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SOME RESULTS ON MEAN LIPSCHITZ
SPACES OF ANALYTIC FUNCTIONS

DANIEL GIRELA AND CRISTÓBAL GONZÁLEZ

ABSTRACT. If f is a function which is analytic in the
unit disk ∆ and has a nontangential limit f(eiθ) at almost
every eiθ ∈ ∂∆ and 1 ≤ p ≤ ∞, then ωp(·, f) denotes the
integral modulus of continuity of order p of the boundary
values f(eiθ) of f . If ω : [0, π] → [0,∞) is a continuous and
increasing function with ω(0) = 0 and ω(t) > 0 if t > 0 then,
for 1 ≤ p ≤ ∞, the mean Lipschitz space Λ(p, ω) consists of
those functions f which belong to the classical Hardy space
Hp and satisfy ωp(δ, f) = O(ω(δ)) as δ → 0. If, in addition,
ω satisfies the so-called Dini condition and the condition b1,
we say that ω is an admissible weight. If 0 < α ≤ 1 and
ω(δ) = δα, we shall write Λp

α instead of Λ(p, ω), that is, we
set Λp

α = Λ(p, δα).

In this paper we obtain several results about the Taylor
coefficients and the radial variation of the elements of the
spaces Λ(p, ω). In particular, if ω is an admissible weight,
then we give a complete characterization of the power series
with Hadamard gaps which belong to Λ(p, ω).

If f is an analytic function in ∆ and θ ∈ [−π, π), we
let V (f, θ) denote the radial variation of f along the radius
[0, eiθ). We also define the exceptional set E(f) associated
to f as E(f) = {eiθ ∈ T : V (f, θ) = ∞}. For any given
p ∈ [1,∞], we obtain a characterization of those admissible
weights ω for which the implication

f ∈ Λ(p, ω) =⇒ E(f) = ∅,

holds. We also obtain a number of results about the “size” of
the exceptional set E(f) for f ∈ Λp

α.

1. Introduction. Let ∆ denote the unit disk {z ∈ C : |z| < 1} and
T the unit circle {ξ ∈ C : |ξ| = 1}. If 0 < r < 1 and g is a function
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which is analytic in ∆, we set

Mp(r, g) =
(

1
2π

∫ π

−π

|g(reiθ)|p dθ
)1/p

, 0 < p < ∞,

M∞(r, g) = max
|z|=r

|g(z)|.

For 0 < p ≤ ∞, the Hardy space Hp consists of those functions g,
analytic in ∆, for which

‖g‖Hp = sup
0<r<1

Mp(r, g) < ∞.

The space BMOA consists of those functions f ∈ H1 whose boundary
values have bounded mean oscillation on T. We refer to [3] and [18]
for the main properties of BMOA-functions.

If f is a function which is analytic in ∆ and has a nontangential limit
f(eiθ) at almost every eiθ ∈ T, we define

ωp(δ, f) = sup
0<|t|≤δ

(
1
2π

∫ π

−π

|f(ei(θ+t))− f(eiθ)|p dθ
)1/p

,

δ > 0, if 1 ≤ p < ∞,

ω∞(δ, f) = sup
0<|t|≤δ

(
ess supθ∈[−π,π]|f(ei(θ+t))− f(eiθ)|

)
, δ > 0.

Then ωp(·, f) is the integral modulus of continuity of order p of the
boundary values f(eiθ) of f .

Given 1 ≤ p ≤ ∞ and 0 < α ≤ 1, the mean Lipschitz space Λp
α

consists of those functions f analytic in ∆ having a nontangential limit
almost everywhere for which ωp(δ, f) = O(δα), as δ → 0. If p = ∞ we
write Λα instead of Λ∞

α . This is the usual Lipschitz space of order α.
More precisely, a function f analytic in ∆ belongs to Λα if and only if it
has a continuous extension to the closed unit disk ∆ and its boundary
values satisfy a Lipschitz condition of order α.

