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CONFIGURATIONS OF CYCLES
AND THE APOLLONIUS PROBLEM

BORUT JURČIČ ZLOBEC AND NEŽA MRAMOR KOSTA

ABSTRACT. Given n+1 spheres and planes of dimension
n−1 in Rn, the Apollonius problem is to find a common tan-
gent sphere or plane, and the generalized Apollonius problem
is to find a sphere or plane intersecting them under prescribed
angles. In Lie geometry, an Apollonius problem is given by an
(n + 1)-frame of points on the Lie quadric Ω ⊂ Pn + 2. The
solutions are described as the intersections of the projective
line determined by the orthogonal complement to this frame
with respect to the Lie product in Rn+3 and the quadric.
Two special points span this line, and the connection between
the position of these two points and the existence and geo-
metric properties of the solutions of the Apollonius problem
are described.

1. Introduction. In Lie geometry, planes and spheres of dimension
n − 1 in Rn are described as points on a quadric in the projective
space Pn+2 and the angle of intersection is expressed in terms of
the Lie product in Rn+3. Lie geometry is a natural environment for
describing certain geometric constructions, for example the Apollonius
construction where we look for an object which is tangent to a given set
of objects. The objects involved are either planes, spheres or points,
where points count as spheres with radius zero and both together will be
called geometric cycles. Tangency and intersection of geometric cycles
correspond to algebraic relations between the corresponding points of
the projective space. This means that to find a solution to a geometric
construction it suffices to solve a system of algebraic equations.

In this paper we discuss how geometric properties of the solution
set of certain constructions in Rn given by n + 1 cycles can be re-
constructed from the position of their corresponding points in Pn+2.
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The basic construction we consider is the Apollonius construction in
Rn, and the main result of the paper is a classification of Apollonius
constructions from this point of view. A number of geometric construc-
tions involving planes and spheres can be described as a sequence of
Apollonius constructions (compare [4]), so our results actually apply to
a wide class of geometric constructions. We also show that two further
basic constructions can be classified similarly; the generalized Apollo-
nius construction of finding a cycle intersecting n + 1 given cycles at
prescribed angles, and the dual construction of finding a cycle with
prescribed tangential distances to n + 1 given cycles. The main idea
is that the cycles that determine a well-defined construction, span a
projective subspace of dimension n+ 1 in Pn+2, so the complement is
a projective line. Two special points on this line and their position in
Pn+2 determine the type of the solution set.

In Section 2 we recollect the required basic concepts from Lie geom-
etry and introduce the terminology. In Section 3 we describe various
kinds of families of cycles, and in Section 4 we introduce configurations.
A configuration is an (n+ 1)-tuple of points in Pn+2 corresponding to
the set of cycles which determine a construction. We give a classifica-
tion of configurations and a description of the solutions.

The idea to use Lie geometry to solve problems in circle geometry is
old and was used, for example, in [6] and [5]. A thorough treatment of
Lie geometry can be found in [1] or [2], while [3] gives some applications
of Lie geometry and C-geometry to constructions in the plane.

2. Cycles and the Lie product. A cycle is an element x in
the (n + 2)-dimensional real projective space Pn+2. It is determined
by a one-dimensional subspace of Rn+3 spanned by a nonzero vector
X = (v,p, ω, ρ) with components v, ω, ρ ∈ R and p ∈ Rn called
the vector of homogeneous coordinates of x which is determined by
x up to a nonzero scalar factor. In this paper we will use a lower case
letter for a cycle and the corresponding capital letter for a vector of its
homogeneous coordinates.

The Lie product (X1 | X2) of two vectors X1 = (v1,p1, ω1, ρ1) and
X2 = (v2,p2, ω2, ρ2) in Rn+3 is an indefinite bilinear form of signature
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(n+ 1, 2) on Rn+3 given by

(1)
(X1 | X2) = v1ω2 + p1 · p2 + v2ω1 − ρ1ρ2

= X1 ·AX2,

where ‘·’ denotes the Euclidean inner product and

A =



0 0 1 0
0 I 0 0
1 0 0 0
0 0 0 −1


 .

