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PARAQUATERNIONIC KÄHLER MANIFOLDS

EDUARDO GARCÍA-RÍO, YASUO MATSUSHITA AND

RAMÓN VÁZQUEZ-LORENZO

ABSTRACT. Paraquaternionic Kähler manifolds are stud-
ied with special attention to their curvatures. Since such man-
ifolds are necessarily pseudo-Riemannian of neutral signature,
the behavior of the Jacobi operators along spacelike, timelike
and null geodesics is considered separately, for the purpose
of study on Osserman problems on paraquaternionic Kähler
manifolds.

1. Introduction. The study of Jacobi operators, as a basic part
of the curvature tensor, is one of the central topics in Riemannian and
pseudo-Riemannian geometry. Since Jacobi operators provide a way
to measure the geodesic deviation, it is natural to expect that their
properties strongly influence the geometry of manifolds. Osserman
conjectured in his study [30] of those Riemannian manifolds, whose
Jacobi operators have constant eigenvalues on the unit sphere bundle,
that they must be locally flat or rank-one symmetric. This was shown
by Chi in many cases, although the general problem still remains open.
(See [9], [10], [11] and [21] for more details and further references).
In the pseudo-Riemannian setting, the Osserman problem was firstly
studied in the framework of Lorentzian geometry, showing that it
is equivalent to constant curvature [4], [17], [18]. The situation is
however much more complicated for pseudo-Riemannian metrics of
other signatures. Indeed, in the pseudo-Riemannian setting, non-
symmetric Osserman manifolds of signature (p, q), p, q > 1, exist. See
[19]. In [5] a systematic study of the Osserman problem for metrics of
signature (+ + −−) is developed. If the Jacobi operators are assumed
to be diagonalizable, such spaces correspond to the indefinite real and

AMS Mathematics Subject Classification. 53C15, 53C50.
Key words and phrases. Paraquaternionic Kähler manifold, paraquaternionic

sectional curvature, Jacobi operators, degenerate sections.
Research of the first and third authors supported by projects DGESIC PB97-

0504-C02-01 and PGIDT99PXI 20703B (Spain).
Research of the second author supported by Shiga Prefecture (Japan).
Received by the editors on October 14, 1998, and in revised form on December

15, 1999.

Copyright c©2001 Rocky Mountain Mathematics Consortium

237
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complex space forms and the paracomplex space forms. Recently,
pseudo-Riemannian manifolds, whose Jacobi operators have a simple
form, have been investigated in [7], where it is shown that the simplest
pseudo-Riemannian spaces (from the point of view of their curvature)
are, besides the spaces of constant curvature, indefinite complex and
quaternionic space forms, and paracomplex and paraquaternionic space
forms.

Since the geometry of paraquaternionic manifolds is not well devel-
oped, the purpose of this paper is to study such manifolds further
and give special attention to their curvature. Section 2 introduces
paraquaternionic manifolds. Also, some basic identities for the cur-
vature tensor are pointed out with special attention to the case of
dimension ≥ 8. In Section 3, the definition of the paraquaternionic
sectional curvature is given and the expression of the curvature tensor
of paraquaternionic space forms is obtained. In Section 4, Theorem 4.1
gives a characterization of constant paraquaternionic sectional curva-
ture in terms of the existence of certain distinguished eigenspaces for
the Jacobi operators along spacelike, timelike and null geodesics. Fi-
nally, since the paraquaternionic sectional curvature is not defined on
degenerate paraquaternionic sections, the significance of the curvature
tensor on such sections is investigated in Section 5.

2. Paraquaternionic Kähler manifolds. In this section we
will establish the definition of paraquaternionic Kähler structures and
derive some curvature identities that we will use in this paper.

2.1. Definitions. Let M be a smooth manifold. A paraquaternionic
structure V on M is defined to be a rank-3 subbundle of End (TM)
such that a local basis {J1, J2, J3} exists of sections of V satisfying

(2.1)
J2

τ = ετ Id,

J1J2 = −J2J1 = J3

ε1 = ε2 = −ε3 = 1.

A pseudo-Riemannian metric g is said to be adapted to the paraquater-
nionic structure V if it satisfies

(2.2) g(JτX, JτY ) = −ετg(X,Y ), τ = 1, 2, 3,
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for all vector fields X,Y on M and any local basis of V. (Note that any
paraquaternionic manifold is of dimension 4m and any adapted metric
is necessarily of neutral signature (2m, 2m) ). Moreover, (M, g,V) is
said to be a paraquaternionic Kähler manifold if the bundle V is parallel
with respect to the Levi-Civita connection of g. Equivalently, locally
defined 1-forms p, q, r exist such that

(2.3)
∇XJ1 = q(X)J2 − r(X)J3,

∇XJ2 = −q(X)J1 + p(X)J3,

∇XJ3 = −r(X)J1 + p(X)J2.

It is also worthwhile to characterize the paraquaternionic Kähler
structures from a group theoretical point of view. In dimension four,
the rotational group SO(4) splits as SO(4) ∼= SO(3)×SO(3), and, cor-
respondingly, the pseudo-rotational group SO0(2, 2) exhibits a similar
splitting SO0(2, 2) ∼= SO0(2, 1) × SO0(2, 1). From Lie algebra isomor-
phisms, we know the following

so (3) = su (2) = sp (1)
so (2, 1) = su (1, 1) = sp (1,R).

The fact that the Lie group Sp(1) (∼= SU(2)) of the Lie algebra sp (1)
can be interpreted as a set of unit quaternions suggests that the group
Sp(1,R) (∼= SU(1, 1)) of the Lie algebra sp (1,R) must be a set of
paraquaternions of unit norm. Here, by a paraquaternion, we mean a
number

q = a + bi + cj + dk,

where three kinds of imaginary units i, j and k satisfy the following
properties

i2 = j2 = −k2 = 1
ij = k, ki = −j, jk = −i.