A classical result of Hardy and Littlewood [21] (see also Chapter 5
of [14]), asserts that for 1 ≤ p ≤ ∞ and 0 < α ≤ 1, we have that
Λp

α ⊂ Hp and
(1.1)

Λp
α = {f analytic in ∆ : Mp(r, f ′) = O(1/(1− r)1−α), as r → 1}.
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Of special interest are the spaces Λp
1/p since they lie in the border of

continuity. Indeed, using (1.1) with p = α = 1, we see that a classical
result of Privalov [14, Theorem 3.11] can be stated saying that if f is
analytic in ∆ then f has a continuous extension to the closed unit disk
∆ whose boundary values are absolutely continuous on ∂∆ if and only
if f ∈ Λ1

1. If 1 < p < ∞ and α > (1/p), then Λp
α ⊂ Λα−(1/p), and

hence each f ∈ Λp
α has a continuous extension to the closed unit disk

(see [12, p. 88]). This is not true for α = (1/p). This follows easily
noticing that the function f(z) = log(1− z) belongs to f ∈ Λp

1/p for all
p ∈ (1,∞). Cima and Petersen proved in [13] that Λ2

1/2 ⊂ BMOA, and
this result was generalized by Bourdon, Shapiro and Sledd who proved
in [12, Theorem 2.5] the following result.

Theorem A. For 1 < p < ∞, Λp
1/p ⊂ BMOA.

These results have been shown to be sharp in a very strong sense in
[19], [20] and [9] using the following generalization of the spaces Λp

α

which occurs frequently in the literature. Let ω : [0, π] → [0,∞) be
a continuous and increasing function with ω(0) = 0 and ω(t) > 0 if
t > 0. Then, for 1 ≤ p ≤ ∞, the mean Lipschitz space Λ(p, ω) consists
of those functions f ∈ Hp such that

ωp(δ, f) = O(ω(δ)), as δ → 0.

With this notation we have Λp
α = Λ(p, δα).

The question of finding conditions on ω so that it is possible to obtain
results on the spaces Λ(p, ω) analogous to those proved by Hardy and
Littlewood for the spaces Λp

α has been studied by several authors (see,
e.g., [10], [11] and [23]). We shall say that ω satisfies the Dini condition
or that ω is a Dini-weight if a positive constant C exists such that

(1.2)
∫ δ

0

ω(t)
t

dt ≤ Cω(δ), 0 < δ < 1.

Given 0 < q < ∞, we shall say that ω satisfies the condition bq or that
ω ∈ bq if a positive constant C exists such that

(1.3)
∫ π

δ

ω(t)
tq+1

dt ≤ C
ω(δ)
δq

, 0 < δ < 1.
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In order to simplify our notation, let AW denote the family of all
functions ω : [0, π] → [0,∞) which satisfy the following conditions:

(i) ω is continuous and increasing in [0, π].

(ii) ω(0) = 0 and ω(t) > 0 if t > 0.

(iii) ω is a Dini-weight.

(iv) ω satisfies the condition b1.

The elements of AW will be called admissible weights.

Typical elements of admissible weights are the functions

ω(t) = tα
(
log

A

t

)β

, t ∈ [0, π],

where 0 < α < 1 and β ∈ R and A is an appropriate positive constant.

Blasco and de Souza proved in [10, Theorem 2.1] the following
extension of (1.1).

Theorem B. If ω ∈ AW, then

(1.4)

Λ(p, ω) =
{
f analytic in ∆ : Mp(r, f ′) = O

(
ω(1− r)
1− r

)
, as r → 1

}
.

In this paper we shall be concerned with the spaces Λ(p, ω) with
ω ∈ AW . In view of Theorem B, these are the most interesting ones
among all generalized mean Lipschitz spaces Λ(p, ω). In Section 2 we
shall obtain certain results about the Taylor coefficients of functions
f ∈ Λ(p, ω) and Section 3 will be devoted to the study of the radial
variation of these functions.

Let us finish this section by saying that from now on we shall be
using the convention that C will denote a positive constant (which
may depend on ω, λ, p, f, . . . but not on s, t, δ, n, . . . ) and which may
be different at each occurrence.

2. Taylor coefficients of mean Lipschitz functions. We start
with the following simple result.
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Lemma 1. Let f(z) =
∑∞

n=0 anz
n be an analytic function in ∆. Let

ω ∈ AW and 1 ≤ p ≤ ∞. If f ∈ Λ(p, ω), then

(2.1) an = O

(
ω

(
1
n

))
, as n → ∞.

Proof. We have

nan =
1
2πi

∫
|z|=r

f ′(z)
zn

dz, 0 < r < 1.

Hence, using Hölder’s inequality and Theorem B, we obtain

n|an| ≤ r1−nM1(r, f ′) ≤ r1−nMp(r, f ′) ≤ Cr1−nω(1− r)
1− r

,

0 < r < 1.

