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MONOTONICITY AND ROTUNDITY PROPERTIES
IN BANACH LATTICES

H. HUDZIK, A. KAMIŃSKA AND M. MASTY�LO

ABSTRACT. Some general results on geometry of Banach
lattices are given. It is shown among others that uniform
rotundity or rotundity coincide to uniform or strict mono-
tonicity, respectively, on order intervals in positive cones of
Banach lattices. Several equivalent conditions on uniform
and strict monotonicity are also discussed. In particular, it
is proved that in Banach function lattices uniform and strict
monotonicity may be equivalently defined on orthogonal ele-
ments. It is then applied to show that p-convexification E(p)

of E is uniformly monotone if and only if E possesses that
property. A characterization of local uniform rotundity of
Calderón-Lozanovskii spaces is also presented.

Introduction. In the following N, R and R+ stand for the sets of
natural numbers, reals and nonnegative reals, respectively. The triple
(T,Σ, µ) stands for a nonatomic, complete and σ-finite measure space.
By L0 = L0(µ) we denote the space of all (equivalence classes of) Σ-
measurable functions x from T to R. By E = (E,≤, ‖ ‖) we denote an
abstract Banach lattice with a partial order ≤ (see [2], [19]) as well as
a Banach function space, being a Banach sublattice of L0 such that

(i) If x ∈ L0, y ∈ E and |x| ≤ |y|, µ almost everywhere, then x ∈ E
and ‖x‖ ≤ ‖y‖.
(ii) There exists x ∈ E such that x(t) �= 0 for all t ∈ T .

The positive cone of E will be denoted by E+. In the case of the
counting measure space (N, 2N, µ) where µ(A) = Card (A) for every
A ⊂ N, a Banach function space E is called a Banach sequence space.

As usual, for every x ∈ L0, supp x = {t ∈ T : x(t) �= 0} is the support
of x and χA is a characteristic function of A ∈ Σ. We denote by S(E)
andB(E) the unit sphere and the unit ball in E, respectively. A Banach
lattice E is said to be order continuous if, for every nonincreasing
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sequence (xn) in E such that xn ↓ 0 µ-almost everywhere, ‖xn‖ → 0
holds.

We say that E is strictly monotone (E ∈ (SM)) if, for every x, y ∈ E+

with x ≤ y and x �= y, we have ‖x‖ < ‖y‖. E is said to be uniformly
monotone (E ∈ (UM)) if for any ε ∈ (0, 1) there is a δ(ε) ∈ (0, 1)
such that ‖y − x‖ ≤ 1 − δ(ε), whenever 0 ≤ x ≤ y, ‖y‖ = 1 and
‖x‖ ≥ ε. E is called lower locally uniformly monotone (E ∈ (LLUM))
if for any x ∈ S(E+) and ε ∈ (0, 1), δ(x, ε) ∈ (0, 1) exists such that
‖x − y‖ ≤ 1 − δ(x, ε) whenever 0 ≤ y ≤ x and ‖y‖ ≥ ε. We say
that E is upper locally uniformly monotone (E ∈ (ULUM)) if for every
x ∈ S(E+) and ε > 0, δ(x, ε) > 0 exists such that ‖x+ y‖ > 1+ δ(x, ε)
whenever y ≥ 0 and ‖y‖ ≥ ε. For definitions and applications of
monotonicity properties in Banach lattices, see [1], [2], [3], [4], [10]
and [18].

For every (xn) and x in L0 we write xn → x in L0 to indicate
local convergence in measure, i.e., for any A ∈ Σ with µ(A) < ∞,
(xn−x)χA → 0 in measure. We say that a Banach function space E has
the Kadec-Klee property with respect to local convergence in measure
(E ∈ (Hµ)), if for every (xn) and x in E such that xn → x in L0 and
‖xn‖ → ‖x‖, ‖xn − x‖ → 0 holds.

Let X = (X, ‖ ‖) denote a Banach space. Recall that X is said to be
rotund (X ∈ (R)) if for every x, y ∈ X with x �= y and ‖x‖ = ‖y‖ = 1
we have ‖x + y‖ < 2. X is said to be uniformly rotund (X ∈ (UR))
if for every ε ∈ (0, 2), δ(ε) ∈ (0, 1) exists such that if ‖x‖ = ‖y‖ = 1
and ‖x − y‖ ≥ ε, then ‖(x + y)/2‖ ≤ 1 − δ(ε). X is said to be locally
uniformly rotund (X ∈ (LUR)) if for any x ∈ S(X) and ε ∈ (0, 2],
δ(x, ε) ∈ (0, 1) exists such that ‖(x + y)/2‖ ≤ 1 − δ(x, ε) whenever
‖x− y‖ ≥ ε and ‖y‖ ≤ 1.
It is not difficult to check that each condition of rotundity implies the

appropriate condition of monotonicity. For instance, properties (UR)
and (R) imply properties (UM) and (SM), respectively. In fact, we will
prove stronger assertions.