It is clear that the set of paraquaternions H̃ can be identified with the
4-dimensional pseudo-Euclidean space R2,2 (the vector space R4 with
a norm of signature (+ + −−) ).

Observing an analogue of paraquaternions H̃ to the quaternions H,
we are led to consider in higher dimensions a corresponding struc-
ture to the quaternionic Kähler structure in the Riemannian category
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as characterized by the linear holonomy group in Sp(1)Sp(m) on a
4m-dimensional manifold [32]. The symplectic group Sp(m), a sub-

group of SO(4m), on Hm ∼= R4m of signature (+
4m· · ·+) corresponds

to the real symplectic group Sp(m,R), a subgroup of SO(2m, 2m)

on H̃m ∼= R2m,2m of neutral signature (+
2m· · · + −2m· · ·−). Therefore,

by characterizing the linear holonomy group as in a subgroup of
Sp(1,R)Sp(m,R), we naturally arrive at a notion of a paraquaternionic
Kähler structure on a 4m-dimensional pseudo-Riemannian manifold of
neutral signature (2m, 2m). (It should be noted [23], [31] that Sp(m)
and Sp(m,R) appear as the real and imaginary parts of the complex
symplectic group Sp(m,C) ).

Remark 2.1. It is interesting to note that any oriented 4-manifold
admitting a metric of signature (+ + −−) is paraquaternionic Kähler,
since Sp(1,R)Sp(1,R) ∼= SO0(2, 2). This fact provides us with a
large family of four-dimensional examples. (See [27] for necessary and
sufficient conditions for a compact 4-manifold to admit such a neutral
metric).

Remark 2.2. Note also that the tensor fields {Jτ , τ = 1, 2, 3} of
the paraquaternionic structure V are locally defined. If J1, J2, J3

are globally defined satisfying (2.1) and g is an adapted metric, then
the quadruple (g, J1, J2, J3) is called a neutral almost hyper-Hermitian
structure and it is called neutral hyper-Kähler if, in addition, Jτ ,
τ = 1, 2, 3, are parallel with respect to the Levi-Civita connection of g,
see [23], [24], [25]. It is clear that any neutral hyper-Kähler manifold
is a paraquaternionic one. However, the converse is not true. In fact,
taking account of Chern classes of J3, one attains a large list of oriented
4-manifolds admitting neutral metrics which do not admit any neutral
almost hyper-Hermitian structure (cf. [27]). Also, it is not difficult to
show examples of paraquaternionic Kähler manifolds that do not admit
any neutral hyper-Kähler structure on the basis of the results in [14].

2.2. Curvature consequences. Since our main purpose is to
investigate the curvature of paraquaternionic Kähler manifolds, we
must, first of all, derive some important curvature identities that
are consequences of the Kähler identity (2.3). Let (M, g,V) be a
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paraquaternionic Kähler manifold of dimM = 4m and {Jτ ; τ = 1, 2, 3}
a canonical local basis of V. Let ∇ be the Levi-Civita connection of g
and R its curvature tensor, defined by R(X,Y ) = [∇X ,∇Y ] −∇[X,Y ].
The Ricci tensor ρ is defined to be ρ(X,Y ) = trace {Z 	→ R(X,Z)Y }
and the scalar curvature Sc is the trace of the Ricci tensor. Then a
straightforward calculation from (2.3) shows that

(2.4)
[R(X,Y ), J1] = C(X,Y )J2 −B(X,Y )J3,

[R(X,Y ), J2] = −C(X,Y )J1 + A(X,Y )J3,

[R(X,Y ), J3] = −B(X,Y )J1 + A(X,Y )J2,

where A,B and C are locally defined 2-forms satisfying A = 2(dp−q∧r),
B = 2(dr − p ∧ q) and C = 2(dq − p ∧ r).

After some calculations, one gets A(X,Y )=(1/(2m))traceJ1R(X,Y ),
B(X,Y )=(1/(2m))traceJ2R(X,Y ) and C(X,Y )=(1/(2m))traceJ3 ×
R(X,Y ). If m > 1, then

(2.5)
ρ(X,Y ) = (m+ 2)A(X, J1Y )

= (m+ 2)B(X, J2Y )
= −(m+ 2)C(X, J3Y ).

Now, if M is assumed to be of dimension strictly greater than four,
then by using (2.5) we may express the identities (2.4) in a suitable
form for our purposes:

R(X,Y, J1Z, J1W ) + R(X,Y, Z,W )

=
1

m+ 2
{ρ(X, J3Y )g(Z, J3W ) − ρ(X, J2Y )g(Z, J2W )},

R(X,Y, J2Z, J2W ) + R(X,Y, Z,W )

=
1

m+ 2
{ρ(X, J3Y )g(Z, J3W ) − ρ(X, J1Y )g(Z, J1W )},

(2.6)

R(X,Y, J3Z, J3W ) −R(X,Y, Z,W )

=
1

m+ 2
{ρ(X, J2Y )g(Z, J2W ) + ρ(X, J1Y )g(Z, J1W )}.

As an immediate application of (2.6), we obtain the following, which
is a fundamental observation:
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Theorem 2.1. Any paraquaternionic Kähler manifold (M, g,V) is
Einstein, provided that dimM > 4.

Proof. Let X and Z be arbitrary vectors tangent to M at some point
p ∈ M , and put Y = J1X, W = J1Z, where {J1, J2, J3} is some local
basis of the paraquaternionic structure satisfying (2.1). From (2.6) it
follows that

(2.7) R(X, J1X, J2Z, J3Z) −R(X, J1X,Z, J1Z)

=
1

m + 2
ρ(X,X)g(Z,Z).