If we take r = 1− (1/n) with n > 1, we deduce that

n|an| ≤ Cnω

(
1
n

)
, n > 1.

This gives (2.1).

It is easy to see that the converse of Lemma 1 is not true, that is,
condition (2.1) does not imply that f ∈ Λ(p, ω). However, we can show
that this is true if f is given by a power series with Hadamard gaps,
i.e., a power series of the form

f(z) =
∞∑

k=0

akz
nk

analytic in ∆ such that nk+1 ≥ λnk for all k with λ being a constant
bigger than 1. We can prove the following result.

Theorem 1. Let f be an analytic function in ∆ given by a power
series with Hadamard gaps

(2.2) f(z) =
∞∑

k=0

akz
nk with

nk+1

nk
≥ λ > 1 for all k.
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Let 1 ≤ p ≤ ∞ and ω ∈ AW. Then the following two conditions are
equivalent.

(2.3)
(i) f ∈ Λ(p, ω),

(ii) ak = O

(
ω

(
1
nk

))
, as k → ∞.

Remark 1. In the case of the spaces Λp
α this result was proved by

Essén and Xiao in [16] (see also [27] for the spaces Λα and [2] for the
spaces Λp

1/p).

Proof of Theorem 1. The implication (i) ⇒ (ii) follows from Lemma
1.

To prove the other implication, suppose that f is as in (2.2) and the
ak’s satisfy (2.3). Define

(2.4) I(k) = {n ∈ N : 2k ≤ n < 2k+1}, k = 0, 1, 2, . . . .

We have f ′(z) =
∑∞

k=0 nkakz
nk−1 and then, using (2.3), we see that,

for 0 < r < 1,

(2.5)

Mp(r, f ′) ≤ M∞(r, f ′) ≤
∞∑

k=0

nk|ak|rnk−1

≤ Cr−1
∞∑

k=0

∑
nj∈I(k)

njω

(
1
nj

)
rnj .

Using the gap condition in (2.2), we see that there are at most Cλ =
(2/ logλ) + 1 of the nj ’s in the set I(k). This, (2.5) and the fact that
ω is increasing, give

(2.6) Mp(r, f ′) ≤ Cr−1
∞∑

k=0

2kω(2−k)r2k

, 0 < r < 1.

Now from the fact that ω(δ)/δ is “essentially” a decreasing function in
(0, 1) when ω ∈ AW (see [20, Lemma 1]), it is clear that

ω(2−k) ≤ C

∫ 1−2−k−1

1−2−k

ω(1− s)
1− s

s2k

ds

≤ C

∫ 1

0

ω(1− s)
1− s

s2k

ds, k = 0, 1, 2, . . . ,
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and then, using (2.6), we obtain

(2.7)

Mp(r, f ′) ≤ Cr−1
∞∑

k=0

2k

( ∫ 1

0

ω(1− s)
1− s

s2k

ds

)
r2k

= Cr−1

∫ 1

0

ω(1− s)
1− s

∞∑
k=0

2k(rs)2
k

ds

= Cr−1

∫ 1

0

ω(1− s)
1− s

G(rs) ds,

where

G(z) =
∞∑

k=0

2kz2k

, z ∈ ∆.

Notice that G(z) = zF ′(z) where F (z) =
∑∞

k=0 z
2k

. It is well known
(see, e.g., [1]) that F is a Bloch function, i.e., |F ′(z)| ≤ C(1 − |z|)−1.
Then (2.7) gives

Mp(r, f ′) ≤ Cr−1

∫ 1

0

ω(1− s)
(1− s)(1− rs)

ds

which, using the fact that ω ∈ AW and Lemma 1.1 of [8], implies

Mp(r, f ′) ≤ C
ω(1− r)
1− r

, 0 < r < 1.

This shows that f ∈ Λ(p, ω) and finishes the proof.

Next we shall relate the membership of an analytic function f to the
space Λ(p, ω) (1 < p < ∞ and ω ∈ AW) with the speed at which it is
approached by its sequence of Taylor polynomials.