A given set of cycles x1, . . . , xk ∈ Pn+2 determines a linear subspace
V of Rn+3 spanned b {X1, . . . , Xk}. Let

〈x1, . . . , xk〉 = {z ∈ Pn+2 | Z = λ1X1 + · · ·+ λkXk}

denote the projective space associated to V and

〈x1, . . . , xk〉⊥ = {z ∈ Pn+2 | (Xi | Z) = 0, i = 1, . . . , k}

the projective space corresponding to the orthogonal complement of V .
The quadric surface Ω = {x ∈ Pn+2 | (X | X) = 0} is called the Lie
quadric. Cycles on the quadric are called proper cycles, while all other
cycles in Pn+2 are called improper cycles.

In Lie geometry, every proper cycle x except the cycle w with homo-
geneous coordinates W = (1,0, 0, 0) represents an oriented geometric
cycle Cx which is either an (n−1)-plane or an (n−1)-sphere inRn as fol-
lows. If the homogeneous coordinate ω of x is zero, then x has a unique
representation by homogeneous coordinates of the form X = (v,p, 0, 1)
and the fact that (X | X) = 0 implies p 
= 0. The geometric cycle Cx

is the plane with normal vector p and v = p · q where q ∈ Cx. If on
the other hand ω 
= 0, then x has a unique description by homogeneous
coordinates of the form X = (v,p, 1, ρ) and Cx is the sphere with center
p and radius |ρ|. If ρ > 0, then the sphere Cx has positive orientation
(i.e., outward normal vector), if ρ < 0, it has negative orientation and
if ρ = 0, then Cx is the point p ∈ Rn (the sphere with center p and
radius 0). Thus a cycle x ∈ Ω\{w} represents a plane in Rn precisely if
x ∈ 〈w〉⊥. Such cycles are called infinite cycles, while all other proper
cycles are called finite cycles. A proper cycle x 
= w represents a point
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in Rn precisely if x ∈ 〈r〉⊥, where R = (0,0, 0, 1). Cycles representing
points are called point cycles.

It is easy to verify that for proper cycles x1, x2 ∈ Ω\{w}, the relation
(X1 | X2) = 0 corresponds to coherent tangency of the geometric cycles
Cx1 and Cx2 . If Cx1 and Cx2 are planes or spheres, they are tangent with
compatible orientations and if, for example, Cx1 is a point, Cx1 lies on
Cx2 .

For any cycle x with homogeneous coordinates X = (v,p, ω, ρ), let
x′ be the cycle with homogeneous coordinates X ′ = (v,p, ω,−ρ). If x
is a proper cycle, then x′ is also a proper cycle and the geometric cycle
Cx′ is the same nonoriented geometric object as Cx with the opposite
orientation. If x is a point cycle, then obviously, x′ = x.

The proof of the following proposition is easy and will be omitted.

Proposition 2.1. If x1 and x2 are proper cycles and (X1 | X2) = 0,
then the projective line 〈x1, x2〉 is contained in Ω.

For any x 
= r, let x0 denote the orthogonal projection of x onto the
subspace 〈r〉⊥. So if X = (v,p, ω, ρ), then X0 = (v,p, ω, 0). If x ∈ Ω,
then (X0 | X0) = ρ2.

Remark 1. The vector X0 determines the Möbius coordinates of
the nonoriented geometric cycle determined by Cx and the product
(X0 | X0) corresponds to the Möbius product. In Möbius geometry a
nonoriented sphere or plane in Rn is represented by a point in Pn+1

with homogeneous coordinates (v,p, ω). The projection (v,p, ω, ρ) �→
(v,p, ω) from Ω to Pn+1 corresponds to assigning to an oriented
geometric cycle the underlying nonoriented one (in short, forgetting
the orientation).

Definition 2.1. Let x1 and x2 be finite proper cycles representing
spheres, or points, in Rn and let

(2) P (x1, x2) = −2(X1 | X2)
ω1ω2

.

With homogeneous coordinates X1 = (v1,p1, 1, ρ1) and X2 =
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(v2,p2, 1, ρ2) this equals

(3) P (x1, x2) = −2(X1 | X2) = ‖p1 − p2‖2 − (ρ1 − ρ2)2.

