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A CYCLIC ELEMENT CHARACTERIZATION
OF MONOTONE NORMALITY

DALE DANIEL AND BRUCE TREYBIG

ABSTRACT. A subcontinuum g of a locally connected con-
tinuum X is a cyclic element of X provided that g is maximal
with respect to the property that no point separates it. In an
earlier paper, Cornette showed that a locally connected con-
tinuum is the continuous image of an arc if and only if each
cyclic element of X is the continuous image of an arc. In this
paper we prove the analogous theorem for monotonically nor-
mal continua by showing that a locally connected continuum
X is monotonically normal if and only if each cyclic element
of X is monotonically normal.

Definition. A continuum is a compact connected Hausdorff space.
A continuum is called an arc provided that it is a nondegenerate ordered
continuum.

Notation. If S ⊂ X, IntX(S) will denote the interior of S with
respect to X or simply Int (S) if the superspace is clear. Similarly,
∂X(S) or ∂(S) will denote the boundary of S with respect to X.

Definition. A cyclic element C of a locally connected continuum X
is a subcontinuum of X that is maximal with respect to the property
that no point separates C. If a cyclic element C of X is nondegenerate,
C is said to be a true cyclic element of X. A subset A of X is an
A-set of X provided that X − A = ∪Gi, where each Gi is open in X,
Gi ∩ Gj = ∅ for i �= j, ∂(Gi) contains at most one point, and where
if C is an open cover of X then all but a finite number of the Gi lie
in some element of C. For any two distinct points a and b of X, the
intersection of all A-sets in X containing a and b is called the cyclic
chain from a to b and is denoted by C(a, b).
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The reader is referred to Whyburn [19] for a complete treatment of
the notions in the previous definition.

Definition. A Hausdorff topological space X is said to be monotoni-
cally normal (see [1, 2] and [5]), provided that there exists a function G
which assigns, to each point x ∈ X and each open set U ofX containing
x, an open set G(x, U) such that

(1) x ∈ G(x, U) ⊂ U ,

(2) if U ′ is open and x ∈ U ⊂ U ′, then G(x, U) ⊂ G(x, U ′),

(3) if x and y are distinct points ofX, then G(x,X−y)∩G(y,X−x) =
∅.

Such a function G is called a monotone normality operator on X.

Our goal is to prove the following.

Theorem 1. If X is a locally connected continuum, then X is mono-
tonically normal if and only if each cyclic element of X is monotonically
normal.

In [4], the first author has shown the following:

Theorem. Let X be a locally connected continuum such that each
cyclic element of X has a separable Gδ boundary in X. Then X
is monotonically normal if and only if each cyclic element of X is
monotonically normal.

Our Theorem 1 is thus an improvement of the above result and is a
natural analogue to the following result of Cornette [3].

Theorem. If X is a locally connected continuum, then X is the
continuous image of an arc if and only if each cyclic element of X is
the continuous image of an arc.

The interest in the connection between monotone normality and
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continua which are an IOK (the continuous image of a compact ordered
space) stems from results by Heath, Lutzer, and Zenor [5] and also a
question of Nikiel [8] in which he asks if every monotonically normal
compactum is an IOK. Some partial results are as follows. In [9],
Nikiel, Treybig and Tuncali have shown that if X is monotonically
normal, or rim-metrizable, or rim-scattered, and for each pair a, b of
distinct points of X there is a continuous onto map f : X → [c, d] so
that f(a) = c, f(b) = d and [c, d] is a nonmetrizable arc, then X is an
IOC (the continuous image of an arc). Also, Rudin has shown that any
separable monotonically normal compactum is an IOK ([11] and [12])
and that any first countable monotonically normal compactum is an
IOK [13]. Other related results in this area are by Mardesic [6], Nikiel
[7], Ostaszewski [10], Simone [14], Treybig [15] and [16], Tymchatyn
[17] and Ward [18].

We now proceed to the proof of Theorem 1.