Analogously, if we take X,Y, Z and W of the form J2X, J3X, Z and
J1Z, respectively, (2.6) also gives

(2.8) R(J2X, J3X, J2Z, J3Z) −R(J2X, J3X,Z, J1Z)

=
1

m + 2
ρ(J2X, J2X)g(Z,Z).

Now, note that ρ(J2X, J2X) = −ρ(X,X) easily follows from (2.5),
and hence (2.7) and (2.8) lead to

(2.9)
2

m + 2
ρ(X,X)g(Z,Z) = R(X, J1X, J2Z, J3Z) −R(X, J1X,Z, J1Z)

−R(J2X, J3X, J2Z, J3Z)
+ R(J2X, J3X,Z, J1Z).

Next, change X with Z in (2.9) to obtain

(2.10)
2

m + 2
ρ(Z,Z)g(X,X) = R(X, J1X, J2Z, J3Z) −R(X, J1X,Z, J1Z)

−R(J2X, J3X, J2Z, J3Z)
+ R(J2X, J3X,Z, J1Z).

It then follows from (2.9) and (2.10) that ρ(X,X)g(Z,Z) = ρ(Z,Z)×
g(X,X) for all vectors X,Z. This shows that the Ricci tensor is
bounded from above and from below on unit space-like and time-like
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vectors and, thus, the manifold is Einstein as a consequence of [28,
Lemma A].

We close this section with two remarks.

Remark 2.3. As an immediate consequence of the above theorem and
(2.6), the curvature tensor of a 4m-dimensional, m > 1, paraquater-
nionic Kähler manifold satisfies

R(X,Y, J1Z, J1W ) + R(X,Y, Z,W )

=
Sc

4m(m + 2)
{g(X, J3Y )g(Z, J3W ) − g(X, J2Y )g(Z, J2W )},

R(X,Y, J2Z, J2W ) + R(X,Y, Z,W )

=
Sc

4m(m + 2)
{g(X, J3Y )g(Z, J3W ) − g(X, J1Y )g(Z, J1W )},

(2.11)

R(X,Y, J3Z, J3W ) −R(X,Y, Z,W )

=
Sc

4m(m + 2)
{g(X, J2Y )g(Z, J2W ) + g(X, J1Y )g(Z, J1W )},

where {Jτ , τ = 1, 2, 3} is any local basis of the paraquaternionic
structure as in (2.1).

Remark 2.4. Let π = 〈{X,Y }〉 be a plane tangent to M at a point
p ∈ M . The sectional curvature K(π) is defined by

K(π) = K(X,Y ) =
R(X,Y,X, Y )

g(X,X)g(Y, Y ) − g(X,Y )2
.

Clearly, this definition makes sense only for nondegenerate planes (i.e.,
those satisfying g(X,X)g(Y, Y ) − g(X,Y )2 �= 0. See [13], [22], [26]).
As a consequence of (2.11), it follows that the sectional curvature of
a 4m-dimensional paraquaternionic Kähler manifold is constant if and
only if it vanishes, provided that m > 1. This fact introduces a new
curvature function: the paraquaternionic sectional curvature. Also note
that a paraquaternionic Kähler manifold, m > 1 is locally conformally
flat if and only if it is flat.
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3. Paraquaternionic sectional curvatures. Let (M, g,V) be
a paraquaternionic Kähler manifold. Then any vector X ∈ TpM de-
termines a four-dimensional subspace V(X) = 〈{X, J1X, J2X, J3X}〉
which remains invariant under the action of the paraquaternionic struc-
ture. We will refer to it as the V-section determined by X. Note that
the restriction of the metric g to any V-section is indefinite of signature
(2,2) or totally degenerate, in which the latter case occurs if and only
if the V-section is generated by a null vector.

Suppose now that V(X) is a V-section spanned by a nonnull vec-
tor, X. If the sectional curvature of nondegenerate planes on V(X) is
constant, c(X), we will refer to it as the paraquaternionic sectional cur-
vature of M with respect to X at p ∈ M . If (M, g,V) is a paraquater-
nionic Kähler manifold of constant paraquaternionic sectional curva-
ture, we will call it a paraquaternionic space form.

It is clear from the previous definition that a four-dimensional
paraquaternionic Kähler manifold is of constant paraquaternionic sec-
tional curvature if and only if the sectional curvature of M is constant.
Therefore, we will concentrate our attention on the case of dimM ≥ 8.

Since our purpose in this section is to determine the forms of the
curvature tensor of a paraquaternionic space form, we will reexamine
the definition of a curvature-like function on a vector space E. A
quadrilinear map F : E×E×E×E → R is said to be a curvature-like
function if it satisfies

F (X,Y, Z,W ) = −F (Y,X,Z,W ) = −F (X,Y,W,Z)

F (X,Y, Z,W ) = F (Z,W,X, Y )
F (X,Y, Z,W ) + F (Y, Z,X,W ) + F (Z,X, Y,W ) = 0,

for all vectors X,Y, Z,W ∈ E. Moreover, if E is endowed with a
paraquaternionic structure V and an adapted metric g, we will say that
F is a paraquaternionic curvature-like function if it satisfies (2.11). The
following lemma will be of interest for our purposes.