Here are some geometric facts which follow from this expression. If
P (x1, x2) ≥ 0, this is the tangential distance between the oriented
spheres Cx1 and Cx2 . Specifically, if P (x1, x2) = 0 the geometric
cycles Cx1 and Cx2 are coherently tangent. If x1 is a point cycle, then
P (x1, x2) < 0 if the point Cx1 is in the interior of Cx2 (i.e., in the
bounded component of Rn−Cx2), P (x1, x2) > 0 if Cx1 is in the exterior
of Cx2 , and P (x1, x2) = 0 if Cx1 lies on Cx2 .

Definition 2.2. Let x1 and x2 be proper cycles which are not point
cycles, and let

A(x1, x2) =
(X1 | X2)

ρ1ρ2
,(4)

|A|(x1, x2) = A(x1, x2)A(x′
1, x2)(5)

=
ρ2
1ρ

2
2 − (X0

1 | X0
2 )2

ρ2
1ρ

2
2

C(x1, x2) = A(x1, x2) + 1 =
(X0

1 | X0
2 )

ρ1ρ2
.(6)

If C(x1, x2) > 0, we say that x1 and x2 are coherent.

It is well known from Möbius geometry (and can also easily be
verified) that C(x1, x2) describes the angle between geometric cycles.
If Cx1 and Cx2 intersect then

C(x1, x2) = cosϕ,

where ϕ is the angle of intersection. If Cx1 and Cx2 do not intersect,
then

C(x1, x2) =
1

sin(α/2)
,

where α is the angle under which Cx2 is seen from Cx1 . If Cx1 is a sphere,
this is the maximal angle between any two geometric cycles that are
tangent to Cx2 and intersect Cx1 in a main sphere. If Cx1 is a plane,
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x2

FIGURE 1. The angle α under which one cycle is seen from a second one.

this is the angle under which Cx2 is seen from the point on Cx1 closest
to Cx2 (compare Figure 1).

Remark 2. Since the definition of C(x1, x2) is symmetric, the angle
under which Cx2 is seen from Cx1 equals the angle under which Cx1 is
seen from Cx2 . Geometrically, this is not so obvious.

From |A|(x1, x2) = 1− C2(x1, x2), it follows that

(7) |A|(x1, x2)




< 0 if C1 and C2 do not intersect
= 0 if C1 and C2 are tangent
> 0 if C1 and C2 intersect and are not tangent.

The sign of C(x1, x2) is connected to the orientations of Cx1 and
Cx2 . If two intersecting cycles x1 and x2 are coherent, the angle of
intersection of Cx1 and Cx2 is acute. If two nonintersecting finite cycles
x1 and x2 are coherent, they induce the same orientation in Rn. In
general, two nonintersecting cycles x1 and x2 are coherent if there exists
a translation in Rn which takes Cx2 to a cycle that is on the same side
of Cx1 in Rn and is coherently tangent to it.

3. Families of cycles. The following definitions of families of cycles
follow [3].
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Definition 3.1. 1. For any cycle z ∈ Pn+2 the intersection B of the
set 〈z〉⊥ ⊂ Pn+2 with the Lie quadric is called a bunch of cycles with
pole z.

2. For any two nonidentical cycles z1, z2 ∈ Pn+2 the intersection Γ
of the set 〈z1, z2〉⊥ with the Lie quadric is called a chain of cycles. If
r ∈ 〈z1, z2〉⊥, the chain is a Steiner chain. If w ∈ 〈z1, z2〉⊥, the chain is
a cone chain. The projective line 〈z1, z2〉 is the polar line of 〈z1, z2〉⊥.
3. For any two cycles z1, z2 ∈ Pn+2 such that the vectors Z1, Z2

and R are linearly independent, the intersection γ of the projective
space 〈z1, z2, r〉 with Ω is a Steiner pencil. Similarly, for any two cycles
z1, z2 such that the vectors Z1, Z2 and W are linearly independent, the
intersection of 〈z1, z2, w〉 with Ω is a cone pencil.
A (Steiner or cone) pencil of cycles represents a one-parametric family

of geometric cycles in Rn. A chain represents an (n − 1)-parametric
family, while a bunch represents an n-parametric family of geometric
cycles. In the plane R2, a Steiner pencil is a Steiner chain and a cone
pencil is a cone chain. We distinguish three types of Steiner pencils with
respect to the number of point cycles they contain. The point cycles in
the Steiner pencil determined by z1 and z2 are the intersections of the
quadric Ω with the projective line L = 〈z0

1 , z
0
2〉 = 〈z1, z2, r〉 ∩ 〈r〉⊥.