For each kind of “uniform property” defined above, one can match
a suitable modulus. The modulus of uniform monotonicity of E, for
instance, is defined as follows

δ(ε) = inf {1− ‖x− y‖ : ‖x‖ = 1, ‖y‖ ≥ ε, 0 ≤ y ≤ x},
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and obviously E is uniformly monotone if and only if δ(ε) > 0 for every
ε > 0. Analogously we introduce the other moduli (cf. [6]).

Recall that a Banach space (X, ‖ ‖) has Kadec-Klee property (X ∈
(H)) if for any sequence (xn) ⊂ X, x ∈ X, whenever xn → x weakly
and ‖xn‖ → ‖x‖ then ‖xn − x‖ → 0 (see [6, 7]).

A Banach function space E over the Lebesgue measure space ([0, γ),
Σ,m), with γ ∈ (0,∞], is said to be symmetric if for every x ∈ L0 and
y ∈ E with mx = my we have x ∈ E and ‖x‖ = ‖y‖. Recall that mx

denotes the distribution function of x, i.e., for all λ ≥ 0,

mx(λ) = m({t ∈ [0, γ) : |x(t)| > λ}).

The decreasing rearrangement function of x is denoted by x∗ and is
defined by

x∗(t) = inf {λ > 0 : mx(λ) ≤ t}
for t ≥ 0. It is known that mx∗ = mx for any x ∈ L0. For the basic
properties of symmetric spaces we refer to [17] and [19].

A mapping ϕ : R → R+ is said to be an Orlicz function if ϕ(0) = 0,
ϕ is convex, even and ϕ is not identically equal to zero. If E is a Banach
function lattice and ϕ is an Orlicz function we say that ϕ satisfies the
∆E

2 -condition, see [4], whenever K > 0 and u0 ≥ 0 exist such that the
inequality

ϕ(2u) ≤ Kϕ(u)

is satisfied for all |u| ≥ u0 if L∞ ⊂ E, for all 0 ≤ |u| ≤ u0 with ϕ(u0) > 0
if E ⊂ L∞ and for all u ∈ R if neither L∞ ⊂ E nor E ⊂ L∞.

For any Orlicz function ϕ and any Banach function lattice (E, ‖ ‖),
we define the Calderón-Lozanovskii space Eϕ by

Eϕ = {x ∈ L0 : ϕ ◦ (λx) ∈ E for some λ > 0},

where ϕ ◦x(t) = ϕ(x(t)) for any t ∈ T . The space Eϕ is equipped with
the norm

‖x‖ϕ = inf {λ > 0 : ρϕ(x/λ) ≤ 1},
where

ρϕ(x) =
{ ‖ϕ ◦ x‖ if ϕ ◦ x ∈ E

+∞ otherwise.
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When we consider the space Eϕ, we always assume that the Banach
function lattice E has the Fatou property, i.e., if xn ∈ E+ for n ∈ N,
x ∈ (L0)+, xn ↑ x almost everywhere and supn ‖xn‖ < +∞, then
x ∈ E and ‖xn‖ ↑ ‖x‖. It is worthwhile to notice that Eϕ is a special
case of a general Calderón-Lozanovskii construction Ψ(E,F ) where E
is a Banach function lattice and F = L∞ (cf. [20], [4]). If ϕ(u) = up,
then Eϕ is a p-convexification E(p) of E and by analogy Eϕ is called a
ϕ-convexification of E.

In this paper we prove a number of general results on geometric
properties in Banach lattices. In particular, we show relations between
monotonicity and rotundity properties. We prove that E+ ∈ (R)
(respectively E+ ∈ (LUR)) is equivalent to E ∈ (R) (respectively
E ∈ (LUR)) and that for symmetric separable spaces over a finite
interval, (SM)-property is equivalent to (LLUM)-property. It is noted
that monotonicity properties are equivalent to respective rotundity
properties restricted to couples of compatible nonnegative elements.
We also prove that strict monotonicity and uniform monotonicity
in Banach function lattices can be equivalently considered only for
orthogonal elements. It easily follows from this result that for 1 ≤
p < ∞, p-convexification E(p) of a Banach function lattice E is
strictly or uniformly monotone if and only if E possesses the respective
property. We then apply this result to get a characterization of uniform
monotonicity of Lorentz spaces. Finally we prove that Eϕ is locally
uniformly rotund whenever E is uniformly monotone and ϕ is an Orlicz
function strictly convex on R and satisfying the ∆E

2 -condition.

