
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 30, Number 3, Fall 2000

DIOPHANTINE APPROXIMATION BY CUBES
OF PRIMES AND AN ALMOST PRIME

A. KUMCHEV

ABSTRACT. Let λ1, . . . , λs be nonzero with λ1/λ2 irra-
tional, and let S be the set of values attained by the form

λ1x3
1 + · · ·+ λsx3

s

when x1 has at most six prime divisors and the remaining
variables are prime. In the case s = 4, we establish that most
real numbers are “close” to an element of S. We then prove
that if s = 8, S is dense on the real line.

1. Introduction and preliminaries. Let λ1, . . . , λs be nonzero
real numbers with λ1/λ2 irrational, and let Ps denote the set of integer
points in Rs, all coordinates of which are prime. We will be concerned
with the distribution of the values taken by the form

(1.1) λ1x
3
1 + · · ·+ λsx3

s

on Ps. The (optimistic) conjecture is that if s ≥ 4, they are dense
on R, but our factual knowledge on the topic is much worse. Back
in 1963, Schwarz [13] showed that if s ≥ 9, the values of (1.1) on
Ps are dense, and although sharper quantitative versions of this result
have been obtained (see Vaughan [16] and Baker and Harman [1]), it
seems that reducing the minimum value of s is beyond the limit of the
present methods. On the other hand, in the similar situation with the
classical Waring-Goldbach problem for cubes, Roth [11] showed that if
one allows x to take arbitrary integer values, the equation

(1.2) x3 + p31 + p
3
2 + p

3
3 = n

is solvable for almost all integers n, in the sense usually adopted in
additive number theory. Let Pr denote the set of integers having at
most r prime divisors counted with multiplicities. Brüdern [3] proved
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that if n ≡ 4 (mod 18), one can restrict the variable x in (1.2) to
the set P4, and Kawada [9] replaced P4 by P3 via Chen’s reversal of
roles. The main goal of the present paper is to carry Brüdern’s result
to Diophantine inequalities. We shall prove

Theorem 1. Let λ1, . . . , λ4 be nonzero real numbers with λ1/λ2

irrational. For δ > 0, let E(N) denote the Lebesgue measure of the set
of real numbers ν ∈ [−N,N ] for which the inequality

(1.3) |λ1x
3
1 + λ2x

3
2 + λ3x

3
3 + λ4x

3
4 − ν| < (max |xj |)−δ

has no solution in prime x2, . . . , x4 and x1 ∈ P6. Then, for sufficiently
small δ > 0, arbitrarily large values of N exist such that E(N)� N1−η

for some η > 0 (depending at most on δ). Furthermore, if λ1/λ2 is also
algebraic, the assertion is true for all sufficiently large N .

We can deduce from Theorem 1 the following

Theorem 2. If λ1, . . . , λ8 are nonzero and λ1/λ2 is irrational, the
values taken by the form

λ1x
3
1 + · · ·+ λ8x

3
8

at the points (x1, . . . , x8) ∈ P6 × P7 are dense on the real line.

The effect of having almost primes with (possibly) more prime factors
than in the result on the corresponding “equation problem,” although
undesirable, is not unexpected. For example, when dealing with the
analogue of the binary Goldbach problem, Vaughan [17] managed to
show that reals can be approximated by the values taken by a linear
form when one of the variables is prime and the other is in P4. Later,
using a method that draws heavily on the fact that only two variables
are present, Harman [7] succeeded in replacing P4 by P3 in Vaughan’s
result, but even this is weaker than Chen’s theorem (all sufficiently
large even integers are the sum of a prime and an element of P2).

Through the rest of this section we use the linear sieve to derive
Theorem 1 from Propositions 1 and 2 below. The propositions are
proved in Sections 2 4, and the proof of Theorem 2 is given in Section 5.
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Without loss of generality, we can assume that λ1 and ν are positive.
Let a/q be a convergent to the continued fraction of λ1/λ2 with q being
sufficiently large, and choose N so that

(1.4) N3/20+6δ+21η ≤ q ≤ N1/2−2δ−9η

(this can always be done provided that δ and η are sufficiently small).
Note that if λ1/λ2 is an algebraic irrationality, by Roth’s theorem
on Diophantine approximation, the denominators of two consecutive
convergents to its continued fraction satisfy qm+1 � q1+ε

m (hereafter ε
denotes a positive number that can be taken arbitrarily small). Hence,
in this case all sufficiently large N satisfy (1.4) for some q, and so
both parts of the theorem will follow, if we show that E(N) � N1−η

whenever N satisfies (1.4).