1. If L meets the quadric in two distinct points, the pencil is elliptic.
An elliptic pencil has two point cycles if both intersections are different
from w and one point cycle if one of the intersections is w.

FIGURE 2. Elliptic pencil.
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FIGURE 3. Parabolic pencil.

2. If L is tangent to the quadric, the pencil is parabolic. It has one
point cycle if the intersection point is different from w and no point
cycles if it equals w.

3. If the line L does not meet the Lie quadric, the pencil is hyperbolic.
It has no point cycles.

FIGURE 4. Hyperbolic pencil.

Proposition 3.1. Let x1, x2 be any two cycles of a Steiner pencil
that are not point cycles. Then the pencil is elliptic if |A|(x1, x2) < 0,
parabolic if |A|(x1, x2) = 0 and hyperbolic if |A|(x1, x2) > 0. It follows
that the geometric cycles of an elliptic pencil do not intersect, the
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geometric cycles of a parabolic pencil are tangent, and the geometric
cycles of a hyperbolic pencil intersect.

Proof. The line L intersects, touches or misses the Lie quadric
depending on whether the homogeneous quadratic equation

(λ1Z
0
1 + λ2Z

0
2 |λ1Z

0
1 + λ2Z

0
2 ) = 0

for (λ1, λ2) has two, one or no solutions, and this depends on whether
the discriminant

∆ = (Z0
1 | Z0

2 )
2 − (Z0

1 | Z0
1 )(Z

0
2 | Z0

2 )

is greater than, equal or less than 0. For any two cycles x1, x2 of the
pencil we can write X0 = λ1Z

0
1 + λ2Z

0
2 , X

0
2 = µ1Z

0
1 + µ2Z

0
2 . Since

ρ2
i = (X

0
i | X0

i ), i = 1, 2, we get

|A|(x1, x2) = 1− (X0
1 | X0

2 )
2

(X0
1 | X0

1 )(X0
2 | X0

2 )

=
(λ1Z

0
1+λ2Z

0
2 | λ1Z

0
1+λ2Z

0
2 )(µ1Z

0
1+µ2Z

0
2 | µ1Z

0
1+µ2Z

0
2 )

(X0
1 | X0

1 )(X0
2 | X0

2 )

− (λ1Z
0
1 + λ2Z

0
2 | µ1Z

0
1 + µ2Z

0
2 )

2

(X0
1 | X0

1 )(X0
2 | X0

2 )

= −(λ1µ2 − λ2µ2)2
(Z0

1 | Z0
2 )2 − (Z0

1 | Z0
1 )(Z0

2 | Z0
2 )

ρ2
1ρ

2
2

,

so |A|(x1, x2) has the same sign as ∆. The proposition follows from
(7).

Similarly, cone pencils can be divided with respect to the number of
infinite cycles they contain. These correspond to the intersections of
the line 〈z1, z2, w〉 ∩ 〈w〉⊥ with Ω. Since one intersection is always w,
we distinguish only two types of cone pencils those that contain an
infinite cycle and those that do not. We will be interested mostly
in Steiner pencils, though, since the solutions of a nondegenerate
Apollonius problem are contained in a Steiner pencil.

Every cycle z ∈ Pn+2, different from w and r, determines two
projective lines 〈z, w〉 and 〈z, r〉 in Pn+2. The intersections of these
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two lines with the Lie quadric are proper cycles geometrically related
to the cycles of the bunch with pole z. Let Z = (v,p, ω, ρ).

1. The intersections of the line 〈z, w〉 with Ω are given by the
homogeneous equation (λZ + µW | λZ + µW ) = 0. The first solution
λ = 0 determines the point w. If (Z | W ) 
= 0, the equation has a
second solution which determines a proper cycle ẑ with homogeneous
coordinates

(8) Ẑ = Z − (Z | Z)
2ω

W =
(
ρ2 − p2

2ω
,p, ω, ρ

)
.