Results. We start with some general results which compare rotun-
dity and monotonicity properties in Banach lattices.

Theorem 1. Given a Banach lattice E the following hold true:

(i) If E+ is rotund, then E is strictly monotone.

(ii) If E+ is locally uniformly rotund, then E is upper and lower
locally uniformly monotone.

(iii) If E+ is uniformly rotund then E is uniformly monotone.

(iv) On the order intervals in the positive cone E+ the inverse
statement of each of the above is also true.
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Proof. (i) Suppose that E+ is rotund, x ∈ S(E+) and 0 ≤ y ≤ x,
y �= x. Then, by inequalities y ≤ (y + x)/2 ≤ x we get

‖y‖ ≤ ‖(y + x)/2‖ < 1.

(ii) Let E+ be locally uniformly rotund, x ∈ S(E+), ε > 0 and
δE(x, ·) the modulus of local uniform rotundity of E+ at x. Now letting
0 ≤ y ≤ x with ‖y‖ > ε, x− y ≥ 0 and ‖x− (x− y)‖ = ‖y‖ ≥ ε. Thus
by E+ ∈ (LUR), we obtain

‖(x+ (x− y))/2‖ = ‖x− y/2‖ ≤ 1− δE(x, ε),

whence ‖x− y‖ ≤ 1− δE(x, ε), i.e., E ∈ (LLUM).
In order to show that E ∈ (ULUM) we need to prove that for any

0 �= x ∈ E+ and any sequence (xn) in E such that 0 ≤ x ≤ xn for
n ∈ N and ‖xn‖ → ‖x‖, ‖xn − x‖ → 0 holds. Let 0 �= x, xn ∈ E,
0 ≤ x ≤ xn and ‖xn‖ → ‖x‖. Then

2‖x‖ ≤ ‖x+ xn‖ ≤ ‖x‖+ ‖xn‖ → 2‖x‖,

whence ‖x + xn‖ → 2‖x‖. Consequently, by E ∈ (LUR) we get
‖xn − x‖ → 0.

(iii) We apply the same arguments as in (ii).

(iv) Using the sequence definitions of (LUR)- and (ULUM)-properties,
it is obvious that for sequences (xn) in E+ dominated from below by
x ∈ E+, the (LUR)-property means the same as property (ULUM).

Assume now that E is uniformly monotone, 0 ≤ y ≤ x, ‖x‖ = 1
and ‖x − y‖ ≥ ε. Then ‖(x − y)/2‖ ≥ ε/2 and 0 ≤ (x − y)/2 ≤ x.
So, by E ∈ (UM), we get ‖x − (x − y)/2‖ ≤ 1 − δ(ε/2), i.e.,
‖(x + y)/2‖ ≤ 1 − δ(ε/2), where δ(·) denotes the modulus of uniform
monotonicity of E.

This completes the proof, since the other properties may be proved
analogously.

It is well known that E ∈ (UR) is equivalent to E+ ∈ (UR) (cf. [16]).
We will now show that the same holds true for the properties (R) and
(LUR). The result for the rotundity seems also to be known, but for
the sake of completeness we include the proof here.
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Theorem 2. A Banach function lattice is rotund if and only if E+

is rotund.

Proof. It is enough to show that E+ ∈ (R) implies that E ∈ (R).
Assume that x, y ∈ S(E) and x �= y. If |x| �= |y|, then by E+ ∈ (R),
‖(x+ y)/2‖ ≤ ‖(|x|+ |y|)/2‖ < 1.

In the case when |x| = |y|, by x �= y, we have that the set
A = {t : x(t) �= y(t)} = {t : sgn (x(t) · y(t)) = −1} has positive
measure. Therefore, x(t) + y(t) = 0 for t ∈ A, and consequently

∣∣∣∣x+ y

2

∣∣∣∣ ≤ |x|+ |y|
2

and
∣∣∣∣x+ y

2

∣∣∣∣ �= |x|+ |y|
2

.

Since, in view of Theorem 1, E+ ∈ (R) yields E ∈ (SM), the above
inequality gives ‖(x + y)/2‖ < ‖(|x| + |y|)/2‖ ≤ 1, which finishes the
proof.

Theorem 3. A Banach function lattice E is locally uniformly rotund
if and only if E+ possesses the same property.