Define P, P1 and Q by

P 3 =
1
2
N, 8|λ2|P 3

1 =
1
4
N, Q = P 4/5,

and let L = logN , τ = P−δL−2. Also, for N < ν ≤ 2N , define r∗(ν)
as the number of solutions of

(1.5) |λ1m
3 + λ2p

3
2 + λ3p

3
3 + λ4p

3
4 − ν| < τL

in prime p2, p3, p4 and m ∈ P6 subject to

(1.6) P < m ≤ 2P, P1 < p2 ≤ 2P1, Q < p3, p4 ≤ 2Q.

We shall prove that r∗(ν) > 0 for almost all ν ≤ N (by the phrase
“for almost all ν ≤ N” we will mean “with the possible exceptions
ν ∈ (N, 2N ] forming a set of Lebesgue measure O(N1−η) ”).

We first bring in the function K(x) = e−πx2
to “smooth” the

condition (1.5) in the definition of r∗(ν). The important properties
of K(x) are

(1.7) K̂(x) :=
∫ ∞

−∞
K(ξ)e(−xξ) dξ = K(x),

and

(1.8) e−πχ(−1,1)(x) ≤ K(x) ≤ χ(−1,1)(x/ρ) + e−πρ2
, ρ > 0.
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It is also convenient to weight the primes p2, p3, p4 by logarithms. Thus,
defining the weights

w(ν;m) =
∑

P1<p2≤2P1
Q<p3,p4≤2Q

log p2 · · · log p4K
( |λ1m

3+λ2p
3
2+λ3p

3
3+λ4p

3
4−ν|

τ

)
,

we have, by (1.8) with ρ = L,

r∗(ν)� L−3
∑

P<m≤2P
m∈P6

w(ν;m).

Hence, it suffices to show that, for example,

(1.9)
∑

P<m≤2P
m∈P6

w(ν;m) ≥ 1

for almost all ν ≤ N . Let r(ν) be the last sum with the condition m ∈
P6 omitted and rd(ν) the subsum of r(ν) with m ≡ 0 (mod d). Also
let X approximate r(ν), and for a square-free d define the remainders
R(d) by

(1.10) R(d) := rd(ν)−X/d.
(X will be defined explicitly by (4.3); at this point we will use only the
estimate X � τP−1Q2 � τN1/5).

To prove (1.9) we will use the weighted linear sieve of Greaves [5],
[6]. For a particular ν, (1.9) follows from the result in [5], provided
that the next two conditions hold:

(A1) If θ < 1/5, ξd are complex numbers of modulus ≤ 1 and µ(d) is
the Möbius function, then

∑
d≤P θ

µ2(d)ξdR(d)� XL−2.

(A2) There exists a ρ > 0 such that
∑

p>P 1/10

rp2(ν)� X1−ρ.
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The upper bound for θ in axiom (A1) is often referred to as the level
of distribution and is closely related to the number of prime divisors
of the almost prime variable. In particular, Brüdern [3, Lemma 1]
has θ < 1/3 in place of θ < 1/5, whence P4 in place of P6 in the final
result. The reason that we cannot achieve the same level of distribution
as Brüdern is that the Davenport-Heilbronn method is much more
sensitive to “imparities” among the variables than the classical form of
the circle method. In particular, there is no analogue (that the author
is aware of) of the Vaughan’s result from [18], which was an essential
part of the proofs of most mean value estimates used in Brüdern’s work.
Instead, we are forced to rely on the weaker Lemma 9 in [4], leading to
a lower level of distribution.

We shall be able to verify the axioms for almost all ν ≤ N by proving
the following results.