The cycle ẑ is thus defined for every z /∈ 〈w〉⊥. It represents the sphere
Cẑ which is tangent to the family of planes represented by proper cycles
in 〈z, w〉⊥.
2. The intersections of the line 〈z, r〉 with Ω are given by the equation

(λZ + µR | λZ + µR) = 0. If (Z0 | Z0) ≥ 0 the solutions determine
a pair of proper (possibly equal) cycles {z̃, z̃′} representing the same
nonoriented geometric cycle with both orientations. The homogeneous
coordinates of these two cycles are

(9) Z̃ = (v,p, ω,
√
(Z0 | Z0)), Z̃ ′ = (v,p, ω,−

√
(Z0 | Z0)).

The geometric cycles {Cz̃, Cz̃′} can be described as the union of all point
cycles in 〈z, r〉⊥. If (Z0 | Z0) = 0, then z̃ = z̃′ is a point cycle.

Let B = 〈z〉⊥ ∩Ω be the bunch with pole z, where z is different from
w and r.

Proposition 3.2. If z /∈ 〈w〉⊥, then, for any finite cycle x ∈ B, the
value P (x, ẑ) is independent of x and is equal to

P (x, ẑ) =
(Z | Z)

ω2
z

.

All finite cycles in the bunch B therefore have the same tangential
distance to the cycle Cẑ.



CONFIGURATIONS OF CYCLES 735

Proof. The proof is a simple calculation using (8). If x ∈ B, then
(X | Z) = 0, so

P (x, ẑ) = − 2
ωzωx

(X | Ẑ)

= − 2
ωzωx

(
X | Z − (Z | Z)

2ωz
W

)

=
(Z | Z)

ω2
z

.

Proposition 3.3. If (Z0 | Z0) > 0 then, for any x ∈ B which is not
a point cycle the value |A|(x, z̃) is independent of x and is equal to

|A|(x, z̃) = (Z | Z)
(Z0 | Z0)

.

Proof. Since (X0 | Z̃0) = (X0 | Z0) = (X | Z) + ρxρz, and since
z̃ ∈ Ω so that ρ2

z̃ = (Z
0 | Z0), it follows that

|A|(x, z̃) = −ρ2
xρ

2
z̃ − (X0 | Z̃0)

ρ2
xρ

2
z̃

=
ρ2

x(Z
0 | Z0)2 − (X | Z)− ρ2

xρ
2
z

ρ2
x(Z0 | Z0)2

=
(Z0 | Z0)− ρ2

z

(Z0 | Z0)

for x ∈ B.

The position of the pole z with respect to the quadric Ω in Pn+2

determines certain geometric properties of the bunch B. Here is a
classification.

1. If (Z | Z) = 0, then (Z0 | Z0) ≥ 0 and the cycle z̃ exists. Either
z̃ or z̃′ equals z. If (Z0 | Z0) > 0, then |A|(x, z̃) = |A|(x, z) = 0 for
every x ∈ B which is not a point cycle. The geometric cycles of B are



736 B.J. ZLOBEC AND N.M. KOSTA

tangent to Cz. If (Z0 | Z0) = 0, then z = z̃ = z̃′ is a point cycle, and
the point Cz lies on the geometric cycles of B.

2. If (Z | Z) > 0, then (Z0 | Z0) > 0 and z̃ exists. For any x ∈ B,

|A|(x, z̃) > 0,

so the geometric cycles of B intersect z̃. If ωz 
= 0, then also ẑ exists
and by Proposition 3.2 the geometric cycles of B all have the same
tangential distance to Cẑ.

3. If (Z | Z) < 0 and ωz 
= 0, then ẑ exists and the geometric cycles
of B have the same tangential distance to Cẑ. If (Z0 | Z0) ≥ 0, then z̃
also exists. If Cz̃ is not a point then, by Proposition 3.3, the cycles of
B do not intersect it and are all seen from it under the same angle.

If (Z | Z) < 0 and ωz = 0, then ẑ does not exist, but (Z0 | Z0) > 0,
so z̃ exists and determines a plane. The cycles of B do not intersect
this plane and are all seen from it under the same angle.

