (‖h/w‖∞)−1 which is orthogonal to v
for any v ∈W . Define Q = Fw + L where

(1.10) (Lφ)t =
∫
f(s)φ(s)h(t− s) ds.

We show that Q is an extension of Rw of minimal norm. Note that
Lφ ∈ V for any φ ∈ L1 and, by the choice of f , Lv = 0 for any v ∈ V .
Hence Q : L1 → V . To show that Q is minimal extension, let us observe
that, by Lemmas 0.1, 0.3, 1.4 and (1.8),

‖Fw‖ ≤ ‖Q‖ = max
s

[Qs]

= max
s

[ ∫
|w(t−s) + f(s)h(t−s)| dt

]

= max
s

[ ∫
sgn (w(t−s))(w(t−s) + f(s)h(t−s)) dt

]

= max
s

[ ∫
|(w(t−s)| dt+ f(s)

∫
sgn (w(t−s))h(t−s) dt

]

= max
s

[ ∫
|(w(t−s)| dt

]
= ‖Fw‖.
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Since Fw is the only minimal extension of Rw and V is smooth, h = 0.
Hence, g1 = w and consequently g = cw for some c ∈ R. The proof is
complete.

Remark 1.7. A complex version of Theorem 1.6 has been proved
in [9] (see also [8, Theorem 1]). Observe that in the case of one
variable if w = Dk and V = πk, then w is determined by its roots. By
Theorem 1.6, the classical Fourier projection Fw is the only minimal
projection with respect to ‖ · ‖1.

Theorem 1.8. Suppose V ⊂ L∞ and V is smooth. Let w ∈ S(V ).
Put

Sw = span [MinRw
(L1, V )− Fw].

If w is not determined by its roots, then dim(Sw) = ∞.

Proof. If w is not determined by its roots, g ∈ V exists such that
g/w ∈ L∞ and g is not a constant multiple of w. Reasoning as in
the proof of Theorem 1.6, we can construct h ∈ V satisfying (1.8).
Since g is not a constant multiple of w, h �= 0. By Lemma 1.3 we can
construct a linearly independent set {fj : j ∈ N} ⊂ L∞ orthogonal
to the space W defined by (1.9) such that 0 < ‖fj‖∞ < (‖h/w‖∞)−1.
Let Lj be the operator associated with fj and h by (1.10), and let
Qj = Fw +Lj . Reasoning as in the proof of Theorem 1.6, we can show
that Qj ∈ MinRw

(L1, V ). Hence, to finish the proof, it is enough to
show that {Lj : j ∈ N} is linearly independent. To do this, suppose
that

∑k
j=1 ajLj = 0. This means that, for every g ∈ L1, t ∈ [0, 2π]n,

(1.11)
∫
g(s)

( k∑
j=1

ajfj(s)h(t− s)
)
ds = 0.

By (1.11) and the Goldstine Theorem, for any φ ∈ (L∞)∗,

φ

( k∑
j=1

ajfj(s)h(t− s)
)

= 0,
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and consequently,
∑k

j=1 ajfjh(t − ·) = 0. Since h �= 0 and V is
smooth,

∑k
j=1 ajfj = 0. Since fj are linearly independent, aj = 0

for j = 1, . . . , k. The proof is complete.

Now we consider a finite codimensional problem in L∞. Put for
w ∈ V ,

(1.12) (PRw
(L1, V ))∗ = {P ∗ : P ∈ PRw

(L1, V )}.

Theorem 1.9. Let V satisfy the requirements of Theorem 1.6. Let
Id denote the identity operator on L∞. Then Id has the only element
of best approximation in (PRw

(L1, V ))∗ if and only if w is determined
by its roots.

Proof. By Theorem 0.6, for any P ∗ ∈ (PRw
(L1, V ))∗,

(1.13) ‖(Id− P ∗)|C‖ = 1 + ‖P ∗|C‖.
Since C is weakly∗-dense in L∞, ‖P |C‖ = ‖P‖ for any P ∈ PRw

(L1, V ).
Consequently,

‖Id− P ∗‖ = 1 + ‖P ∗‖.
Hence an element P ∗ is the best approximation to Id if and only if P ∗ is
an element of minimal norm in (PRw

(L1, V ))∗. Since ‖P‖ = ‖P ∗‖, this
is equivalent to the fact that P is a minimal extension of Rw. Applying
Theorem 1.6, we get the result.

Corollary 1.10. Let V = span [v1, . . . , vk] satisfy the requirements
of Theorem 1.9. If w is so chosen that Rw = Id|V , then the only
minimal projection from L∞ or C onto W = ∩k

j=1 ker(vj) exists (here
we treat vj as functionals on L∞) if and only if w is determined by its
roots.

Remark 1.11. Let n = 1. Let N ⊂ Z be a finite set, symmetric with
respect to zero. Put V = span [sin(k·), cos(k·) : k ∈ N ]. In this case
Corollary 1.10 has been proved in [5, p. 243].