Proposition 1. Let θ < 1/5, D = P θ, and R(d) be defined by (1.10).
Also let ξd be complex numbers of modulus ≤ 1. Then, for any A > 0,
the values of ν ∈ (N, 2N ], for which the estimate∑

d≤D

ξdR(d)� τP−1Q2L−A

does not hold, form a set of Lebesgue measure O(N1−η).

Proposition 2. If γ > 4δ/3 and η is sufficiently small,
∫ 2N

N

∣∣∣∣
∑
p>Pγ

rp2(ν)
∣∣∣∣
2

dν � τ2P 1−4ηQ4.

Clearly Proposition 1 establishes axiom (A1) for almost all ν ≤ N .
Also we can deduce from Proposition 2 that the set of values of
ν ∈ (N, 2N ] for which ∑

p>Pγ

rp2(ν) > X1−η/2

has measure � N1−η, so axiom (A2) is satisfied for almost all ν ≤ N
as well. Thus, once we have the propositions the proof of Theorem 1
will be completed.
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2. Counting solutions of Diophantine inequalities. This sec-
tion contains estimates for the number of solutions of some Diophantine
inequalities. Also, in its end we prove Proposition 2. The first lemma
states some estimates from [4] in the present context.

Lemma 1. Let λ and µ be fixed real numbers with

1� |λ| � 1, 1� |µ| � 1,

and let Z be sufficiently large in terms of λ, µ. Denote by Sk the number
of solutions of the inequality

|λ(n3
1 − n3

2) + µ(m
3
1 + · · ·+m3

k −m3
k+1 − · · · −m3

2k)| < 1/2

with Z < ni ≤ 2Z, Z4/5 < mi ≤ 2Z4/5. Then

(a) S2 � Z13/5+ε;

(b) S3 � Z19/5+ε.

Proof. Define

(2.1) f(x) =
∑

Z<n≤2Z

e(xn3), g(x) =
∑

Z4/5<n≤2Z4/5

e(xn3),

and consider the integral

Jk =
∫ ∞

−∞
|f(λx)|2|g(µx)|2k

(
sinπx
πx

)2

dx.

By (11.3) and (11.4) in [15], Sk ≤ 2Jk. So the result follows from
Lemmas 8 and 9 of [4] (which contain the corresponding estimates for
Jk).

Lemma 2. Let λ, µ and κ be fixed real numbers with

1� |λ| � 1, 1� |µ| � 1, 1� |κ| � 1,

and let Z be sufficiently large in terms of λ, µ, κ. Denote by S(W) the
number of solutions of the inequality

|λ(n3
1 − n3

2) + µ(w
3
1 − w3

2) + κ(m
3
1 +m

3
2 −m3

3 −m3
4)| < 1/2
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with Z < ni ≤ 2Z, Z4/5 < mi ≤ 2Z4/5 and wi ∈ W where W is a set
of positive integers � Z having cardinality W . Then

S(W)� Z69/20+εW 3/4.

Proof. Let f(x) and g(x) be given by (2.1), and define

h(x) =
∑
w∈W

e(xw3).

As in the previous proof, it suffices to show that

J(W) =
∫ ∞

−∞
|f(λx)|2|h(µx)|2|g(κx)|4Φ(x) dx� Z69/20+εW 3/4

where Φ(x) = (sin πx/πx)2. By Hölder’s inequality, Lemma 2.5 of [15]
and Lemma 9 of [4],

J(W)�
( ∫ ∞

−∞
|f(λx)|8Φ(x) dx

)1/12( ∫ ∞

−∞
|h(µx)|8Φ(x) dx

)1/4

×
( ∫ ∞

−∞
|f(λx)|2|g(κx)|6Φ(x) dx

)2/3

� (Z5+ε)1/12(Z21/5+ε)2/3
(∫ ∞

−∞
|h(µx)|8Φ(x) dx

)1/4

.

Thus the result follows from the inequality∫ ∞

−∞
|h(µx)|8Φ(x) dx� Z2+εW 3,

which one can easily derive from

(2.2)
∫ 1

0

|h(x)|8 dx� Z2+εW 3.