4. Configurations. A set of n+1 proper cycles {x1, . . . , xn+1} ⊂ Ω
determines an Apollonius construction in Rn. In order to avoid
constructions with infinitely many solutions we will require that the
vectors X1, . . . , Xn+1 are linearly independent.

Definition 4.1. A set X = {x1, . . . , xn+1} ⊂ Ω is a Steiner
configuration if the vectors X1, . . . , Xn+1, R are linearly independent,
and a cone configuration if the vectors X1, . . . , Xn+1,W are linearly
independent.

An Apollonius construction given by a Steiner configuration is non-
degenerate in the sense that it dos not consist of cycles intersecting
in one or two common point cycles. Here we consider only Steiner
configurations. A cone configuration, on the other hand, determines a
nondegenerate dual construction which we describe at the end.

A Steiner configuration determines a Steiner chain 〈X 〉 ∩ Ω. If the
polar 〈X 〉⊥ of the chain intersects Ω, the points of intersection are
tangent to all cycles of the configuration so they represent the solutions
of the corresponding Apollonius construction. In this case we say
that the configuration is Apollonius. Depending on the number of
intersections 〈X 〉⊥ ∩Ω, the Apollonius problem has either no solutions
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(in this case the configuration is not an Apollonius configuration), one
solution y ∈ Ω or two solutions y1, y2 ∈ Ω. The third possibility,
〈X 〉⊥ ⊂ Ω, cannot occur. It would imply that (Y1 | Y2) = 0 for
any two y1, y2 ∈ 〈X〉⊥, and by Proposition 2.1 this would imply that
〈xi, y1, y2〉 ⊂ Ω for all i. Since Ω contains no projective subspace of
dimension 2 or more (compare [2]), this contradicts the assumption
that the cycles of X are linearly independent.

Proposition 4.1. For any Steiner configuration X ⊂ Ω ⊂ Pn+2,
precisely one cycle u = 〈X , r〉⊥ exists.

(i) If (U | U) ≥ 0, then the cycle ũ exists. If (U | U) = 0, then
ũ = ũ′ = u is a point cycle and Cu is common to all geometric cycles
of the configuration. If (U | U) > 0, then Cũ intersects the cycles of
the configuration orthogonally.

(ii) If ωu 
= 0, then the cycle û, defined by (8), represents a point with
the same tangential distance to all finite cycles of the configuration.

(iii) If (U | U) 
= 0, then there exists a uniquely determined cycle
v = 〈X , u〉⊥, different from u, and the polar 〈X 〉⊥ is spanned by u and
v.

Proof. Since the vectors X1, . . . , Xn+1, R are linearly independent,
the subspace of vectors U such that (U | R) = 0 and (U | Xi) = 0 for
all i = 1, . . . , n+ 1 is one-dimensional, so it determines a unique point
u ∈ Pn+2.

1. Since (U | R) = 0 it follows that (U | U) = (U0 | U0) and so ũ
exists precisely if (U | U) ≥ 0. If (U | U) = 0, then u = ũ = ũ′ and Cu is
a point which lies on Cxi

for all i. If (U | U) > 0, then |A|(xi, ũ) = 1 by
Proposition 3.3 and C2(xi, ũ) = 0 so Cũ intersects Cxi

, i = 1, . . . , n+1,
orthogonally.

2. All cycles xi belong to the bunch with pole U and so, by
Proposition 3.2, P (û, xi) is the same for all i.

3. If (U | U) 
= 0, then u /∈ 〈u〉⊥ and also u /∈ 〈X〉, and so 〈X , u〉⊥ is
one-dimensional and determines the unique cycle v 
= u.

Proposition 4.2. If (U | U) < 0, then (V | V ) > 0. The line 〈u, v〉
intersects the quadric.
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Proof. If (U | U) 
= 0, then {X1, . . . , Xn+1, U, V } is a basis of Rn+3.
Let P be the transition matrix from the standard basis to this basis.
Then, by (1),

(X | Y ) = X ·AY = PX ·APY = X · PTAPY ,

where PX = X and PY = Y . On one hand,
(10)

Tr (PTAP ) = Tr




0 ∗ ∗ 0 0

∗ . . . ∗ ...
...

∗ ∗ 0 0 0
0 · · · 0 (U | U) 0
0 · · · 0 0 (V | V )


 = (U | U)+(V | V ).