Suppose first that X is monotonically normal. Heath, Lutzer and
Zenor [5] have shown that each subspace of a monotonically normal
space is monotonically normal; therefore, each cyclic element of X is
monotonically normal.

Now suppose that each cyclic element Q of X has a monotone
normality operator LQ. We also select a well-ordering W of X.

Let a ∈ X, and let U be an open set containing a. We proceed to
define a monotone normality operator H(a, U).

Case 1. Let a ∈ Int (K), where K is a true cyclic element of X. We
define H(a, U) to be LK(a, IntX(U ∩K).

Case 2. Suppose a /∈ Int (K) for any true cyclic element K of X.

Before proceeding, we prove the following lemma.

Lemma 1. If C = {Cα : α ∈ A} is the collection of all components
of X − {a} which intersect X − U , then C is finite.
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Proof. Assume that there exist infinitely many distinct components
C1, C2, C3, . . . in C. For each Ci, there exists a connected subset Qi

of Ci so that a ∈ Qi, Qi ⊂ U , and Qi ∩ ∂U �= ∅. Let f : U → [0, 1]
be a continuous map so that f(a) = 0 and f(∂U) = 1. For each i, let
xi ∈ Qi∩f−1((3/8, 5/8)), and let x denote a limit point of the xi. There
exists a connected open set U ′ such that x ∈ U ′ ⊂ f−1((3/8, 5/8)).
Since U ′ contains two xi, say xI and xJ , then it follows that CI and CJ

are subsets of the same components of X − a, which is a contradiction.

Let Y1 = {Gβ : β ∈ B} be the set of all true cyclic elements of X so
that a ∈ Gβ. Let Y2 = {Gβ : β ∈ B′} denote those Gβ ∈ Y1 so that
the component of X − {a} containing Gβ − {a} is not a subset of U .
By Lemma 1, Y2 = {Gβ : β ∈ B′} is finite so that the elements thereof
may be labeled G1, G2, . . . , Gn.

For a given Gi ∈ Y2, 1 ≤ i ≤ n, let G′
i denote the set of all z such

that there is a component Z of X −{z} such that Z �⊂ U , Z ∩Gi = ∅,
and z ∈ (Gi − {a}) ∩ U . It follows from an argument similar to that
of Lemma 1 that the only limit points of G′

i are in ∂(U), and that
given such a z there are only finitely many such sets Z so that Z is a
component of X − {z}.

Now consider the set S of all cyclic chains C(a, b), where

(1) each C(a, b) is the intersection of all A-sets containing a and b,

(2) C(a, b) = {a, b} ∪ E(a, b) ∪ (∪{Eab
α }), where E(a, b) = {x ∈ X :

x separates a from b} and each {Eab
α } is a true cyclic element of X

having exactly two points common with {a, b} ∪E(a, b),

(3) C(a, b) contains no Gα ∈ Y1 containing a, and

(4) C(a, b) is not a subset of U .

Let S′ = {C(a, b1), C(a, b2), . . . } be a maximal subset of S where
C(a, bi) ∩ C(a, bj) = {a} if i �= j. By Lemma 1, S′ is finite; so let
S′ = {C(a, b1), C(a, b2), . . . , C(a, bp)}.

Now, for each fixed bi, 1 ≤ i ≤ p, let Ibi
denote all the elements of

S which have a nontrivial segment [a, t), t ∈ E(a, bi), common with
C(a, bi). Such a segment [a, t) is the component of C(a, bi) − {t}
which contains {a}. Now suppose that, for each t ∈ E(a, bi), there
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exists an element C(a, x) of Ibi
so that C(a, x) ∩ C(a, bi) ⊂ [a, t).

An argument similar to that of Lemma 1 shows that a contradiction
results. Therefore, there is a first point wi in the well-ordering W so
that wi ∈ {a, bi} ∪ E(a, bi) and [a,wi) ⊂ C(a, b) for all C(a, b) in Ibi

and [a,wi) ⊂ U .