Proof. We need only to show that local uniform rotundity of E+

implies the same property for E. Assume that E+ is locally uniformly
rotund and that (xn) and x in E satisfy the conditions ‖xn‖ → ‖x‖ = 1
and ‖xn+x‖ → 2. Then ‖|xn|+|x|‖ → 2, whence we get ‖|xn|−|x|‖ → 0
by E+ ∈ (LUR). We also have

‖xn + x‖ ≤ ‖|xn + x|/2 + (|xn|+ |x|)/2‖ ≤ 2,

and since ‖xn + x‖ → 2, we get

‖|xn + x|/2 + (|xn|+ |x|)/2‖ −→ 2.

By virtue of ‖|xn| − |x|‖ → 0, it yields

‖|xn + x|/2 + |x|‖ −→ 2.

Thus, by E+ ∈ (LUR), ‖|xn + x|/2 − |x|‖ → 0. Since E+ ∈ (LUR)
implies that E is order continuous, by the well-known theorem of Davis,
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Ghoussoub and Lindenstrauss ([5, Theorem 1.2]) a lattice norm ‖ ‖0

exists in E equivalent to the original norm that is locally uniformly
rotund. Therefore, ‖|xn + x|/2‖0 → ‖x‖0 and ‖xn‖0 → ‖x‖0. Since
the norm ‖ ‖0 is locally uniformly rotund, we get ‖xn − x‖0 → 0 and
consequently ‖xn − x‖ → 0.

Theorem 4. Let E be a separable symmetric space in which an
equivalent symmetric norm ‖ ‖0 exists which is lower locally uniformly
monotone. Then (E, ‖ ‖) is lower locally uniformly monotone if and
only if it is strictly monotone.

Proof. Under the assumptions on E it is enough to show that strict
monotonicity implies lower local uniform monotonicity. Assume that
(xn) and x in E satisfy 0 ≤ xn ≤ x and ‖xn‖ → ‖x‖. Let (y∗n) be an
arbitrary subsequence of (x∗

n). By Helly’s theorem (cf. [21 Chapter
8, sect. 4]) a subsequence (z∗n) of (y∗n) and z ∈ E exist such that
z∗ = z and z∗n → z pointwise. Since x∗

n ≤ x∗, we have z∗n ≤ x∗

and z ≤ x∗. Separability of E implies that E is order continuous which
yields ‖z∗n − z‖ → 0 (cf. [2]). Hence, ‖z∗n‖ → ‖z‖. But (z∗n) is a
subsequence of (x∗

n) and ‖x∗
n‖ = ‖xn‖ → ‖x‖, whence ‖z‖ = ‖x‖. So,

by the (SM)-property of E we get z = x∗, whence ‖z∗n − x∗‖ → 0.
It follows that ‖x∗

n − x∗‖ → 0. By the assumptions on xn and x,
xn ≤ (xn + x)/2 ≤ x and so

0 ≤ (xn + x)/2 ≤ x and ‖(xn + x)/2‖ → ‖x‖.

Now applying the same procedure as above to (xn+x)/2 and x, we get

‖(xn + x)∗/2− x∗‖ −→ 0.

Therefore ‖(xn+x)∗/2−x∗‖0 → 0 and so ‖(xn+x)/2‖0 → ‖x‖0. Since
the norm ‖ ‖0 has the (LLUM)-property, this yields ‖xn−x‖0 → 0 and
consequently ‖xn − x‖ → 0. This completes the proof.

It is shown in [5] that if E is an order continuous symmetric space
over a bounded interval [0, γ) in R+, then an equivalent norm ‖ ‖0

exists in E which is symmetric and locally uniformly rotund. So we get
the following theorem as a consequence of Theorem 4.
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Corollary 1. If E is a symmetric space over a bounded interval [0, γ)
in R+ which is separable, then E is lower locally uniformly monotone
if and only if it is strictly monotone.

Theorem 5. (1) In every Banach sequence lattice E property (Hµ)
implies property (H).

(2) In every reflexive Banach sequence lattice E properties (Hµ) and
(H) coincide.

(3) Each reflexive Banach function lattice E with property (H) has
property (Hµ).

Proof. (1) It follows by the fact that in Banach sequence lattices weak
convergence implies pointwise convergence.

(2) We need only to show that (H) implies (Hµ). Assume that (xn)
and x are in E, ‖xn‖ → ‖x‖ and xn → x pointwise. By reflexivity of
E, we assume without loss of generality that y ∈ E exists such that
xn → y weakly. Hence xn → y pointwise and so y = x, whence xn → x
weakly. Now by the Kadec-Klee property of E we get ‖xn − x‖ → 0
which finishes the proof.