Lemma 3.1. Let (E4m, g,V), m > 1, be a paraquaternionic vector
space and F a paraquaternionic curvature-like function on E. If
F (X, JτX,X, JτX) = 0 for all X ∈ E and some basis {Jτ , τ = 1, 2, 3}
of V, then F = 0.
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Proof. Applying (2.11) to the paraquaternionic curvature-like func-
tion F , we get

F (X, J1X,X, J1X) = F (X, J1X, J2X, J3X)

− ScF

4m(m+ 2)
g(X,X)2 = 0,

F (X, J2X,X, J2X) = F (X, J2X, J3X, J1X)

− ScF

4m(m+ 2)
g(X,X)2 = 0,

F (X, J3X,X, J3X) = −F (X, J3X, J1X, J2X)

+
ScF

4m(m+ 2)
g(X,X)2 = 0,

where ScF denotes the scalar curvature of F . From these expressions
we have

3ScF

4m(m+ 2)
g(X,X)2 = F (X, J1X, J2X, J3X)

+ F (X, J2X, J3X, J1X)
+ F (X, J3X, J1X, J2X)

and, using the first Bianchi identity, we obtain ScF = 0. Therefore,
(2.11) shows that F is a paraholomorphic curvature-like function on
(E, g, J1) satisfying F (X, J1X,X, J1X) = 0 for all vectors X. Now it
follows from [15, Corollary 3.5] that F = 0.

Next we will introduce a paraquaternionic curvature-like function
which plays an important role in the study of the paraquaternionic
sectional curvature. Let (E, g,V) be a paraquaternionic vector space,
and define F0 by

F0(X,Y, Z,W ) = g(X,Z)g(Y,W ) − g(Y, Z)g(X,W )

+
3∑

τ=1

ετ{g(JτY, Z)g(JτX,W )−g(JτX,Z)g(JτY,W )

+ 2g(X, JτY )g(JτZ,W )}.

The following theorem shows the special significance of F0.
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Theorem 3.1. Let (M4m, g,V), m > 1, be a paraquaternionic
Kähler manifold. Then the paraquaternionic sectional curvature is
constant c at a point p ∈ M if and only if the curvature tensor
R = (c/4)F0 at p.

Proof. First, suppose that the paraquaternionic sectional curvature is
constant c at p, and consider the paraquaternionic curvature-like func-
tion F = R− (c/4)F0. Then R(X, JτX,X, JτX) = −ετ cg(X,X)2, and
it immediately follows from the definition of F0 that F0(X, JτX,X, JτX)
= −4ετg(X,X)2. Therefore, F (X, JτX,X, JτX) = 0 for all X ∈ TpM ,
τ = 1, 2, 3, and it follows from Lemma 3.1 that R = (c/4)F0. Con-
versely, if R = (c/4)F0 at p, a straightforward calculation shows that
the sectional curvature of any nondegenerate plane in V(X) equals c
for any X ∈ TpM , which shows that the paraquaternionic sectional
curvature is constant at p.

Remark 3.1. The model spaces of nonzero constant paraquaternionic
sectional curvature are constructed by Blažić [3]. For the sake of
completeness, we will reexamine their construction. Let H̃ denote the
algebra of paraquaternionic numbers generated by {1, i, j, k} over R. Let
H̃0 = {q ∈ H̃/‖q‖ �= 0}, where the norm of a paraquaternionic number
is defined to be ‖q‖2 = qq̄ and the conjugate of a paraquaternion
q = x0 + x1i + x2j + x3k is given by q̄ = x0 − x1i − x2j − x3k.

Now, the paraquaternionic projective space Pm(H̃) associated with
H̃m+1 is defined to be the equivalence classes of nonsingular paraquater-
nionic lines

Pm(H̃) = H̃m+1
0 /H̃0.

In a more geometrical way, the paraquaternionic projective space is
represented as the quotient space

Pm(H̃) = S4m+3
2m+1/S

3
1

where the pseudosphere S3
1 is identified with the group of unit para-

quaternions. Moreover, it is shown in [3] that Pm(H̃) is complete and
simply connected, thus being the model space of paraquaternionic space
forms of nonzero curvature. (Since the signature of the metric of any
paraquaternionic Kähler manifold is neutral, the sign of the curvature
is not essential).
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Note that, from the expression of the curvature tensor in Theorem 3.1,
any paraquaternionic space form is a locally symmetric space. (Since
the function c = (Sc/(4m(m + 2))) and any paraquaternionic Kähler
manifold of dimension > 4 is Einstein, c is necessarily constant, pro-
vided that M is connected). Moreover, since the holonomy group at
each point p ∈ M is generated by the endomorphisms of TpM of the
form R(X,Y ), X, Y ∈ TpM , it does not leave invariant any nontriv-
ial subspace of TpM , which shows that paraquaternionic space forms
are locally symmetric irreducible spaces, provided that the paraquater-
nionic sectional curvature c �= 0. Now a straightforward calculation
from the expression of the curvature in Theorem 3.1 and the Kähler
identities (2.11) shows that the dimension of the linear isotropy group
of Pm(H̃) is given by 2m2 + m + 3. Moreover, since it is an irre-
ducible symmetric space, it can be identified with the symmetric space
Sp(m+ 1,R)/Sp(1,R)Sp(m,R) in Berger’s list (cf. [1]).

4. Constancy of the paraquaternionic sectional curvatures.
The study of the Jacobi operators is one of the central topics in pseudo-
Riemannian geometry. Although it is very difficult to determine such
operators explicitly, much interesting information can be derived from
the properties of the eigenvalues and eigenspaces of the Jacobi opera-
tors. Since (M, g,V) is a pseudo-Riemannian manifold equipped with
a paraquaternionic Kähler structure V, it is interesting to investigate
the existence of distinguished eigenspaces for the Jacobi operators in-
duced by the paraquaternionic structure. This is carried out in the next
theorem, which provides a criterion for the constancy of the paraquater-
nionic sectional curvature. Such a criterion has proved its usefulness
in the characterization of paraquaternionic space forms among the so-
called special Osserman manifolds in [7].