We now let C ′(a, bi) denote the union of all sets Z so that there exists
z ∈ (a,wi) so that Z is a component of X − {z} which is a subset of
U , and which consequently does not intersect any C(a, b) in Ibi

. For
each Gi, 1 ≤ i ≤ n, let Aai

denote the collection of all sets Z such that
there exists z ∈ ∂(Gi) ∩ LGi

(a, (U ∩ Gi) − G′
i) − {a} such that Z is a

component of X−{z} which does not intersect Gi and is a subset of U .
Let Cα denote the set of all components of X − {a} which are subsets
of U .

We now define H(a, U) by

H(a, U) =
( n⋃

i=1

LGi
(a, (U ∩Gi) −G′

i)
)
∪

( n⋃
i=1

Aai

)
∪ (∪Ca)

∪
( p⋃

i=1

[a,wi)
)
∪

( p⋃
i=1

C ′(a, bi)
)
.

Since each of the sets in the unions above is a subset of U , then clearly
a ∈ H(a, U) ⊂ U . We now show that H(a, U) is open. Suppose that
p ∈ H(a, U) but that p is a limit point of the subset L of X −H(a, U)
where, without loss of generality, we assume L ⊂ U .

Case A. Suppose p �= a.

Case A1. Suppose p ∈ Z ∈ Ca. Let Q be a connected open set so
that p ∈ Q ⊂ U − {a}. Let l ∈ (L ∩ Q). But l ∈ Q ⊂ Z ⊂ H(a, U),
which is a contradiction.

Case A2. Suppose p ∈ LGi
(a, (U ∩ Gi) − G′

i) for some i. Let V
denote a connected open set containing p where V contains no point of
G′

i ∪ {a}∪ (X −U)∪ (∪j �=iGj)∪ (∪p
j=1C(a, bj)). There is a component

Z of V − Gi which has a limit point z in Gi and contains a point of
L. If the component Q of X − {z} which contains Z is not a subset of
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U , then z ∈ G′
i, which is a contradiction. The fact that Q ⊂ U implies

that Q ∈ Aai
and that Q ⊂ H(a, U), a contradiction.

Case A3. Suppose p ∈ [a,wi) for some i. Let V denote a connected
open set containing p so that V ∩ C(a, bi) ⊂ [a,wi), V ∩ Gi = ∅ for
1 ≤ i ≤ n, V ∩ C(a, bj) = ∅ for j �= i, and V ⊂ U . Let l ∈ (V ∩ L),
and let Z be the component of V − [a, bi) containing l. There is a
limit point z of Z in (a,wi). Let Z ′ be the component of X − {z}
containing Z. If Z ′ �⊂ U , we obtain another chain in C(a, xs) in Ibi

,
contradicting the properties of [a, bi). If Z ′ ⊂ U , then Z ′ ∈ C ′(a, bi)
and l ∈ Z ′ ⊂ H(a, U), a contradiction.

Case B. Suppose p = a. Let V denote a connected open set containing
a such that

(1) V ⊂ U ,

(2) (V ∩Gi) ⊂ LGi
(a, (U ∩Gi) −G′

i) for 1 ≤ i ≤ n, and

(3) (V ∩ C(a, bi)) ⊂ [a,wi) for 1 ≤ i ≤ p.

Let l ∈ (V ∩L), and let C denote an open cover of V such that the clo-
sures of the elements of C are connected subsets of V . There is a finite
chain V1, V2, . . . , Vq of elements of C so that l ∈ V1 and Vq contains a
point of (∪n

i=1Gi) ∪ (∪p
i=1[a,wi)). Since ∪q

i=1V i contains no wi, then
the component Z of (V1 ∪ V2 ∪ · · · ∪ Vq) − ((∪n

i=1Gi) ∪ (∪p
i=1[a,wi)))

that contains l has a limit point z in (∪n
i=1Gi) ∪ (∪p

i=1[a,wi)). Let Z ′

be the component of X − {z} which contains Z.