The proof of (2.2) follows the argument on pages 12 13 of [15]. If bj
is the number of solutions of w3

1 − w3
2 = j in wi ∈ W , and cj is the

number of solutions of (w + k)3 − w3 = j in w ∈ W , |k| � Z, one has

(2.3) |h(x)|2 =
∑
j

bje(−xj) and |h(x)|2 �
∑
j

cje(xj).
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Hence, by Parseval’s identity,

∫ 1

0

|h(x)|4 dx�
∑
j

bjcj .

Since c0 �W and cj � Zε, j �= 0, we now find

(2.4)
∫ 1

0

|h(x)|4 dx�Wb0 + Zε
∑
j

bj � ZεW 2.

For
∑
bj �W 2 and

b0 =
∫ 1

0

|h(x)|2 dx =W.

The analogues of (2.3) for the fourth power of h are

(2.5) |h(x)|4 =
∑
j

b∗je(−xj) and |h(x)|4 � Z
∑
j

c∗je(xj)

where now b∗j is the number of solutions of

w3
1 + w

3
2 − w3

3 − w3
4 = j

in wi ∈ W and c∗j is the number of solutions of

3k1k2(3w + k1 + k2) = j

in w ∈ W and |k1|, |k2| � Z. Again, these satisfy

c∗0 � ZW, b∗0 � ZεW 2, c∗j � Zε (j �= 0),
∑
j

b∗j �W 4;

(the estimate for b∗0 follows from (2.4)). Hence, by (2.5) and Parseval’s
identity,

∫ 1

0

|h(x)|8 dx� Z
∑
j

b∗j c
∗
j = Zb

∗
0c

∗
0 + Z

∑
j �=0

b∗j c
∗
j

� Z2+εW 3 + Z1+εW 4 � Z2+εW 3.
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The proof of (2.2) is complete.

We are now in a position to prove Proposition 2.

Proof of Proposition 2. Let

(2.6)

f(x) =
∑
p>Pγ

∑
P<n≤2P

n≡0 (mod p2)

e(xn3),

g(Y ;x) =
∑

Y <p≤2Y

(log p)e(xp3),

and write

(2.7) F (x) = f(λ1x)g(P1;λ2x)g(Q;λ3x)g(Q;λ4x).

Then, by the Fourier inversion formula,

∑
p>Pγ

rp2(ν) =
∫ ∞

−∞
F (x)Kτ (x)e(−xν) dx

where Kτ (x) = τK(τx).

We first show that

(2.8)
∫ 2N

N

∣∣∣∣
∫ ∞

−∞
F (x)Kτ (x)e(−xν) dx

∣∣∣∣
2

dν

� L

∫ ∞

−∞
|F (x)|2Kτ (x)2 dx.

Let H = τ−1L and

J(ν) :=
∫ H

−H

F (x)Kτ (x)e(−xν) dx.

Since the contribution of |x| > H to the left side of (2.8) is negligible,
we consider

∫ 2N

N

|J(ν)|2 dν =
∫ H

−H

F (x)Kτ (x)
∫ 2N

N

J(ν)e(xν)dν dx.



970 A. KUMCHEV

By the Cauchy-Schwarz inequality, the last integral is

≤ J 1/2

( ∫ H

−H

∣∣∣∣
∫ 2N

N

J(ν)e(xν) dν
∣∣∣∣
2

dx

)1/2

where J is the integral in the right side of (2.8). Furthermore,
∫ H

−H

∣∣∣∣
∫ 2N

N

J(ν)e(xν) dν
∣∣∣∣
2

dx

=
∫ 2N

N

∫ 2N

N

J(ν1)J(ν2)
∫ H

−H

e(x(ν1 − ν2)) dx dν1 dν2

≤
∫ 2N

N

∫ 2N

N

|J(ν1)|2
∣∣∣∣
∫ H

−H

e(x(ν1 − ν2)) dx
∣∣∣∣ dν1 dν2.

Since, for any ν1 ∈ (N, 2N ],
∫ 2N

N

∣∣∣∣
∫ H

−H

e(x(ν1 − ν2)) dx
∣∣∣∣ dν2 � L,

we obtain that∫ H

−H

∣∣∣∣
∫ 2N

N

J(ν)e(xν) dν
∣∣∣∣
2

dx� L

∫ 2N

N

|J(ν)|2 dν,

and (2.8) follows. Note that in the above argument it is sufficient to
assume that F (x) is bounded by a fixed power of P , say F (x)� P 100.