Theorem 4.1. Let (M4m, g,V), m > 1, be a paraquaternionic
Kähler manifold. Then the following conditions are equivalent to each
other

(i) the paraquaternionic sectional curvature is constant,

(ii) R(X, JτX)JτX ∼ X for all spacelike vectors X,

(iii) R(X, JτX)JτX ∼ X for all timelike vectors X,

(iv) R(U, JτU)JτU = 0 for all null vectors U ,
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for some local basis {Jτ , τ = 1, 2, 3} of the paraquaternionic structure,
where ∼ means “is proportional to.”

In order to prove Theorem 4.1, we need the following lemmas.

Lemma 4.1. Let (M4m, g,V), m > 1, be a paraquaternionic Kähler
manifold and X ∈ TpM a unit vector. If a local basis {Jτ ; τ = 1, 2, 3}
of the paraquaternionic structure exists such that

(i) K(X, J1X) = K(X, J2X) = K(X, J3X),

(ii) R(X, J1X,X, J2X) = R(X, J1X,X, J3X) = R(X, J2X,X, J3X)

= 0, then the sectional curvature is constant (Sc/(4m(m + 2))) on
V(X).

Proof. By a direct computation from (2.11) we obtain

K(X, J1X) = −R(X, J1X, J2X, J3X) +
Sc

4m(m+ 2)
,

K(X, J2X) = −R(X, J2X, J3X, J1X) +
Sc

4m(m+ 2)
,

K(X, J3X) = −R(X, J3X, J1X, J2X) +
Sc

4m(m+ 2)
.

Adding these expressions we get

3∑

r=1

K(X, JτX) = −R(X, J1X, J2X, J3X) −R(X, J2X, J3X, J1X)

−R(X, J3X, J1X, J2X) +
3Sc

4m(m+ 2)
.

Now, (i), together with the first Bianchi identity, implies K(X, JτX) =
(Sc/(4m(m+ 2))), τ = 1, 2, 3, and hence the sectional curvature of the
planes {X, JτX} is (Sc/(4m(m+2))). Finally, a straightforward calcu-
lation from (ii) shows that the sectional curvature of any nondegenerate
plane in V(X) also equals (Sc/(4m(m+ 2))).

Lemma 4.2. Let (M4m, g,V), m > 1, be a paraquaternionic Kähler
manifold and X ∈ TpM a unit vector. If K(Y, JτY ) is constant for all



PARAQUATERNIONIC KÄHLER MANIFOLDS 249

unit space-like vectors Y ∈ V(X) and some local basis {Jτ ; τ = 1, 2, 3},
then the sectional curvature is constant on V(X).

Proof. Let X be a unit spacelike vector at TpM and suppose the
sectional curvatures are a constant c on V(X). Take λ, µ ∈ R with
λ2 + µ2 = 1. Then Y = λX + µJ3X is a unit spacelike vector in V(X)
and, since K(Y, J1Y ) = c = −R(Y, J1Y, Y, J1Y ), one has

−c = λ4R(X, J1X,X, J1X) + µ4R(J3X, J2X, J3X, J2X)
+ λ2µ2{R(X, J2X,X, J2X) + R(J3X, J1X, J3X, J1X)

+ 2R(X, J1X, J3X, J2X) + 2R(X, J2X, J3X, J1X)}
+ 2λ3µ{R(X, J1X,X, J2X) + R(X, J1X, J3X, J1X)}
+ 2λµ3{R(X, J2X, J3X, J2X) + R(J3X, J1X, J3X, J2X)}.

After some calculations, we get

−c = −(λ2 − µ2)2K(X, J1X) − 4λ2µ2K(X, J2X)
+ 4λµ(λ2 − µ2)R(X, J1X,X, J2X),

and, moreover, that

R(X, J1X,X, J2X) = 0(4.1)

and

K(X, J2X) = K(X, J1X).

We then take λ, µ ∈ R with λ2 − µ2 = 1. Then Y = λX + µJ2X
is a unit space-like vector in V(X), and therefore K(Y, J1Y ) = c.
Proceeding as before, after some calculations,

−a = −(λ2 + µ2)2K(X, J1X) + 4λ2µ2K(X, J3X)
+ 4λµ(λ2 + µ2)R(X, J1X,X, J3X),

which shows that

R(X, J1X,X, J3X) = 0(4.2)
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and

K(X, J3X) = K(X, J1X).

Finally, take λ, µ, γ ∈ R such that λ2 + µ2 − γ2 = 1. Then
Y = λX + µJ3X + γJ2X is a unit spacelike vector in V(X), and
thus K(Y, J1Y ) = c. Now, after a straightforward calculation, since
the coefficient of λ2µγ must vanish, it follows that

(4.3) R(X, J2X,X, J3X) = 0.

Then the constancy of the sectional curvature on V(X) follows from
Lemma 4.1, together with (4.1) (4.3).

Lemma 4.3. Let (M4m, g,V), m > 1, be a paraquaternionic Kähler
manifold. If R(X, JτX, JτX,Y ) = 0 for some basis {Jτ , τ = 1, 2, 3} of
the paraquaternionic structure and all orthonormal vectors X,Y ∈ TpM
with g(X,X) = −g(Y, Y ) and such that V(X) ⊥ V(Y ), then the
paraquaternionic sectional curvature is constant.

Proof. Let X and Y be orthonormal vectors with g(X,X) = −g(Y, Y )
such that V(X) ⊥ V(Y ), and take λ, µ ∈ R satisfying λ2 − µ2 = 1.
Then Z = λX + µY and W = µX + λY are orthonormal vectors in
TpM with g(Z,Z) = −g(W,W ) and such that V(Z) ⊥ V(W ). By
hypothesis, R(Z, JτZ, JτZ,W ) = 0, linearizing this expression

0 = λ2{R(X, JτX, JτX,X) + R(Y, JτX, JτX,Y )
+ R(X, JτX, JτY, Y ) + R(X, JτY, JτX,Y )}

+ µ2{R(X, JτY, JτY,X) + R(Y, JτY, JτY, Y )
+ R(X, JτX, JτY, Y ) + R(X, JτY, JτX,Y )}.