Case B1. Suppose z = a. If Z ′ ⊂ U , then Z ′ ⊂ Ca and l ∈ H(a, U),
which is a contradiction. If Z ′ �⊂ U , there exists a C(a, xi) which should
be in S′, another contradiction.

Case B2. Suppose z �= a. If z ∈ Gi for some i, then z /∈ G′
i.

Therefore, Z ′ ⊂ U , Z ′ ∈ Aai
and l ∈ H(A,U), which is a contradiction.

If z ∈ [a,wi) for some i, then Z ′ ⊂ U implies Z ′ ∈ C ′(a, bi) and
l ∈ Z ′ ⊂ H(a, U), which is a contradiction. If, in this case, Z ′ �⊂ U ,
there exists a chain C(a, xi) whose intersection with C(a, bi) is [a, z),
which contradicts the definition of [a,wi).
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Thus H(a, U) is open in X.

Now suppose that U ′ is also an open set such that a ∈ U ⊂ U ′. We
show that H(a, U) ⊂ H(a, U ′), i.e., that H is monotone.

Case A. Let a ∈ Int (K) where K is a true cyclic element of X.
Then, by our definitions above, H(a, U) = LK(a, IntX(U ∩ K)) ⊂
LK(a, IntX(U ′ ∩K)) = H(a, U ′).

Case B. Suppose a /∈ Int (K) for any true cyclic element K
of X. Without loss of generality, let G1, G2, . . . , Gn be labeled
G1, G2, . . . , Gn0 , . . . , Gn, where the component of X − {a} contain-
ing any one of G1 − {a}, . . . , Gn0 − {a} is not a subset of U ′ and the
component of X−{a} containing any one of Gn0+1−{a}, . . . , Gn−{a}
is a subset of U ′. For each i, 1 ≤ i ≤ n0, let G′′

i denote the set of all
z ∈ Gi − {a} such that there is a component Z of X − {z} which does
not contain Gi−{z} and is not a subset of U ′. Let A′

ai
denote the set of

all sets Y such that there exists y ∈ ∂(Gi)∩LGi
(a, (U ′∩Gi)−G′′

i )−{a}
where Y is a component of X − {y} which does not intersect Gi and
is a subset of U ′. We let T denote the set of all C(a, b) in S such that
C(a, b) �⊂ U ′, and suppose that for some q, 1 ≤ q ≤ p, that (∪Ibi

) �⊂ U ′

for 1 ≤ i ≤ q and (∪Ibi
) ⊂ U ′ for (q + 1) ≤ i ≤ p. Also, without

loss of generality, we may assume that C(a, b1), . . . , C(a, bq) are not
subsets of U ′. For each i with 1 ≤ i ≤ q, we let I ′bi

denote the set of
all C(a, x) in T so that C(a, x) has a nontrivial segment [a, t) common
with C(a, bi), t ∈ E(a, bi). As in the case of wi, there is a first point w′

i

in the well-ordering W of X so that w′
i ∈ E(a, bi), [a,w′

i) ⊂ C(a, b) for
all C(a, b) in I ′bi

, and [a,w′
i) ⊂ U ′. For each i = 1, . . . , q, let C ′′(a, bi)

denote the union of all sets Z so that there exists z ∈ (a,w′
i) so that

Z is a component of X − {z} which is a subset of U ′ and does not
intersect any C(a, b) in I ′bi

. We let C ′
a denote the set of all components

of X − {a} which are subsets of U ′.