Now, by virtue of (2.8), the proposition will follow from the estimate∫ ∞

−∞
|F (x)|2Kτ (x) dx� τP 1−5ηQ4.

By the inequality between the arithmetic and geometric means and
another Fourier inversion, we obtain that this integral is� L3(T3+T4)
where Tj is the number of solutions of

|λ1(w3
1 − w3

2) + λ2(n3
1 − n3

2) + λj(m
3
1 +m

3
2 −m3

3 −m3
4)] < 1/2

in integers P1 < ni ≤ 2P1, Q < mi ≤ 2Q, P < wi ≤ 2P with wi

divisible by the square of a prime > P γ . Thus, by Lemma 2 with
Z = P and W = P 1−γ ,

Tj � P 69/20+ε(P 1−γ)3/4 � P 1−3γ/4+εQ4,
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and the result follows.

3. Estimates for Weyl sums.

Lemma 3. Assume that |rα − b| < P−3/2 where r ≤ P 3/2 and
(b, r) = 1. Assume also that am are complex numbers of modulus ≤ 1,
and define

(3.1) SI :=
∑

M<m≤2M
P<mn≤2P

ame(α(mn)3).

Then

SI �M1/4P 3/4+ε + r−1/3P 1+ε(1 + P 3|α− b/r|)−1/3.

Proof. This is Lemma 6 of Brüdern [3].

Our next result is a version of Lemma 5 of Balog and Brüdern [2].
Since the underlying ideas are the same, we give only a brief sketch of
the proof.

Lemma 4. Assume that |rα − b| < P−3/2 where r ≤ P 3/2 and
(b, r) = 1. Assume also that M � P 2/3, and am, bn are complex
numbers of modulus ≤ 1, and define

(3.2) SII :=
∑

M<m≤2M
P<mn≤2P

ambne(α(mn)3).

Then
SII � (PM)1/2 + P 1+εM−1/8 + P 1+εr−1/6.

Proof. By Cauchy’s inequality and change of the order of summation
and the summation variables, we obtain (cf. (3.13) in [2])

(3.3) |SII |2 � PM +M
∑
h,z

∣∣∣∣
∑
m

e(αkm3)
∣∣∣∣
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where k = [h(3z2 + h2)/4], h and z satisfy the conditions

h ≤ 2PM−1, PM−1 ≤ z ≤ 4PM−1, h ≡ z (mod 2),

and m runs through a subinterval of (M, 2M ]. By Lemma 3 in [2], if
the sum over m is not �M3/4+ε, integers b1 and r1 exist with

(3.4) (b1, r1) = 1, 1 ≤ r1 ≤M3/4−ε, |r1αk − b1| < M−9/4−ε,

and the estimate ∑
m

e(αkm3)�M1+εr
−1/3
1

holds. However, (3.4) and the assumptions of the lemma imply

|kbr1 − b1r| ≤ rM−9/4−ε + kr1P−3/2 � P 3/2M−9/4−ε �M−ε,

so that r1 = r/(k, r). Therefore, in all the cases,

(3.5)
∑
m

e(αkm3)�M3/4+ε +M1+ε

(
(k, r)
r

)1/3

.

Substitution of (3.5) into (3.3) and (a simplified version of) the sum-
mation argument leading to (3.17) in [2] complete the proof.

Lemma 5. Let g(α) = g(P ;α) be given by (2.6). Also let 0 < ρ <
1/12 and assume that |rα− b| < P−3/2 where r ≤ P 3/2 and (b, r) = 1.
Then

g(α)� P 1−ρ+ε + P 1+εr−1/6.

Proof. Using Heath-Brown’s identity (Lemma 3 in [8]), we can
decompose g(α) as the linear combination of O(L10) sums of the forms
SI with M � P 1/2+ρ and SII with P 2/3 �M � P 1−2ρ (cf. (3.1) and
(3.2)). To complete the proof, we estimate the sums of type SI via
Lemma 3 and the sums of type SII via Lemma 4.