(3) The proof is the same as the one of (2) under the observation that
if xn → x in L0 and xn → y weakly then x = y (see Proposition 8 in
[12]).

Theorem 6. For any Banach function lattice E the following
properties are equivalent.

(i) E is uniformly monotone.

(ii) For any ε > 0 there is σ(ε) > 0 such that x, y ∈ E+, ‖x‖ = 1
and ‖y‖ ≥ ε imply ‖x+ y‖ ≥ 1 + σ(ε).

(iii) For any ε ∈ (0, 1), there is an η(ε) such that for any x ∈ E+ with
‖x‖ = 1 and for any A ∈ Σ such that ‖xχA‖ ≥ ε, ‖xχA′‖ ≤ 1 − η(ε)
holds where A′ = T\A.

(iv) For each ε > 0 there is a p(ε) > 0 such that, if x, y ∈ E,
µ(supp x∩ supp y) = 0, ‖x‖ = 1 and ‖y‖ ≥ ε, then ‖x+ y‖ ≥ 1 + p(ε).



MONOTONICITY AND ROTUNDITY PROPERTIES 941

Proof. (i) ⇒ (ii). At first observe that for each 0 < ε < b and x, y ∈
E+ such that y ≤ x, ‖x‖ ≤ b and ‖y‖ ≥ ε, ‖x − y‖ ≤ (1 − δ(ε/b))‖x‖
holds. Indeed, if x �= 0, then x/‖x‖ ∈ S(E+), 0 ≤ y/‖x‖ ≤ x/‖x‖ and
‖y/‖x‖ ‖ ≥ ε/b. So, by uniform monotonicity of E, we get

‖x− y‖ ≤ (1− δ(ε/b))‖x‖.
Assuming now that x ∈ S(E+), y ≥ 0 and ‖y‖ ≥ ε, define z = x + y.
We can clearly assume that ‖z‖ ≤ 2. Then 1 = ‖x‖ = ‖z − y‖ ≤
(1− δ(ε/2))‖z‖, and so

‖z‖ = ‖x+ y‖ ≥ 1/(1− δ(ε/2)) ≥ 1 + σ(ε),

where σ(ε) = min{1, δ(ε/2)/(1− δ(ε/2))}.
(ii) ⇒ (iii). Assume that x ≥ 0, ‖x‖ = 1, A ∈ Σ and ‖xχA‖ ≥ ε. We

will show that ‖xχA′‖ ≤ 1/(1+(1/2)σ(ε)). Suppose on the other hand
that ‖xχA′‖ > 1/(1 + (1/2)σ(ε)) and denote z = xχA′ . Then z �= 0
and ‖xχA/‖z‖‖ ≥ ε. Thus, by (ii),

∥∥∥∥ x

‖z‖
∥∥∥∥ =

∥∥∥∥ z

‖z‖ +
xχA

‖z‖
∥∥∥∥ ≥ 1 + σ(ε),

i.e., ‖x‖ ≥ (1 + σ(ε))‖z‖ ≥ (1 + σ(ε))/(1 + (1/2)σ(ε)) > 1, a
contradiction. So, ‖xχA′‖ ≤ 1/(1 + (1/2)σ(ε)) = 1 − η(ε), where
η(ε) = σ(ε)/(2 + σ(ε)).

(iii) ⇒ (i). Assume that 0 ≤ y ≤ x ∈ S(E), ‖y‖ ≥ ε and define

A = {t ∈ T : y(t) ≤ (ε/2)x(t)}.
Then ‖yχA‖ ≤ ε/2 and so ‖xχA′‖ ≥ ‖yχA′‖ ≥ ε/2. Hence,

‖x− y‖ ≤ ‖x− yχA′‖ ≤ ‖x− (ε/2)xχA′‖
≤ (1− (ε/2))‖x‖+ (ε/2)‖x− xχA′‖
≤ 1− (ε/2) + (ε/2)(1− η(ε/2)) = 1− (ε/2)η(ε/2),

and consequently E is uniformly monotone.

It is clear that (ii) ⇒ (iv) and we will finish by showing (iv) ⇒ (iii).
Assume that x ∈ S(E+), A ∈ Σ and ‖xχA‖ ≥ ε. Define

z =
xχA′

‖xχA′‖ and ω =
xχA

‖xχA′‖ .
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Then supports of z and w are disjoint, ‖z‖ = 1 and ‖ω‖ ≥ ε. So by
virtue of (iv), we get

1
‖xχA′‖ = ‖z + ω‖ ≥ 1 + p(ε),

whence

‖xχA′‖ ≤ 1
1 + p(ε)

= 1− η(ε),

where η(ε) = p(ε)/(1 + p(ε)).