Since the coefficients of λ2 and µ2 must vanish, we get

R(X, JτX, JτX,X) + R(Y, JτX, JτX,Y )
= R(Y, JτY, JτY, Y ) + R(X, JτY, JτY,X).

Then, using that R(Y, JτX, JτX,Y ) = R(X, JτY, JτY,X) for all τ =
1, 2, 3, it follows that R(X, JτX,X, JτX) = R(Y, JτY, Y, JτY ), and
thus

(4.4) K(X, JτX) = K(Y, JτY ), τ = 1, 2, 3.



PARAQUATERNIONIC KÄHLER MANIFOLDS 251

As a final stage of the proof, take a unit vector X and choose Z to
be a unit time-like vector, Z ∈ V(X)⊥. If Y is a unit space-like vector
in V(X), then Y and Z are orthonormal, with g(Y, Y ) = −g(Z,Z)
and V(Y ) ⊥ V(Z). Thus, (4.4) implies K(Y, JτY ) = K(Z, JτZ),
τ = 1, 2, 3. Therefore, K(Y, JτY ) is constant for all unit space-like
vectors in V(X). Then the sectional curvature is constant on V(X) by
Lemma 4.2 with value (Sc/(4m(m+ 2))).

Now we are ready to give the announced

Proof of Theorem 4.1. If the paraquaternionic sectional curva-
ture is constant, it follows from Theorem 3.1 that R(X, JτX)JτX =
ετ cg(X,X)X for all τ = 1, 2, 3, and therefore (ii), (iii) and (iv) hold.

Next suppose that (ii) holds, and take X,Y to be orthonormal
vectors, with g(X,X) = −g(Y, Y ) and such that V(X) ⊥ V(Y ).
If X is space-like, then (ii) implies that R(X, JτX, JτX,Y ) = 0.
If X is time-like, then J1X is space-like, and also from (ii) we get
R(J1X, JτJ1X, JτJ1X, J1Y ) = 0. Thus R(X, JτX, JτX,Y ) = 0, and
(i) follows from Lemma 4.3.

If (iii) holds, take X to be a space-like vector and Y orthogonal
to X. Since X is space-like and J1X is time-like, (iii) implies that
R(J1X, JτJ1X, JτJ1X, J1Y ) = 0, and therefore R(X, JτX, JτX,Y ) =
0.

Suppose then that (iv) holds and take X,Y to be orthonormal vectors
with g(X,X) = −g(Y, Y ) and V(X) ⊥ V(Y ). Then X ± Y are null
vectors, and from (iv) we have

R(X + Y, JτX + JτY, JτX + JτY,X − Y )
−R(X − Y, JτX − JτY, JτX − JτY,X + Y ) = 0,

and thus

(4.5) R(X, JτX, JτX,Y ) −R(Y, JτY, JτY,X) = 0.

Similarly, from (iv) we have

R(X + Y, JτX + JτY, JτX + JτY,X + Y )
−R(X − Y, JτX − JτY, JτX − JτY,X − Y ) = 0,
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and thus

(4.6) R(X, JτX, JτX,Y ) + R(Y, JτY, JτY,X) = 0.

Now (4.5) together with (4.6) implies R(X, JτX, JτX,Y ) = 0, and
the proof follows from Lemma 4.3.

Let X,Y ∈ TpM . If the V-planes V(X) and V(Y ) are orthogonal,
we can say that {X,Y } spans an anti-paraquaternionic plane.

Remark 4.1. For each null vector U , orthonormal space-like and time-
like vectors X and Y exist such that U = α(X + Y ), and moreover, X
and Y may be chosen such that 〈{X, J3X}〉 ⊥ 〈{Y, J3Y }〉. However,
{X,Y } does not necessarily span an anti-paraquaternionic plane.

Also note that (iv) in Theorem 4.1 remains valid if it is only checked
for null vectors of the form U = α(X + Y ), where {X,Y } spans an
anti-paraquaternionic plane.

5. Degenerate paraquaternionic sections. As well as for the
sectional curvature, the definition of the paraquaternionic sectional cur-
vature makes sense only for nondegenerate paraquaternionic sections.
This fact has an important consequence; the paraquaternionic sectional
curvature is not necessarily bounded at each point p ∈ M . As we will
show at the end of this section, such boundedness may occur only
when (M, g,V) is a paraquaternionic space form. This fact is strongly
related with the possibility of continuously extending the definition of
the paraquaternionic sectional curvature to degenerate V-sections. We
recall that V(X) = 〈{X, J1X, J2X, J3X}〉 associated with a vector X
is degenerate if and only if X is null. Moreover, the restriction of the
metric g to degenerate V-sections has signature (0, 0, 0, 0), i.e., totally
degenerate. Therefore, a necessary condition for the desired extension
of the paraquaternionic sectional curvature is

(5.1) R(X,Y, Z,W ) = 0

for all vectors X,Y, Z,W ∈ V(U), and for all null vectors U .

Note that the above condition implies

(5.2) R(U, JτU, JτU,U) = 0, τ = 1, 2, 3
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for all null vectors U .

We start with the consideration of this last condition and its relation
with the paraquaternionic sectional curvature. First of all, note that
if (5.2) holds, then R(U, JτU)JτU ∈ 〈U〉⊥. If V ∈ 〈U〉⊥ is a null
vector, it follows that U + λV is null for all real numbers λ, and hence
R(U + λV, Jτ (U + λV ), Jτ (U + λV ), U + λV ) = 0. Linearizing this
expression and considering the coefficient corresponding to λ, we get
g(R(U, JτU)JτU, V ) = 0. Hence, R(U, JτU)JτU lies in the direction of
〈U〉 and therefore (5.2) is equivalent to

(5.3) R(U, JτU)JτU = cτUU, τ = 1, 2, 3.