We therefore find that

H(a, U ′) =
( n0⋃

i=1

LGi
(a, (U ′ ∩Gi) −G′′

i )
)
∪

( n⋃
i=1

A′
ai

)
∪ (∪C ′

a)

∪
( p⋃

i=1

[a,w′
i)

)
∪

( p⋃
i=1

C ′′(a, bi)
)
.
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Clearly, (∪n0
i=1LGi

(a, (U ∩Gi)−G′
i)) ⊂ (∪n0

i=1LGi
(a, (U ′ ∩Gi)−G′′

i ))
and (∪n

i=n0+1LGi
(a, (U ∩ Gi) − G′

i) − G′
i)) ⊂ (∪C ′

a). Also, each
component of X − {a} which is a subset of U is also a subset of U ′, so
(∪Ca) ⊂ (∪C ′

a). We also have that (∪q
i=1[a,wi)) ⊂ (∪q

i=1[a,w
′
i)) and

(∪n
i=q+1[a,wi)) ⊂ (∪C ′

a). Finally, if z ∈ C ′(a, bi), then z ∈ C ′′(a, bi) or
Z ⊂ (∪C ′

a).

Thus H(a, U) ⊂ H(a, U ′) and H is monotone.

Now suppose that a, b are distinct elements of X. We show that
H(a,X − b) ∩H(b,X − a) = ∅. We then have that

H(a,X−b) =
( n⋃

i=1

LGi
(a, ((X − b) ∩Gi) −G′

i)
)
∪

( n⋃
i=1

Aai

)
∪ (∪Ca)

∪
( p⋃

i=1

[a,wi)
)
∪

( p⋃
i=1

C ′(a, bi)
)

and, analogously,

H(b,X−a) =
( n⋃

i=1

LKi
(b, ((X − a) ∩Ki) −K ′

i)
)
∪

( n⋃
i=1

Abi

)
∪ (∪Cb)

∪
( p⋃

i=1

[b, zi)
)
∪

( p⋃
i=1

C ′(b, ci)
)
.

Case A. Suppose a ∈ Gi, b ∈ Kj , where Gi and Kj are true cyclic
elements of X.

Case A1. Suppose Gi = Kj .

Case A1a. Suppose a ∈ Int (Gi) and b ∈ Int (Kj). Then H(a,X−b)∩
H(b,X − a) = LGi

(a, IntX(X − b)−Gi)∩LGi
(b, IntX(X − a)−Gi) ⊂

LGi
(a,Gi − b) ∩ LGi

(b,Gi − a) = ∅.

Case A1b. Suppose a ∈ Int (Gi) and b ∈ ∂(Kj). Although we
are in the case that Gi = Kj , it should be noted that K ′

j �= G′
i.

Since the only points of H(b,X − a) which lie in IntXGi also lie in



A CYCLIC ELEMENT CHARACTERIZATION 165

LGi
(b, ((Gi ∩ (X − a)) − K ′

j)), then H(a,X − b) ∩ H(b,X − a) ⊂
LGi

(a,Gi − b) ∩ LGi
(b,Gi − a) = ∅.

Case A1c. Suppose a ∈ ∂(Gi) and b ∈ ∂(Kj). In this case we have
that H(a,X − b) = (LGi

(a, ((X − b)∩Gi)−G′
i))∪ (∪Aai

)∪ (∪Ca) and
H(b,X − a) = (LKj

(b, ((X − a) ∩Kj) −K ′
j)) ∪ (∪Abj

) ∪ (∪Cb).

Now suppose R ∈ Ca, S ∈ Cbj
, Z ∈ Aai

and Z ′ ∈ Ab. Now if any
R ∩ Z, R ∩ Z ′, R ∩ S, Z ∩ S, Z ∩ Z ′ or Z ′ ∩ S is nonempty, then
Gi = Kj is not a true cyclic element of X, a contradiction. Similarly,
none of R,Z,Z ′, S can meet either of LGi

(a, ((X − b) ∩ Gi) − G′
i) or

LKj
(b, ((X−a)∩Kj)−K ′

j), and since these latter two sets are disjoint
we have that H(a,X − b) ∩H(b,X − a) = ∅.

Case A2. Suppose Gi �= Kj and no cyclic element of X contains both
a and b.

Case A2a. Suppose that a ∈ Int (Gi) and/or b ∈ Int (Kj). Without
loss of generality, assume that a ∈ Int (Gi). Then H(a,X − b) =
LGi

(a, IntX(X − b) ∩Gi) and therefore H(a,X − b) meets none of the
set used in the construction of H(b,X − a).