On the other hand,

Tr (PTAP ) = (Tr (P ))2Tr (A) = (Tr (P ))2(n+ 1) ≥ 0,

so (V | V ) ≥ −(U | U) > 0. The continuous function

f(λ) = (λU + (1− λ)V | λU + (1− λ)V )

must have value 0 for some λ ∈ (0, 1). The line 〈u, v〉 therefore
intersects the quadric.

4.1 Classification of configurations. Let X = {x1, . . . , xn+1} be
a Steiner configuration and u = 〈X , r〉⊥.
1. If (U | U) < 0, then (V | V ) > 0 by Proposition 4.2. The line

〈u, v〉 intersects the quadric in two points y1, y2 so the configuration
is Apollonius. The solutions belong to the Steiner pencil 〈v, u, r〉 ∩ Ω.
Since (V 0 | V 0) ≥ (V | V ) > 0 while (U0 | U0) = (U | U) < 0 also the
line 〈u0, v0〉 intersects the quadric in two points so the pencil is elliptic.
By Proposition 3.1 the two solutions Cy1 and Cy2 of the Apollonius
problem do not intersect. They are coherent since C(y1, y2) > 0.

The cycles of the configuration belong to the bunch with pole u. The
point cycle û exists and represents a point in the interior of all finite
cycles of the configuration, since P (xi, û) < 0 by Proposition 3.2. The
configuration contains no point cycles.
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x2

x1

x3

y2

y1

Cṽ

Cv̂

Cû

FIGURE 5. Configuration 1.

The cycles of the configuration belong to the bunch with pole v. Since
(V | V ) > 0, the cycle ṽ exists and, by Proposition 3.3, Cṽ intersects
all cycles Cxi

under the same angle.

2. If (U | U) = 0, then y = u is a solution of the Apollonius problem,
so the configuration is Apollonius. The point Cu is a common point of
all cycles of the configuration. We distinguish two cases.

a. If u ∈ 〈X〉, then

(U | Z) =
( n+1∑

i=1

αiXi | Z
)
= 0

for every z ∈ 〈X〉⊥. The only solution of the equation

x1

x3

C C Cy y u1 2
= =

FIGURE 6. Configuration 2a.
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(λU + µZ | λU + µZ) = 0 is µ = 0. The polar 〈u, z〉 is tangent to
Ω and the point y1 = y2 = u is a double solution of the Apollonius
problem.

b. If u /∈ 〈X〉, then 〈X , u〉⊥ = {u}. For every z ∈ 〈X〉⊥ different
from u, (U | Z) 
= 0. The equation (λU + µZ | λU + µZ) = 0 has a
second solution in addition to µ = 0, so the Apollonius problem has
two solutions which belong to an elliptic pencil: the point Cy1 = Cu and
a second cycle Cy2 which does not contain the point Cu.

3. If (U | U) > 0 the orthogonal cycle ũ to the cycles of the
configuration exists. If ωu 
= 0, then, by Proposition 3.2, P (xi, û) > 0
for all i and the point Cû is in the exterior of all finite cycles of the
configuration. The existence of solutions of the Apollonius problem
depends on v.

a. If (V 0 | V 0) < 0, then 〈u, v〉 intersects the quadric in two points
so the configuration is Apollonius. The solutions y1, y2 belong to the
elliptic pencil 〈u, v, r〉, so they do not intersect and are not coherent
since C(y1, y2) < 0.

b. If (V 0 | V 0) = 0, then (V | V ) < 0 and the configuration is
Apollonius with two solutions y1 and y2. Since |A|(y1, y2) = 0 and
C(y1, y2) < 0, the geometric cycles Cy1 and Cy2 are noncoherently
tangent.

Cv̂

Cû

Cũ

x3

x1

x2

y2

y1

FIGURE 7. Configuration 3a.
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Cv̂

Cû

Cũ

x3

x1

x2

y2

y1

Cṽ

FIGURE 8. Configuration 3b.

c. If (V 0 | V 0) = 0 and (V | V ) < 0, the configuration is Apollonius
and the geometric cycles Cy1 and Cy2 intersect, since |A|(y1, y2) > 0.

d. If (V 0 | V 0) > 0 and (V | V ) = 0, the configuration is Apollonius
with only one solution y1 = v since the polar 〈X 〉⊥ is tangent to Ω.

e. If (V 0 | V 0) > 0 and (V | V ) > 0, then the configuration is not
Appollonius.