According to Theorem 4.1, the eigenvalue cU measures the failure of
a paraquaternionic Kähler manifold satisfying (5.2) to be of constant
paraquaternionic sectional curvature.

Lemma 5.1. Let (M4m, g,V), m > 1, be a paraquaternionic Kähler
manifold satisfying (5.2). If X and Y are orthogonal vectors with
g(X,X) = −g(Y, Y ), then

(a) R(X, JτX, JτX,Y ) = −R(Y, JτY, JτY,X),

(b) R(X, JτX, JτX,X) +R(Y, JτY, JτY, Y ) = 2R(X, JτX,Y, JτY ) +
2R(X, JτY, Y, JτX) + R(X, JτY,X, JτY ) + R(Y, JτX,Y, JτX),

for some local basis {Jτ ; τ = 1, 2, 3}.

Proof. Since X and Y are orthogonal unit vectors with g(X,X) =
−g(Y, Y ), U = X ± Y are null vectors. Now the result follows from
(5.2) after linearization.

Lemma 5.2. Let (M4m, g,V), m > 1, be a paraquaternionic Kähler
manifold satisfying (5.2). If U = α(X + Y ) is a null vector and
V(X) ⊥ V(Y ), then

(5.4)

c1U = 4εZR(U,Z, U, Z) +
3Sc

4m(m+ 2)
εZ{g(Z, J2U)2 − g(Z, J3U)2}
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for all unit vectors Z ∈ 〈{X,Y, J1X, J1Y }〉⊥,

(5.5)

c2U = 4εZR(U,Z, U, Z) +
3Sc

4m(m+ 2)
εZ{g(Z, J1U)2 − g(Z, J3U)2}

for all unit vectors Z ∈ 〈{X,Y, J2X, J2Y }〉⊥,

(5.6)

c3U = −4εZR(U,Z, U, Z) − 3Sc
4m(m+ 2)

εZ{g(Z, J1U)2 + g(Z, J2U)2}

for all unit vectors Z ∈ 〈{X,Y, J3X, J3Y }〉⊥.

Proof. Suppose X is unit space-like, and consider the null vector
V = (1/(4α))(Y − X). If Z is a unit vector in 〈{X,Y, J1X, J1Y }〉⊥,
for each t > 0, wt = (1/

√
t)(U + tεZV ) and Z are orthogonal with

g(wt, wt) = −g(Z,Z). Therefore, Lemma 5.1(b) for τ = 1 implies

R(Z, J1Z,Z, J1Z) + R(wt, J1wt, J1wt, wt)
= 2R(Z, J1Z,wt, J1wt) + 2R(Z, J1wt, wt, J1Z)

+ R(Z, J1wt, Z, J1wt) + R(wt, J1Z,wt, J1Z)

and hence

tR(Z, J1Z,Z, J1Z) +
1
t
R(U + tεZV, J1(U + tεZV ),

J1(U + tεZV ), U + tεZV )
= 2R(Z, J1Z,U + tεZV, J1(U + tεZV ))

+ 2R(Z, J1(U + tεZV ), U + tεZV, J1Z)
+ R(Z, J1(U + tεZV ), Z, J1(U + tεZV ))
+ R(U + tεZV, J1Z,U + tεZV, J1Z).

Linearizing this expression and taking limits as t → 0, we get

−4εZR(U, J1U,U, J1V ) = 2R(Z, J1Z,U, J1U)
+ 2R(Z, J1U,U, J1Z)
+ R(Z, J1U,Z, J1U)
+ R(U, J1Z,U, J1Z).
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Now from (2.11) the expression above reduces to

c1U = −εZR(Z, J1Z,U, J1U) − 2εZR(Z, J1U,U, J1Z)

− Sc

4m(m+ 2)
εZ{g(Z, J2U)2 − g(Z, J3U)2},

and by the first Bianchi identity

(5.7)
c1U = εZR(U,Z, J1Z, J1U) − 3εZR(Z, J1U,U, J1Z)

− Sc

4m(m+ 2)
εZ{g(Z, J2U)2 − g(Z, J3U)2}.

Note at this point that if Z is a unit vector in 〈{X,Y, J1X, J1Y }〉⊥,
then so is J1Z, and hence from (5.7),

(5.8)
c1U = 3εZR(U,Z, J1Z, J1U) − εZR(Z, J1U,U, J1Z)

− Sc

4m(m+ 2)
εZ{g(Z, J2U)2 − g(Z, J3U)2}.

Now from (5.7) and (5.8) we getR(Z, J1U,U, J1Z)=−R(U,Z, J1Z, J1U)
and thus (5.4) is obtained from (5.7).

The remaining identities (5.5) and (5.6) are derived in an analogous
way.

The previous lemma has two important corollaries:

Corollary 5.1. Let (M4m, g,V), m > 1, be a paraquaternionic
Kähler manifold satisfying (5.2). Then

c1U = c2U = −c3U
for all null vectors U of the form U = α(X + Y ), where {X,Y } spans
an anti-paraquaternionic plane.

Proof. Let U = α(X + Y ) be a null vector where {X,Y } spans
an anti-paraquaternionic plane. Since Z = J3X is a unit vector in
〈{X,Y, J1X, J1Y }〉⊥ ∩ 〈{X,Y, J2X, J2Y }〉⊥, from Lemma 5.2 we get

c1U = 4εZR(U,Z, U, Z) +
3Sc

4m(m+ 2)
εZ{g(Z, J2U)2 − g(Z, J3U)2}
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and

c2U = 4εZR(U,Z, U, Z) +
3Sc

4m(m+ 2)
εZ{g(Z, J1U)2 − g(Z, J3U)2}.