At the end of this paper we present two examples of invariant
subspaces which fulfill the assumptions of Theorem 1.6 and some
possible applications of Theorem 1.6.
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Example 1.12. Put n = 1, and let N ⊂ Z be a finite subset. Put

V = span [cos(j·), sin(j·) : j ∈ N ].

Then it is easy to see that, for any w ∈ V , Fw satisfies the requirements
of Theorem 1.6. In particular, if w =

∑
j∈N 2 cos(j·), if j = 0 the

corresponding term of the sum should be one, then Rw = id|V . In this
case Fw is the only minimal projection if and only if w is determined
by its roots. If

N = {−4,−3,−2, 0, 2, 3, 4},
then, by [5, Example 2], w is not determined by its roots. Hence,
by Theorem 1.8, the set of all minimal projections has infinite affine
dimension in this case.

Example 1.13. (Multivariate case.) Let N be a finite subset of Zn.
For each α = (α1, . . . , αn) ∈ N , set

Gα =
{
f ∈ C : f(t) =

∏
j=1,... ,n

fj(tj)
}
,

where fj = cos(αj ·) or fj = sin(αj ·) for j = 1, . . . , n. Put V =
span [Gα : α ∈ N ]. Then it is easy to see that V satisfies the
requirements of Theorem 1.6.

Example 1.14. (Uniqueness.) Let n = 1 and V = πk, the space
of all trigonometric polynomials of degree ≤ k. Let g be an algebraic
polynomial of real variable of degree k. Set w = g ◦ cos(·). Then it
is easy to see that w ∈ πk. If g has k different roots in (−1, 1), then
w has 2k different roots in (0, 2π). Since πk is a Haar subspace on
(0, 2π), w is determined by its roots. Hence, by Theorem 1.6, Fw is the
only minimal extension of Rw. Observe that the classical Chebyshev
and Legendre polynomials of degree k have exactly k different roots in
(−1, 1).

Example 1.15. (Nonuniqueness.) Let V = πk. Take any algebraic
polynomial g �= 0 of degree ≤ k. Suppose that g has m roots
a1, . . . , am ∈ (−1, 1), counting multiplicities and m < k. Let w be
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constructed as in Example 1.14. We show that w is not determined by
its roots. To do this, let b1, . . . , bk−m+1 be different points, |bj | > 1 for
j = 1, . . . , k −m + 1. Since g �= 0, without loss, we can assume that
g(bk−m+1) �= 0. Let g1 be a polynomial of degree k satisfying g1(aj) = 0
for j = 1, . . . ,m, g1(b1) = 1 and g1(bj) = 0 for j = 2, . . . , k −m + 1.
Set w1 = g1 ◦ cos(·). Then it is clear that w1/w ∈ L∞ and w1 is not a
constant multiple of w. By Theorem 1.6, Fw is not the unique minimal
extension. Moreover, by Theorem 1.8, dim (Sw) = ∞.

Proposition 1.16. Let V ⊂ L1([0, 2π]n) and U ⊂ L1([0, 2π]m) be
two spaces satisfying the requirements of Theorem 1.6. Let v ∈ V and
u ∈ U . Put W = V ⊗ U ⊂ L1([0, 2π]n+m) and w(t1, t2) = v(t1)u(t2).
Then Fw is the only minimal extension of Rw if and only if Fv is the
only minimal extension of Rv and Fu is the only minimal extension of
Ru.

Proof. Suppose that Fw is the only minimal extension. By The-
orem 1.6, it is enough to show that u and v are determined by its
roots. To do this, take any g ∈ V such that g/v ∈ L∞([0, 2π]n). Then
gu ∈ W , gu/w ∈ L∞([0, 2π]n+m). By Theorem 1.6 applied to w, we
get gu = cw for some c ∈ R. Consequently, g = cv, as required. The
same reasoning applies to u.

Now suppose that both Fv and Fu are the only minimal extensions.
Take any g ∈W with g/w ∈ L∞([0, 2π]n+m). Set

(1.14) A = {t1 : v(t1) �= 0}.
Since V is smooth, A is a set of full measure in [0, 2π]n. Fix any
t1 ∈ A. Note that (g(t1, ·)/v(t1))/u(·) ∈ L∞([0, 2π]m). Since Fu is the
only minimal extension, by (1.14) and Theorem 1.6 applied to u,

(1.15) g(t1, t2) = c(t1)v(t1)u(t2)

for any t1 ∈ A, t2 ∈ [0, 2π]m. By (1.15), c(t1)v(t1) ∈ V .

Since g/w ∈ L∞([0, 2π]n+m), c(t1)v(t1)/v(t1) ∈ L∞([0, 2π]n). By
Theorem 1.6 applied to v, c(t1)v(t1) = cv(t1) for any t1 ∈ [0, 2π]n.
Consequently, c(t1) = c and by (1.15) g = cw. Hence w is determined
by its roots. By Theorem 1.6, Fw is the only minimal extension of Rw.
The proof is complete.



FOURIER-TYPE MINIMAL EXTENSIONS 1037

Remark 1.17. By induction argument, Proposition 1.16 can be easily
generalized to the case of tensor product of n spaces for any n ∈ N.
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