We start by introducing some notation. If m and n are two nonnega-
tive integers with m ≤ n and f(z) =

∑∞
n=0 anz

n is an analytic function
in ∆, we define

Sn
mf(z) =

n∑
k=m

akz
k, z ∈ ∆.
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The usual polynomial approximation of the function f is, in this
case, Snf ≡ Sn

0f . Denote also by ∆k, k = 0, 1, 2, . . . , the operators
constructed from the dyadic sequence {2k} as follows

∆kf = S2k+1−1
2k f, k = 0, 1, 2, . . . .

Notice that, if 1 < p < ∞, then by the Riesz theorem [18, pp. 108 109],
a constant C exists, depending only on p, such that

(2.8) Mp(r,Sn
mf) ≤ CMp(r, f), 0 < r < 1.

We start by estimating the Hp-norm of Sn
mf for f in Λ(p, ω).

Lemma 2. Let f(z) =
∑∞

n=0 anz
n be an analytic function in ∆. Let

ω ∈ AW and 1 < p < ∞. If f ∈ Λ(p, ω) and 1 ≤ m ≤ n, n > 1, then
there is a constant C depending only on p and ω such that

(2.9) ‖Sn
mf‖Hp ≤ C

n

m
ω

(
1
n

)
.

Proof. Using Lemma 3.4 of [12], (2.8) and the fact that f belongs to
Λ(p, ω), we obtain for 0 < r < 1,

‖Sn
mf‖Hp ≤ 1

m
‖(Sn

mf)′‖Hp ≤ 1
mrn−1

Mp(r, (Sn
mf)′)

=
1

mrn−1
Mp(r,Sn−1

m−1f
′) ≤ C

1
mrn−1

ω(1− r)
1− r

.

Taking r = 1− (1/n), n > 1, we deduce (2.9) as desired.

The following theorem characterizes the membership of a function f
in the space Λ(p, ω) both in terms of the Hp-norm of the functions ∆kf
and in terms of the speed at which the partial sums Snf approach (in
Hp-norm) to f .

Theorem 2. Let 1 < p < ∞ and ω ∈ AW. Let f(z) =
∑∞

n=0 anz
n

be an analytic function in ∆. Then the following three conditions are
equivalent:
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(i) f ∈ Λ(p, ω),

(ii) ‖∆kf‖Hp = O(ω(1/2k)), as k → ∞.

(iii) ‖f − Snf‖Hp = O(ω(1/n)), as n → ∞.

Proof of Theorem 2. The implication (i) ⇒ (ii) follows trivially from
Lemma 2 and the fact that ω is increasing.

(ii) ⇒ (iii). Suppose that f satisfies (ii). Take a positive integer n
and choose j such that 2j ≤ n < 2j+1. Using the Riesz theorem, (ii),
and bearing in mind that ‖ · ‖Hp is a norm, we obtain

(2.10)

‖f − Snf‖Hp ≤ C‖f − S2jf‖Hp

≤ C
∑
k≥j

‖∆kf‖Hp ≤ C
∑
k≥j

ω

(
1
2k

)
.

Now, since ω(δ)/δ is “essentially decreasing” ([20, Lemma 1])

ω

(
1
2k

)
≤ C

∫ 2−k

2−(k+1)

ω(s)
s

ds.

Using this in (2.10) and bearing in mind that ω ∈ AW and the
definition of j, we get

‖f − Snf‖Hp ≤ C
∑
k≥j

∫ 2−k

2−(k+1)

ω(s)
s

ds ≤ C

∫ 2−j

0

ω(s)
s

ds

≤ Cω

(
1
2j

)
≤ Cω

(
1

2j+1

)
≤ Cω

(
1
n

)
.

This gives (iii).

The implication (iii) ⇒ (ii) follows trivially from the fact that, by the
Riesz theorem,

‖∆kf‖Hp ≤ C‖f − S2k−1f‖Hp .

(ii) ⇒ (i). Suppose that f(z) =
∑∞

n=0 anz
n satisfies (ii). We have

f ′(z) =
∑∞

n=1 nanz
n−1, so using the continuous form of Minkowski
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inequality, Lemma 3.4 of [12] and (ii), we see that, for 0 < r < 1,

Mp(r, f ′) =
(

1
2π

∫ π

−π

∣∣∣∣
∞∑

n=1

nanr
n−1ei(n−1)θ

∣∣∣∣
p

dθ

)1/p

≤
∞∑

k=0

(
1
2π

∫ π

−π

∣∣∣∣
2k+1−1∑
n=2k

nanr
n−1ei(n−1)θ

∣∣∣∣
p

dθ

)1/p

≤
∞∑

k=0

2k+1r2k−1

(
1
2π

∫ π

−π

∣∣∣∣
2k+1−1∑
n=2k

ane
inθ

∣∣∣∣
p

dθ

)1/p

= 2
∞∑

k=0

2kr2k−1‖∆kf‖Hp

≤ C
∞∑

k=0

2kr2k−1ω(2−k).