Now, since Z ∈ 〈{J1U, J2U}〉⊥, it follows that c1U = c2U . The proof of
c2U = −c3U is similar.

Corollary 5.2. Let (M4m, g,V), m > 2, be a paraquaternionic
Kähler manifold satisfying (5.2). If U is a null vector of the form
U = α(X + Y ), where {X,Y } spans an anti-paraquaternionic plane,
then

cτU = 4ετεZR(U,Z, U, Z), τ = 1, 2, 3,

Z being a unit vector such that V(X) ⊥ Z ⊥ V(Y ).

Proof. Note that Z ∈ 〈{X,Y, JτX, JτY }〉⊥ for all τ = 1, 2, 3. Hence,
the result follows from Lemma 5.2.

Next we will relate the distinguished eigenvalue cU with the Ricci
tensor, which is a basic observation in the proof of Theorem 5.1.

Proposition 5.1. Let (M4m, g,V), m > 1, be a paraquaternionic
Kähler manifold satisfying (5.2). Then

(5.9) ρ(U,U) = ετ (m+ 4)cτU , τ = 1, 2, 3,

for all null vectors U of the form U = α(X + Y ), where {X,Y } spans
an anti-paraquaternionic plane.

Proof. Let {Z1, Z2, . . . , Z4m−8} be an orthonormal basis of (V(X)⊕
V(Y ))⊥. Then, if we assume X to be a unit space-like,

(5.10)

ρ(U,U) = R(U,X,U,X) −R(U, Y, U, Y )

−
3∑

τ=1

ετ{R(U, JτX,U, JτX) −R(U, JτY, U, JτY )}

+
4m−8∑

i=1

εZi
R(U,Zi, U, Zi),
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where εZi
= g(Zi, Zi), i = 1, . . . , 4m− 8.

Now, since U = α(X + Y ), one easily obtains R(U,X,U,X) −
R(U, Y, U, Y ) = 0 and R(U, JτX,U, JτX)−R(U, JτY, U, JτY ) = −2cτU .
Therefore, (5.10) becomes

ρ(U,U) = 2c1U + 2c2U − 2c3U +
4m−8∑

i=1

εZi
R(U,Zi, U, Zi),

and the desired result is obtained from Corollaries 5.1 and 5.2.

Next we state the main result of this section.

Theorem 5.1. Let (M4m, g,V), m > 1, be a paraquaternionic
Kähler manifold. Then (5.2) is equivalent to the constancy of the
paraquaternionic sectional curvature.

Proof. Since any paraquaternionic Kähler manifold of dimM > 4
is Einstein (cf. Theorem 2.1), it follows from (5.9) that cτu = 0,
τ = 1, 2, 3, and for all null vectors U of the form U = α(X +Y ), where
{X,Y } spans an anti-paraquaternionic plane. Hence, (5.3) implies that
R(U, JτU)JτU = 0, τ = 1, 2, 3, and for such null vectors U . Now the
result follows from (iv) in Theorem 4.1 and Remark 4.1.

It is necessary to immediately recognize from Theorem 3.1 that
(5.1) is satisfied by any paraquaternionic space form. Therefore,
(M4m, g,V), m > 1, is a paraquaternionic space form if and only if the
restriction of the curvature tensor to any degenerate paraquaternionic
section vanishes identically. (This result should be contrasted with a
corresponding one for indefinite Kähler manifolds, which shows that the
restriction of the curvature tensor to degenerate holomorphic sections
vanishes if and only if the manifold is null holomorphically flat, a
strictly weaker condition than constant holomorphic sectional curvature
[6]).

Remark 5.1. The above result is no longer true if we are not
in the category of paraquaternionic Kähler manifolds. Indeed, it is
easy to show that the tangent bundle TM of any paraquaternionic



258 GARCÍA-RÍO, MATSUSHITA AND VÁZQUEZ-LORENZO

Kähler manifold (M, g,V) inherits in a natural way a paraquaternionic
structure (gH ,VH), where gH and VH are the horizontal lifts of
the metric and the paraquaternionic structure of M , respectively.
(Horizontal lifts are taken with respect to the Levi-Civita connection of
(M, g) ). Moreover, after some calculations as in [8], it follows that the
curvature tensor of (TM, gH ,VH) satisfies (5.2) if and only if (M, g,V)
is a paraquaternionic space form. However, the paraquaternionic
sectional curvature of (TM, gH ,VH) is not constant, unless M is flat.

Remark 5.2. If dimM = 4, (5.2) is equivalent to the vanishing of the
Weyl tensor, and therefore equivalent to locally conformally flatness
(cf. [16]).

Finally, as an application of Theorem 5.1, we will prove the announced
result on the boundedness of the paraquaternionic sectional curvature.

Theorem 5.2. Let (M4m, g,V), m > 1, be a paraquaternionic
Kähler manifold. If the paraquaternionic sectional curvature is bounded
from below and from above, then it is constant.

Proof. Consider a null vector U ∈ TpM and approximate it by a
sequence {Zn}n∈N of nonnull vectors, for instance, Zn = U + (Z/n),
Z being a nonnull vector orthogonal to U . Since Zn is nonnull and the
paraquaternionic sectional curvature is assumed to be bounded,

|K(Zn, JτZn)| ≤ A, τ = 1, 2, 3,

for some constant A. Hence

|R(Zn, JτZn, Zn, JτZn)| ≤ A|g(Zn, Zn)|, τ = 1, 2, 3

and, taking limits when n → ∞, one gets

R(U, JτU,U, JτU) = 0, τ = 1, 2, 3

for all null vectors U . Now the result follows from Theorem 5.1.
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