Theorem 7. Let E be an arbitrary Banach function lattice and
ϕ an Orlicz function vanishing only at zero and satisfying the ∆E

2 -
condition. Then E is uniformly monotone if and only if Eϕ is uniformly
monotone.

Proof. The fact that uniform monotonicity of E yields the same
property for Eϕ has been proved in [4, Theorem 1]. So we will prove
that Eϕ ∈ (UM) implies that E ∈ (UM). By the ∆E

2 -condition, by
virtue of Lemmas 2 and 3 in [4], the functions η, q : (0,∞) → (0,∞)
exist such that for any x ∈ Eϕ and ε > 0,

ρϕ(x) ≥ 1 + η(ε) whenever ‖x‖ϕ ≥ 1 + ε,

and
‖x‖ϕ ≥ q(ε) whenever ρϕ(x) ≥ ε.

Let p be the function from condition (iv) in Theorem 6 for Eϕ in place
of E. Assume that x, y ∈ E+ have disjoint supports, ‖x‖ = 1 and
‖y‖ ≥ ε. Define ω = ϕ−1 ◦ x, z = ϕ−1 ◦ y. Then supports of z and ω
are disjoint and

ρϕ(ω) = ‖x‖ = 1, ρϕ(z) = ‖y‖ ≥ ε.

Therefore, ‖ω‖ϕ = 1 and ‖z‖ϕ ≥ q(ε). Consequently, ‖ω + z‖ϕ ≥
1 + p(q(ε)), whence ρϕ(ω + z) ≥ 1 + η(p(q(ε))), i.e., ‖ϕ ◦ (ω + z)‖ =
‖x+ y‖ ≥ 1 + η(p(q(ε))), which finishes the proof.
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Corollary 2. For any Banach function lattice E the following
assertions are equivalent.

(i) E is uniformly monotone.

(ii) E(p) is uniformly rotund for any p ∈ (1,∞).
(iii) E(p) is uniformly rotund for some p ∈ (1,∞).
(iv) E(p) is uniformly monotone for some p ∈ (1,∞).
(v) E(p) is uniformly monotone for any p ∈ (1,∞).

Proof. The implication (i) ⇒ (ii) has been proved in [11, Corollary
9] while the implications (ii) ⇒ (iii) ⇒ (iv) and (ii) ⇒ (v) are obvious.
Finally, Theorem 7 applied for ϕ(u) = |u|p yields the remaining two
implications (iv) ⇒ (i) and (v) ⇒ (i).

Note that Corollary 2 says among others that we cannot improve
the monotonicity properties of a Banach function lattice E by p-
convexification with 1 < p < ∞, in opposition to rotundity properties
(see [4] and [11]). It is not surprising in view of the fact that L1 and
l1 are the spaces with the biggest modulus of monotonicity among the
spaces Lp and lp for 1 ≤ p < ∞. The same concerns Theorem 7 and
ϕ-convexification Eϕ of E.

As a consequence of Corollary 2 we get a characterization of uniform
convexity of Lorentz spaces. Recall that, given 1 ≤ p < ∞ and
a nonincreasing, locally integrable function w : [0, γ) → (0,∞), the
Lorentz space Λp,w is defined as follows

Λp,w =
{
x ∈ L0 : ‖x‖p =

( ∫ γ

0

(x∗)pw
)1/p

< ∞
}
.

For p = 1 it is denoted by Λw.Observe that Λp,w is a p-convexification
of Λw. We say that the weight w is regular if inft∈(0,γ)S(t)/S(t/2) > 1,
where S(t) =

∫ t

0
w.

Applying Corollary 2 and Halperin’s result [9] that for 1 < p < ∞,
Λp,w is uniformly rotund if and only if w is regular, we immediately
obtain the following corollary proved earlier in [10].

Corollary 3. The Lorentz space Λw is uniformly monotone if and
only if w is regular.
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Theorem 8. For any Banach function lattice E the following are
equivalent.

(i) E is strictly monotone.

(ii) For every x, y ∈ E\{0}, µ{supp x ∩ supp y} = 0, we have
‖x+ y‖ > max(‖x‖, ‖y‖).
(iii) For any x ∈ E\{0} and A ∈ Σ such that ‖xχA‖ > 0, ‖xχA′‖ <

‖x‖ holds.

Proof. (i) ⇒ (ii). We have |x + y| ≥ |x|, |x + y| ≥ |y|, |x + y| �= |x|
and |x+ y| �= y, whence by (i), ‖x+ y‖ > ‖x‖ and ‖x+ y‖ > ‖y‖.
The implication (ii) ⇒ (iii) is clear.