Now notice that the last term in this chain of inequalities coincides
with the right-hand side of (2.6) which was proved to be smaller than
C(ω(1− r)/(1− r)). Consequently, we have that

Mp(r, f ′) ≤ ω(1− r)
1− r

, 0 < r < 1.

This shows that f ∈ Λ(p, ω). This finishes the proof.

Remark 2. In the case of the spaces Λp
α, this result was proved by

Bourdon, Shapiro and Sledd in [12, Theorem 3.1].

Remark 3. Theorem 1 for 1 ≤ p < ∞ can be deduced from Theorem 2.
Indeed, suppose that f is as in (2.2) and that 1 ≤ p < ∞ and ω ∈ AW .
Using Theorem 8.20 in Chapter V of [29], we see that

Mp(r, f ′) ≈ M2(r, f ′).

Hence, using Theorem 2, we obtain

(2.11) f ∈ Λ(p, ω) ⇐⇒ f ∈ Λ(2, ω) ⇐⇒ ‖∆kf‖H2 = O

(
ω

(
1
2k

))
.
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Now

(2.12) ‖∆kf‖2
H2 =

∑
nj∈I(k)

|aj |2.

Since there are at most Cλ = (2/ logλ) + 1 of the nj ’s in the set I(k),
using the facts that ω is increasing and that ω(δ)/δ is “essentially”
decreasing, it is clear that (2.11) and (2.12) imply that

f ∈ Λ(p, ω) ⇐⇒ ak = O

(
ω

(
1
nk

))
.

Hence we have proved Theorem 1 in the case 1 ≤ p < ∞.

3. Radial variation of mean Lipschitz functions. If f is a
function which is analytic in ∆ and θ ∈ [−π, π), we define

(3.1) V (f, θ) =
∫ 1

0

|f ′(reiθ)| dr.

Then V (f, θ) denotes the radial variation of f along the radius [0, eiθ),
i.e., the length of the image of this radius under the mapping f . Also
define the exceptional set E(f) associated to f as

(3.2) E(f) = {eiθ ∈ T : V (f, θ) = ∞}.
In this section we shall be mainly interested in studying the radial
variation of functions in the mean Lipschitz spaces Λ(p, ω) with 1 ≤
p ≤ ∞ and ω ∈ AW . We start with the following simple observation.

Proposition 1. Let 1 ≤ p ≤ ∞ and ω ∈ AW. If f ∈ Λ(p, ω), then
the exceptional set E(f) has linear measure zero.

Proof. Using Fubini’s theorem and bearing in mind that M1(r, f ′) ≤
Mp(r, f ′), we obtain

1
2π

∫ π

−π

V (f, θ) dθ =
∫ 1

0

M1(r, f ′) dr ≤
∫ 1

0

Mp(r, f ′) dr

≤ C

∫ 1

0

ω(1− r)
1− r

dr < ∞.
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Clearly this implies that V (f, θ) < ∞ for almost every θ ∈ [−π, π).

Using the Fejér-Riesz inequality (see [14, p. 46]), we conclude that:

If f ′ ∈ H1 then V (f, θ) < ∞ for every θ ∈ [−π, π), or equivalently,

(3.3) f ′ ∈ H ′ =⇒ E(f) = ∅.

Using results from [19] and [9], we can prove that (3.3) is sharp in a
very strong sense. Indeed, we can prove the following result.

Theorem 3. Let φ : [0, 1) → [0,∞) be a function with φ(r) → ∞ as
r → 1. Then a function f exists, analytic in ∆, satisfying

(3.4) M1(r, f ′) = O(φ(r)), as r → 1,

for which E(f) �= ∅.

Proof of Theorem 3. Using Theorem 3.2 of [9] (see also [19]) we see
that a function f exists, analytic in ∆, which satisfies (3.4) and

(3.5) |f(r)| → ∞, as r → 1.

Now it is clear that (3.5) implies that
∫ 1

0
|f ′(r)| dr = ∞ and then

E(f) �= ∅.