4. Proof of Proposition 1. By the Fourier inversion formula,
∑
d≤D

ξdrd(ν) =
∫ ∞

−∞
F (x)Kτ (x)e(−xν) dx
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where Kτ (x) = τK(τx) and F (x) is defined by (2.7) with g(Y ;x) given
by (2.6) and

f(x) =
∑
d≤D

∑
P<dn≤2P

ξde(x(dn)3).

Set ω = D−1P−2−ε, H = τ−1L, and define the sets

M = (−ω, ω), m = {x : ω ≤ |x| ≤ H}, t = {x : |x| > H}.

The proposition will follow from the estimates

∫
M

F (x)Kτ (x)e(−xν) dx−X
∑
d≤D

ξd/d� τP−1Q2L−A,(4.1)

∫ 2N

N

∣∣∣∣
∫

m

F (x)Kτ (x)e(−xν) dx
∣∣∣∣dν � τ2P 1−4ηQ4,(4.2)

∫
t

F (x)Kτ (x)e(−xν) dx� 1.

Observe that the last inequality follows momentarily from the choice
of H and the properties of K(x), so we need to consider only (4.1) and
(4.2). We also need to finally define X. Let

I(Y ;x) =
∫ 2Y

Y

e(xtc) dt,

and g(x) = g(P1;x), h(x) = g(Q;x), I0(x) = I(P ;x), I1(x) = I(P1;x),
I2(x) = I(Q;x). We set

(4.3) X =
∫ ∞

−∞
I0(λ1x)I1(λ2x)I2(λ3x)I2(λ4x)Kτ (x)e(−xν) dx

and
F1(x) = I0(λ1x)I1(λ2x)I2(λ3x)I2(λ4x)

∑
d≤D

ξd/d.

Note that by the choice of P , P1 and Q, we have X � τP−1Q2.

We shall show that

(4.4)
∫

M

|F (x)− F1(x)| dx� P−1Q2L−A;
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then (4.1) will follow in view of the estimates

I0(x), I1(x)� P−2|x|−1, I2(x)� Q−2|x|−1.

The proof of (4.4) is a standard major arc treatment. We will use the
mean value estimates

(4.5)
∫ ω

−ω

|f(λ1x)|2 dx� P−1L4,

∫ ω

−ω

|g(λ2x)|2 dx� P−1L2,

(4.6)
∫ ω

−ω

|I(Y ;x)|2 dx� P−2Y L,

(4.7)
∫ ω

−ω

|g(λ2x)−I1(λ2x)|2 dx� P−1L−2A−1,

as well as the approximate formulas

f(x) = I0(x)
∑
d≤D

ξd/d+O(D),(4.8)

h(x) = I2(x) +O
(
Q exp(−(logQ)1/5)

)
,(4.9)

valid if |x| � ω. From these, (4.5) and (4.6) are easy, (4.8) follows via
Poisson summation (Lemma 4.2 in [15]) and (4.9) can be proven by
repeating the argument on pages 301 303 in [14] (which is based on
the approximate formula for ψ(t) and zero-density estimates for ζ(s)).
Hence, to complete the proof of (4.4) we need to establish (4.7). Since,
for |x| � ω,

v(x) :=
∑

P1<n≤2P1

e(xn3) = I1(x) +O(1),

it suffices to show that

(4.10)
∫

M

|g(x)− v(x)|2 dx� P−1L−2A−1

(where ω should really be λ2ω). Defining

b(n) =
{
log p n = p3,
0 otherwise,

c(n) =
{
1 n = m3,
0 otherwise,
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we can rewrite the lefthand side of (4.10) as

∫
M

∣∣∣∣
∑

P 3
1 <n≤8P 3

1

(b(n)− c(n))e(xn)
∣∣∣∣
2

dx,

and, by Lemma 1.9 in [10], this integral is

(4.11) � ω2

∫ ∞

−∞

∣∣∣∣
∑

P 3
1 <n≤8P 3

1
|x−n|<(2ω)−1

(b(n)− c(n))
∣∣∣∣
2

dx.