(iii) ⇒ (i). Assume that 0 ≤ y ≤ x and y �= 0. We need to show that
‖x− y‖ < ‖x‖. There exists k ∈ N such that µ(A) > 0, where

A = {t ∈ T : y(t) ≥ (1/k)x(t)}.
Then, by (iii),

‖x− y‖ ≤ ‖x− yχA‖ ≤ ‖x− (1/k)xχA‖
≤ (1− (1/k))‖x‖+ (1/k)‖x− xχA‖
≤ (1− (1/k))‖x‖+ (1/k)‖x‖ = ‖x‖

holds. Thus the proof is complete.

Theorem 9. If E is a Banach function lattice which is uniformly
monotone and ϕ is a strictly convex Orlicz function which satisfies the
∆E

2 -condition, then Eϕ is locally uniformly rotund.

Proof. We will give a proof only in the case when L∞ ↪→ Eϕ. The
remaining cases when E ⊂ L∞ or when neither L∞ ↪→ E nor E ↪→ L∞

are analogous to handle. It is known (see [4]) that if ϕ satisfies condition
∆E

2 , two functions σ : R+ → R+ and β : (0, 1)→ (0, 1) exist such that
for all ε > 0

ρϕ(x) ≥ σ(ε) whenever ‖x‖ϕ ≥ ε

and

(1) ‖x‖ϕ ≤ 1− β(ε) whenever ρϕ(x) ≤ 1− ε.
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Recall that δ(ε) denotes the modulus of uniform monotonicity of E. In
the case when L∞ ↪→ E, the ∆E

2 -condition means that ϕ satisfies the
inequality ϕ(2u) ≤ Kϕ(u) for some K > 0 and for large values |u| only.
For any ε > 0 we find C1 > 0 such that

(2) ρϕ(2C1χT ) = ‖ϕ(2C1)‖ ≤ σ(ε)/16

and then we choose K > 0 so that for all u ∈ R

(3) ϕ(2u) ≤ Kϕ(u) + ϕ(2C1).

Let ‖x‖ϕ = ‖y‖ϕ = 1 and ‖x−y‖ϕ ≥ ε. By virtue of the ∆E
2 -condition,

ρϕ(x) = ρϕ(y) = 1 and ρϕ(x− y) ≥ σ(ε). Since uniform monotonicity
implies order continuity of E, C2 > 0 exists such that

(4) ρϕ(xχA) < (1/2)δ(σ(ε)/32K)

where
A′ = T\A = {t ∈ T : 1/C2 ≤ |x(t)| ≤ C2}.

Now we can find a constant C3 > C2 satisfying

ϕ(C2)/ϕ(C3) ≤ (1/2)δ(σ(ε)/32K).

Define
B = {t ∈ T : |y(t)| > C3}

and
C = T\(A ∪B) = {t ∈ T : 1/C2 ≤ |x(t)| ≤ C2}

∩ {t ∈ T : |y(t)| ≤ C3}.
Suppose that

ρϕ((x− y)χC) ≤ (3/4)σ(ε).
Then by ρϕ(x− y) ≥ σ(ε), we have

(5) ρϕ((x− y)χA∪B) ≥ σ(ε)/4.

By the definition of B, we get

ϕ(C3)‖χB‖ = ‖ϕ(C3)χB‖ ≤ ‖ϕ ◦ yχB‖ ≤ 1,
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whence
‖χB‖ ≤ 1/ϕ(C3).

Since |x(t)| ≤ C2 for t ∈ B\A,

ρϕ(xχB\A) ≤ ‖ϕ ◦ C2χB‖ ≤ ϕ(C2)/ϕ(C3) ≤ (1/2)δ(σ(ε)/32K).

Now by (4) and in view of the inequality δ(ε) ≤ ε,

(6)
ρϕ(xχA∪B) ≤ ρϕ(xχA) + ρϕ(xχB\A)

≤ δ(σ(ε)/32K) ≤ σ(ε)/32K.

Applying (2), (3), (5) and (6), we get

σ(ε)
4

≤ ρϕ((x− y)χA∪B)

≤ K

2
ρϕ(xχA∪B) +

K

2
ρϕ(yχA∪B) + ρϕ(2C1χT )

≤ K

2
ρϕ(yχA∪B) +

K

2
· σ(ε)
32K

+
σ(ε)
16

=
K

2
ρϕ(yχA∪B) +

5
64

σ(ε).

Therefore,

(7) ‖ϕ ◦ yχA∪B‖ = ρϕ(yχA∪B) ≥ σ(ε)/3K.