In Theorem 4, for any given p ∈ (1,∞), we obtain a characterization
of those weights ω ∈ AW for which the implication

f ∈ Λ(p, ω) =⇒ E(f) = ∅,

holds.

Theorem 4. Let 1 < p < ∞ and ω ∈ AW. Then the following two
conditions are equivalent.

(i) ω(t)/t1+(1/p) ∈ L1([0, 1]).
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(ii) E(f) = ∅ for every f ∈ Λ(p, ω).

Proof of Theorem 4. To prove the implication (i) ⇒ (ii) we shall use
the following result.

Lemma 3. If 1 ≤ p < ∞, ω ∈ AW and f ∈ Λ(p, ω), then for
0 < r < 1 and p < q ≤ ∞,

Mq(r, f ′) ≤ C
ω(1− r)

(1− r)1+(1/p)−(1/q)
.

This lemma can be proved with the arguments used in the proof of
Theorem 5.9 of [14].

Proof of (i) ⇒ (ii). Let p and ω be as in Theorem 4 and take
f ∈ Λ(p, ω). Using Lemma 3 with q = ∞, we obtain for every θ,

|f ′(reiθ)| ≤ M∞(r, f ′) ≤ C
ω(1− r)

(1− r)1+(1/p)
, 0 < r < 1,

which, with (i) gives

V (f, θ) =
∫ 1

0

|f ′(reiθ)| dr ≤ C

∫ 1

0

ω(1− r)
(1− r)1+(1/p)

dr < ∞, for every θ.

Hence E(f) = ∅.

Proof of (ii) ⇒ (i). We shall argue by contradiction. Hence, let
1 < p < ∞ and ω ∈ AW , and suppose that

(3.6)
ω(t)

t1+(1/p)
/∈ L1([0, 1]).

Set

(3.7) f(z) =
∫ 1

0

ω(t)
t(1 + t− z)1/p

dt, z ∈ ∆.
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It is clear that f is holomorphic in ∆. In fact, looking at the proof of
Theorem 1.2 of [9], we see that

(3.8) f ∈ Λ(p, ω),

and

(3.9) |f ′(r)| = f ′(r) ≥ C
ω(1− r)

(1− r)1+(1/p)
,

1
2
< r < 1.

Then (3.6) gives that
∫ 1

0
|f ′(r)| dr = ∞ and hence E(f) �= ∅. Conse-

quently, the implication (ii) ⇒ (i) in Theorem 4 holds.

Remark 4. If ω ∈ AW and f ∈ Λ(∞, ω) then, for 0 < r < 1 and for
every θ we have

|f ′(reiθ)| ≤ ω(1− r)
1− r

which, bearing in mind that (ω(t)/t) ∈ L1([0, 1]), implies

V (f, θ) ≤
∫ 1

0

ω(1− r)
1− r

dr < ∞, for every θ.

That is, we have proved: For every ω ∈ AW , we have that

(3.10) f ∈ Λ(∞, ω) =⇒ E(f) = ∅.

Let D be the family of those functions f , holomorphic in ∆, with
finite Dirichlet integral, that is, those which satisfy

(3.11) D(f) =
1
π

∫∫
∆

|f ′(z)|2 dx dy < ∞.

Geometrically, this is equivalent to saying that f maps ∆ onto a
Riemann surface of finite area. We recall that if f(z) =

∑∞
n=0 anz

n,
then

(3.12) D(f) =
∞∑

n=0

n|an|2.
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The following well-known result is due to Beurling [7] (see also
Chapter VIII of [25]).

Theorem C. If f ∈ D, then the set of points eiθ for which V (f, θ) =
∞ is a set of logarithmic capacity zero.

We refer to [17], [22] and [25] for the definition and basic results
about logarithmic capacity.

The conclusion of Theorem C is not true for f ∈ BMOA. Actually it is
not possible to state any result similar to Theorem C with BMOA in the
place of D because a function f ∈ BMOA exists such that V (f, θ) = ∞
for every θ. Indeed, Zygmund proved in [28] that if g is a function
analytic in ∆ which is given by a power series with Hadamard gaps,

(3.13) g(z) =
∞∑

k=0

akz
nk , with

nk+1

nk
> λ and λ > 1,

then

(3.14)
∞∑

k=1

|ak| ≤ AλV (g, θ), for every θ,

with Aλ being positive constant which depends only on λ.