Cû

Cũ

x3

x1

x2 y2

y1

Cv̂

Cṽ

FIGURE 9. Configuration 3c.
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Cû

x3

x1

x2

C C Cy y v1 2
= =

Cũ

FIGURE 10. Configuration 3d.

Cû

x3

x1

x2

Cũ

Cv̂Cṽ

FIGURE 11. Configuration 3e.
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4.2 The generalized Apollonius problem. Given a set of n + 1
angles {ϕ1, . . . , ϕn+1}, a Steiner configuration X = {x1, . . . , xn+1}
with the property that ρi 
= 0 for any i such that ϕi 
= 0 (i.e., the
cycle xi is not a point cycle if the prescribed angle of intersection is
nonzero) determines a generalized Apollonius problem. A solution to
the problem is a cycle y such that Cy intersects Cxi

under the angle ϕi

for all i = 1, . . . , n+1. If we substitute the cycles of X by appropriate
cycles (which may lie off the Lie quadric) this problem can be classified
in a similar way as the classical Apollonius problem.

For every i = 1, . . . , n + 1, let zi ∈ Pn+2 be the cycle with homoge-
neous coordinates

Zi = Xi + aiρiR where ai = 1− cosϕi.

This is the unique cycle which projects in the direction of r to the
point z̃i = xi on the quadric and for which the condition (Zi | Y ) = 0
is equivalent to A(xi, y) = ai. Thus, solutions y of the problem are
determined by the condition

(Zi | Y ) = (Xi | Y )− aiρyρi = 0, i = q, . . . , n+ 1

and are the intersections of the projective line 〈z1, . . . , zn+1〉⊥ with
the Lie quadric. Since X is a Steiner configuration and the vectors
X1, . . . , Xn+1, R are linearly independent, the vectors Z1, . . . , Zn+1, R
are also linearly independent and a unique cycle u = 〈Z, r〉⊥ exists just
as in Proposition 4.1. A similar classification describing the solutions
in terms of u and the existence of v can be made as in the case of the
classical Apollonius problem.

4.3 The dual problem. Given n + 1 nonnegative numbers
{p1, . . . , pn+1} and a cone configuration X = {x1, . . . , xn+1} consisting
of finite cycles (i.e., proper cycles with ωi 
= 0), we are looking for a
cycle y ∈ Ω for which the tangential distance of Cy to Cxi

is pi for all
i = 1, . . . , n+ 1. In this case we move the cycles xi off the quadric in
the direction of W . For all i = 1, . . . , n+ 1, let

Zi = Xi +
piωi

2
W.

Then ẑi = xi and the condition (Zi | Y ) = 0 is equivalent to
P (xi, y) = pi. The solutions are thus the intersections of the projective
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line 〈z1, . . . , zn+1〉⊥ with the Lie quadric. A classification of this
problem is dual to the classification of the generalized Apollonius
problem with w substituting for r. For example, there is a unique cycle
u ∈ 〈z1, . . . , zn+1, w〉⊥. The projection û (which is dual to ũ of the
Steiner configurations) does not exist. The projection ũ (which is dual
to û of the Steiner configurations) always exists and represents a plane
Cũ with the same angle with respect to all cycles of the configuration
X .

REFERENCES

1. H. Behnke, Geometry, fundamentals of mathematics, Vol. 2, MIT Press,
Cambridge, MA, 1974.

2. T.E. Cecil, Lie sphere geometry with applications to minimal sub-manifolds,
Springer, Berlin, 1992.

3. J.P. Fillmore and A. Springer, Planar sections of the quadric of Lie cycles and
their Euclidean interpretations, Geom. Dedicata 55 (1995), 175 193.

4. D. Pedoe, Geometry, Dover Publications, New York, 1988.

5. J.F. Rigby, The geometry of cycles and generalized Laguerre inversion, in The
geometric vein, The Coxeter Festschrift (C. Davis, B. Grünbaum and F.A. Sherk,
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