By ρϕ(x) = 1 and (6), we have ρϕ(xχC) ≥ 1 − δ(σ(ε)/32K). By
ρϕ(y) = 1, uniform monotonicity of E and (7), we get

ρϕ(yχC) = ‖ϕ ◦ yχC‖ = ‖ϕ ◦ y − ϕ ◦ yχA∪B‖ ≤ 1− δ(σ(ε)/3K).

Therefore we obtain

|ρϕ(xχC)− ρϕ(yχC)| ≥ 1− δ(σ(ε)/32K)− 1 + δ(σ(ε)/3K)

= δ(σ(ε)/3K)− δ(σ(ε)/32K)

=: γ(ε),
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where γ(ε) > 0 since δ(ε) is strictly increasing. Now, following the
proof of Lemma 5 in [14], there exists δ > 0 depending only on x, ε, E
and ϕ such that

(8) ρϕ((x− y)χC) ≥ δ.

The proof of this fact can proceed in the same way as the proof of
Lemma 5 in [14]. We can assume that δ ≤ (3/4)σ(ε). Define

D = {t ∈ C : |x(t)− y(t)| ≥ (δ/4)max(|x(t)|, |y(t)|)}.
By (1/C2) ≤ max{|x(t)|, |y(t)|} ≤ C3 for t ∈ D and strict convexity of
ϕ on R, applying Lemma 0.5 in [15] with δ/4, 1/C2 and C3 in place
of ε, d1 and d2, respectively, one can find p ∈ (0, 1) depending only on
ε, x and ϕ such that

ϕ

(
x(t) + y(t)

2

)
≤ 1− p

2
(ϕ(x(t)) + ϕ(y(t))),

for all t ∈ D, whence

(9) ϕ ◦
(
x+ y

2

)
≤ 1
2
(ϕ ◦ x+ ϕ ◦ y)− P

2
(ϕ ◦ xχD + ϕ ◦ yχD).

We also have

ϕ ◦ (x− y)χC\D ≤ (δ/4)(ϕ ◦ xχC\D + ϕ ◦ yχC\D),

whence ρϕ((x− y)χC\D) ≤ (δ/2) and in view of (8) we get

(10) ρϕ((x− y)χD) ≥ δ

2
.

By the ∆E
2 -condition and strict monotonicity of ϕ on R, there are

positive constants C4 and K1 depending only on δ such that ‖ϕ ◦
2C4χT ‖ < δ/4 and

ϕ(2u) ≤ K1ϕ(u) + ϕ(2C4)

for all u ∈ R. So by (10) we get

δ/2 ≤ ρϕ((x− y)χD) = ‖ϕ ◦ (x− y)χD‖
≤ K1‖(ϕ ◦ xχD + ϕ ◦ yχD)/2‖+ ‖ϕ ◦ 2C4χT ‖
≤ K1‖(ϕ ◦ xχD + ϕ ◦ yχD)/2‖+ δ/4,
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whence
‖p(ϕ ◦ xχD + ϕ ◦ yχD)/2‖ ≥ pδ/4K1.

Since (ϕ◦x+ϕ◦y)/2 ≥ (ϕ◦xχD+ϕ◦yχD)/2 ≥ 0 and ‖(ϕ◦x+ϕ◦y)/2‖ ≤
1, we get by (9) and uniform monotonicity of E that

ρϕ

(
x+ y

2

)
≤ 1− δ

(
pδ

4K1

)
,

whence in view of (1), we get

∥∥∥∥x+ y

2

∥∥∥∥
ϕ

≤ 1− β

(
δ

(
pδ

4K1

))
,

which finishes the proof.

Notice that the assumption of the ∆E
2 -condition is necessary in

Theorem 9, since otherwise Eϕ contains an isomorphic copy of l∞ (see
[11]) and so Eϕ is not locally uniformly rotund. Observe also that
the conditions imposed on ϕ and w in the last theorem do not yield
uniform rotundity of Eϕ, although they are strong enough to guarantee
its uniform monotonicity. Indeed, let E = Λw, where w is a regular
weight, and let ϕ be an Orlicz function satisfying condition ∆2 and
not being uniformly convex. By the well-known criterion for uniform
rotundity of the Orlicz-Lorentz space Λϕ,w = (Λw)ϕ ([16]), Eϕ is not
uniformly rotund.

Corollary 4. (see [15]). The Orlicz space Lϕ over a nonatomic
measure space is locally uniformly rotund whenever ϕ is strictly convex
on R and it satisfies the suitable ∆2 condition.

Proof. We have Lϕ = (L1)ϕ. Since E = L1 is uniformly monotone,
the result follows directly by Theorem 9.
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