Now if g is as in (3.13) and
∑∞

k=0 |ak|2 < ∞, then g ∈ BMOA (see,
e.g., [3, p. 25]). Using this fact and Zygmund’s result, we easily see
that if we take

f(z) =
∞∑

k=1

z2k

k
, z ∈ ∆,

then we have V (f, θ) = ∞ for every θ and f ∈ BMOA. This proves
our assertions. See also [24].

On the other hand, extensions of Theorem C have been proved for
certain Dirichlet-type spaces. Let us mention the following:

(i) For 0 < a < 1, let Da be the space of all functions f(z) =∑∞
n=0 anz

n, analytic in ∆ with

(3.15)
∞∑

n=1

n1−a|an|2 < ∞.
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Zygmund proved (see [22, pp. 49 51]) the following result:

(3.16)
If f ∈ Da and 0 < a < 1, then the exceptional
set E(f) has zero a-capacity.

We refer to [22] and [17] for the definitions and results about
capacities and Hausdorff measures.

(ii) If W is a positive, increasing and continuous function on [0,∞),
we define DW to be the space of those functions f(z) =

∑∞
n=0 anz

n

that are holomorphic in ∆ and for which
∞∑

n=1

W (n)|an|2 < ∞.

The radial variation of functions in the spaces DW has recently been
studied by Twomey in [26]. The results obtained by Twomey for these
spaces include the classical results for the classes Da that we have just
mentioned.

It is also worth mentioning that if f is analytic, univalent and
bounded in ∆, then f ∈ D, and hence E(f), has logarithmic capacity
zero. Using a standard method which relates any univalent function to
a bounded univalent function (see, e.g., [15, p. 11]), this result can be
extended to any univalent function. That is, we have:

Remark 5. If f is a function which is analytic and univalent in ∆,
then the exceptional set E(f) has logarithmic capacity zero.

Next we shall study the possibility of obtaining results similar to
Theorem C for mean Lipschitz spaces. First let us consider the classical
Λp

α-spaces. It is clear that D ⊂ Λ2
1/2. Then, using Theorem 5.9 of [14]

or [12, Corollary 2.3] and Theorem A, we have that

(3.17) D ⊂ Λ2
1/2 ⊂ Λp

1/p ⊂ BMOA, if 2 ≤ p < ∞.

Let p ≥ 2 and suppose that f(z) =
∑∞

n=0 anz
n ∈ Λp

1/p. We have
∫ 1

0

(1− r)aM2(r, f ′)2 dr ≤
∫ 1

0

(1− r)aMp(r, f ′)2 dr

≤ C

∫ 1

0

(1− r)a−2+(2/p) dr.



MEAN LIPSCHITZ SPACES 917

Consequently,

(3.18)
∫ 1

0

(1− r)aM2(r, f ′)2 dr < ∞ for all a > 1− 2
p
.

But

(3.19)

∫ 1

0

(1− r)aM2(r, f ′)2 dr =
∞∑

n=1

n2|an|2
∫ 1

0

(1− r)ar2n−2 dr

≈
∞∑

n=1

n2|an|2B(a+ 1, n)

≈
∞∑

n=1

n1−a|an|2.

Here B( , ) denotes the beta function. We have used the well-known
estimate

B(a+ 1, n) ≈ n−1−a.

From (3.18) and (3.19) we obtain:

(3.20) If 2 ≤ p < ∞ and a > 1− (2/p), then Λp
1/p ⊂ Da.

Now we can prove the following result.

Theorem 5. (i) Let 2 < p < ∞ and f ∈ Λp
1/p. Then, for every

a > 1− (2/p), the exceptional set E(f) has zero a-capacity.

(ii) If 1 < p ≤ 2 and f ∈ Λp
1/p, then the exceptional set E(f) has

Hausdorff dimension equal to zero.

Proof. Part (i) follows from (3.20) and (3.16).

If 1 < p ≤ 2 and f ∈ Λp
1/p, then f ∈ Λ2

1/2 ([12, p. 88]) and then
(3.20) and (3.16) show that E(f) has a-capacity zero for all a > 0 and
it is well known (see, e.g., [22, p. 34]) that this implies that E(f) has
Hausdorff dimension zero.