Throughout the remaining cases, we let C(a, b) denote the cyclic chain
from a to b and note that E(a, b) �= ∅. We let w denote the first element
of the well-ordering W of X which lies in E(a, b). We also note that
if Gi ⊂ C(a, b) and Kj ⊂ C(a, b) and F is a true cyclic element of X
distinct from Gi and Kj which contains a (respectively b), then F−{a}
(respectively F − {b}) determines an element of Ca (respectively Cb).

Case A2b. Suppose a ∈ ∂(Gi), b ∈ ∂Kj , and both of Gi and
Kj are contained in C(a, b). In this case we have H(a,X − b) =
(LGi

(a, ((X − b) ∩ Gi) − G′
i)) ∪ (∪Aai

) ∪ (∪Ca) and H(b,X − a) =
(LKj

(b, ((X − a) ∩Kj) −K ′
j)) ∪ (∪Abj

) ∪ (∪Cb).

Note that ∂C(a,b)(C(a, b)−Gi) ∈ G′
i and ∂C(a,b)(C(a, b)−Kj) ∈ K ′

j .
Therefore, (LGi

(a, ((X−b)∩Gi)−G′
i))∩(LKj

(b, ((X−a)∩Kj)−K ′
j)) =

∅.

Now let Ra ∈ Ca, Rb ∈ Cb, Sa ∈ Aai
and Sb ∈ Abj

. If one of Ra, Sa

meet one of Rb, Sb, then we find that Gi (respectively Kj) is not a
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cyclic element of X, a contradiction. Also, since (Sa ∪ Ra) ∩Kj = ∅

and (Sb ∪Rb) ∩Gi = ∅, we obtain H(a,X − b) ∩H(b,X − a) = ∅.

Case B. Suppose a ∈ Gi and b ∈ Kj where Gi and Kj are cyclic
elements of X but are not necessarily true cyclic elements of X.

Case B1. Suppose a ∈ Gi ⊂ C(a, b) and b is contained in no true
cyclic element of X which is contained in C(a, b). In this case we have
that H(a,X − b) = (LGi

(a, ((X − b) ∩Gi) −G′
i)) ∪ (∪Aai

) ∪ (Ca) and
H(b,X − a) = (∪Cb) ∪ [b, zj) ∪ (∪C ′(b, a)).

Now let Ra ∈ Ca, Sa ∈ Aai
, Rb ∈ Cb and Tb ∈ C ′(b, a). If one

of Sa, Ra meets one of Tb, Rb, then Gi is not a cyclic element of X, a
contradiction. Also, Gi∩[b, zj) = ∅ and neitherGi nor [b, zj) meets any
one of Sa, Ra, Tb and Rb. Thus we obtainH(a,X−b)∩H(b,X−a) = ∅.

Case B2. Suppose b ∈ Kj ⊂ C(a, b) and a is contained in no true
cyclic element of X which is contained in C(a, b). This case clearly
follows from an argument similar to that of the preceding case.

Case B3. Neither a nor b is contained in a true cyclic element of X
which is contained in C(a, b). We then have that H(a,X−b) = (∪Ca)∪
[a,wi) ∪ (∪C ′(a, b)) and H(b,X − a) = (∪Cb) ∪ [b, zj) ∪ (∪C ′(b, a)).

Now let Ra ∈ Ca, Rb ∈ Cb, Ta ∈ C ′(a, b) and Tb ∈ C ′(b, a).

If one of Ra, Ta meets one of Rb, Tb, then w does not separate a
from b in X, a contradiction. Also, [a,wi) ∩ [b, zj) = ∅ and neither
[a,wi) nor [b, zj) meets any of Ra, Ta, Rb and Tb. Thus, we obtain
H(a,X − b) ∩H(b,X − a) = ∅.

This completes the proof that X is monotonically normal.
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