Observe that the last sum vanishes unless x ∈ [P 3
1 − (2ω)−1, 8P 3

1 +
(2ω)−1]. We split these values of x into three intervals:

J1 : |x− P 3
1 | ≤ (2ω)−1, J2 : |x− 8P 3

1 | ≤ (2ω)−1,

and
J3 = (P 3

1 + (2ω)
−1, 8P 3

1 − (2ω)−1).

By the trivial estimate, the contribution of J1 and J2 to (4.11) is

� ω−1P−4+ε � P−1−ε,

and the contribution of J3 is

� ω2

∫
J3

∣∣∣ϑ ( 3
√
x+ (2ω)−1 )− ϑ ( 3

√
x− (2ω)−1 )

− ( 3
√
x+ (2ω)−1 − 3

√
x− (2ω)−1 ) +O(L)

∣∣∣2 dx
� (ωP )2

∫ 2P1

P1

max
0≤u≤U

|ϑ(t+ u)− ϑ(t)− u|2 dt+ P−1−ε

where U � ω−1P−2 and ϑ(y) =
∑

p≤y log p. By Lemma 7 in [12], the

last integral is O(U2PL−B) whenever P 1/6+ε
1 < U ≤ P1, whence (4.10)

follows.

We now turn to (4.2). By (2.8) (see the remark after the end of its
proof) it can be obtained from

∫
m

|F (x)|2Kτ (x) dx� τP 1−4ηQ4L−1,
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which will follow if we establish that, for any µ � 1,

(4.12)
∫

m

|f(λ1x)g(λ2x)h(µx)2|2Kτ (x) dx� τP 1−4η−εQ4.

By Dirichlet’s theorem on Diophantine approximation, for any x ∈ m
one can find integers a1, q1, a2, q2 such that

(4.13)
∣∣∣∣λix− ai

qi

∣∣∣∣ < 1
qiP 3/2

, i = 1, 2,

1 ≤ qi ≤ P 3/2, (ai, qi) = 1 (and hence, |ai| � qiH). Let

m1 = {x ∈ m : q1 > τ−6P 24η+24ε},

m2 =
{
x ∈ m\m1 :

∣∣∣∣λ1x− a1

q1

∣∣∣∣ > P 6η+6ε

q1(τ1/2Q)3

}
,

m3 = m\(m1 ∪ m2).

By Lemma 3,
f(λ1x)� D1/4P 3/4+ε +Φ(x)

where
Φ(x) = q−1/3

1 P εmin(P, |λ1x− a1/q1|−1/3).

Note that, using the restriction on D and choosing δ, η and ε sufficiently
small, we can always ensure that D1/4P 3/4+ε � τ1/2QP−2η−ε; also,
for x ∈ m2, we have Φ(x)� τ1/2QP−2η−ε. Hence,

(4.14)

∫
m1∪m2

|f(λ1x)g(λ2x)h(µx)2|2Kτ (x) dx

� τQ2P−4η−2ε

∫ ∞

−∞
|g(λ2x)h(µx)2|2Kτ (x) dx

+
∫

m1

|Φ(x)g(λ2x)h(µx)2|2Kτ (x) dx.

Considering the underlying Diophantine inequality, we can estimate
the first term in the right side of (4.14) via Lemma 1(a); the resulting
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contribution to the final estimate is � τP 1−4η−εQ4. By Hölder’s
inequality, the second term is

�
( ∫

m1

Φ(x)8Kτ (x) dx
)1/4( ∫ ∞

−∞
|g(λ2x)h(µx)|4Kτ (x) dx

)1/4

×
( ∫ ∞

−∞
|g(λ2x)h(µx)3|2Kτ (x) dx

)1/2

.

The first integral is easily seen to be � τ4P 5−16η−16ε, and by consid-
ering the underlying inequalities, the second and third integrals can be
estimated via Lemmas 2 and 1(b), respectively. Thus, the contribution
of the second term in (4.14) is also � τP 1−4η−εQ4, and so

(4.15)
∫

m1∪m2

|f(λ1x)g(λ2x)h(µx)2|2Kτ (x) dx� τP 1−4η−εQ4.