It would be interesting to know how sharp Theorem 5 (i) is and,
especially, it is natural to ask whether or not the condition f ∈ Λ2

1/2
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implies that E(f) has logarithmic capacity zero. We do not know the
answer to this question, and then we shall look for some condition on
an analytic function in ∆, stronger than the condition “f ∈ Λ2

1/2” and
weaker than the condition “f ∈ D,” but enough to insure that the set
E(f) has logarithmic capacity zero.

Bennett and Stoll proved in [6] that if f is analytic in ∆ and

sup
0<r<1

∫ π

−π

|Re f ′(reiθ)| dθ < ∞,

then f ∈ BMOA. Actually, using Theorem 1.1 of [14], it is clear that
this result is equivalent to the following:

Theorem D. Let f be an analytic function in ∆ such that f ′ is the
Cauchy-Stieltjes integral of a finite complex measure µ on T, i.e.,

f ′(z) =
∫
T

dµ(ξ)
1− ξ̄z

, z ∈ ∆.

Then f ∈ BMOA.

For simplicity, let us define K as the space of those functions f ,
analytic in ∆, which are the Cauchy-Stieltjes integral of a finite complex
Borel measure on T. Then Theorem D is equivalent to the following

(3.21) f ′ ∈ K =⇒ f ∈ BMOA.

Next we prove that this result can be improved and that the conclusion
of Theorem C remains true with the condition “f ′ ∈ K” in the place of
“f ∈ D.”

Theorem 6. Let f be an analytic function in ∆ such that f ′ ∈ K.
Then the following two assertions hold.

(i) f ∈ Λ2
1/2.

(ii) The exceptional set E(f) has logarithmic capacity zero.

Proof. Let f be as in the theorem. Using Theorem 1.1 of [14], we see
that f can be written as

(3.22) f = f1 − f2 + i(f3 − f4),
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with fj (j = 1, 2, 3, 4) analytic in ∆ and

(3.23) Re f ′
j(z) > 0, z ∈ ∆, j = 1, 2, 3, 4.

Now it is well known that (3.23) implies that

M2(r, f ′
j) ≤ CM2

(
r,
1 + z

1− z

)
= O

(
1

(1− r)1/2

)
, as r → 1

(see, e.g., [14]). Then, using (3.22), we deduce that

M2(r, f ′) = O

(
1

(1− r)1/2

)
, as r → 1,

that is, f ∈ Λ2
1/2. This proves (i).

Also, (3.23) implies that the fj ’s are univalent. Then, using Remark
5, we see that the exceptional sets E(fj) (j = 1, 2, 3, 4) have logarithmic
capacity zero. Then, using (3.22), it follows that the exceptional set
E(f) has logarithmic capacity zero. This proves (ii).

Let us remark that the first part of Theorem 6 can be improved.
Baernstein and Brown introduced in [4] the space weak-H1. A function
f , analytic in ∆, is said to belong to weak-H1 if f belongs to the
Nevanlinna uniform class N+ and a constant b > 0 exists such that

|{t ∈ [−π, π] : |f(eiθ)| > λ}| ≤ bλ−1, λ > 0.

Here |E| denotes the one-dimensional Lebesgue measure of E. It is well
known that

(3.24) H1 ⊂ K ⊂ weak-H1.

Proposition 3 of [4] shows that if f is analytic in ∆, then

(3.25) f ′ ∈ weak-H1 =⇒ f ∈ Λ2
1/2,

a result which is stronger than Theorem 6 (i). In view of this, it is
natural to ask whether or not the condition “f ′ ∈ weak-H1” implies
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that the exceptional set E(f) has logarithmic capacity zero. We do not
know the answer to this question.

Let us finish remarking that the inclusions in (3.24) are strict. Clearly,
the function f(z) = (1/(1− z)) belongs to K\H1. Hence, H1 � K.
To show that the inclusion K ⊂ weak-H1 is also strict, set

(3.26) F (z) =
z

(1− z)1+i
, z ∈ ∆.

We will show that F ∈ weak-H1\K. We have

(3.27) |F (z)| = |z|
|1− z|e

Arg (1−z) ≤ eπ/2

|1− z| , z ∈ ∆,

which easily implies that F ∈ weak-H1. The fact that F /∈ K was
proved by Bass in his Ph.D. Thesis. Let us just say that it can be
deduced from the fact that F is univalent (see Exercise 19 in [15, p.
72]) and the results of [5].
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