Now let P−ρ = τ3/2P−3/40−6η−6ε and suppose for a moment that

(4.16) g(λ2x)� P 1−ρ+ε for all x ∈ m3.

Then∫
m3

|f(λ1x)g(λ2x)h(µx)2|2Kτ (x) dx

� P 2−2ρ

( ∫
m3

Kτ (x) dx
)1/4( ∫ ∞

−∞
|f(λ1x)h(µx)|4Kτ (x) dx

)1/4

×
( ∫ ∞

−∞
|f(λ1x)h(µx)3|2Kτ (x) dx

)1/2

.

Again, the second and third integrals can be estimated via Lemmas 2
and 1(b), and the first one is

� τ |m3| � τ−7.5Q−3P 30η+31ε.

Thus, by the choice of ρ,

(4.17)
∫

m3

|f(λ1x)g(λ2x)h(µx)2|2Kτ (x) dx� τP 1−4η−εQ4,
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provided that (4.16) holds.

Assume that (4.16) fails. Then, by Lemma 5, we must have in (4.13),

q1 ≤ τ−6P 24η+24ε, q2 ≤ τ−9P 9/20+36η+31ε,

and also |q1λ1x− a1| < (τ1/2Q)−3P 6η+6ε, since x ∈ m3. Hence,

|a2q1(λ1/λ2)− a1q2|
=

∣∣∣∣a2/q2
λ2x

q1q2

(
λ1x− a1

q1

)
− a1/q1

λ2x
q1q2

(
λ2x− a2

q2

)∣∣∣∣
� q2(τ1/2Q)−3P 6η+6ε + q1P−3/2

� τ−6P−3/2+24η+24ε = o(q−1),

and
a2q1 � q1q2H � τ−16P 9/20+60η+56ε = o(q).

But, by Legendre’s law of best approximation, if δ, η and ε are suffi-
ciently small, the last two inequalities cannot hold simultaneously (note
that a1a2 �= 0 for x ∈ m3). Therefore, (4.16) is true and (4.12) follows
from (4.15) and (4.17).

5. Proof of Theorem 2. We adopt all the notation set in the
proof of Theorem 1. Also, let ρ(ν) denote the number of solutions of
the inequality

|λ5p
3
5 + · · ·+ λ8p

3
8 − ν| < τ

in primes P < p5, p6 ≤ 2P , Q < p7, p8 ≤ 2Q, and let N1 = µN where
µ is a constant sufficiently large in terms of λ5, . . . , λ8. Then, by the
Cauchy-Schwarz inequality,

meas {ν : |ν| ≤ N1, ρ(ν) ≥ 0} ≥
( ∫ N1

−N1

ρ(ν) dν
)2( ∫ N1

−N1

ρ2(ν) dν
)−1

� τ2P 4Q4L−8

( ∫ N1

−N1

ρ2(ν) dν
)−1

.

Also, similarly to Proposition 2, we can prove that
∫ N1

−N1

ρ2(ν) dν � τP 1+εQ4,
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whence

(5.1) meas {ν : |ν| ≤ N1, ρ(ν) > 0} � τN1−ε.

Now, if
|λ1m

3 + λ2p
3
2 + · · ·+ λ8p

3
8 − ν| < τL

is not solvable in m ∈ P6 and prime p2, . . . , p8 as above, the set

{ν−λ5p
3
5 −· · ·−λ8p

3
8 − θτ : P < p5, p6 ≤ 2P,Q < p7, p8 ≤ 2Q, |θ| < 1}

must be contained in the exceptional set considered in Theorem 1, so
that its measure is� N1−η. On the other hand, by (5.1), this measure
is � N1−δ−2ε. To complete the proof it remains to observe that if δ
and ε are sufficiently small, one can choose the number η in Theorem 1
so that η > δ + 2ε.

Note added in proof. The results of the paper have been improved
since it was accepted. It has been shown that one can replace P6 in
Theorems 1 and 2 by P3. The proof will appear in a joint paper by
J. Brüdern and the author in the Illinois Journal of Mathematics. We
would like to take this opportunity to thank the anonymous referee of
the present work, whose report ignited our collaboration.
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