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ON JACOBI’S THEOREM IN
HAMILTON-JACOBI THEORY

HANS SAMELSON

ABSTRACT. Jacobi’s theorem states that a complete in-
tegral of the Hamilton partial differential equation for a given
Hamiltonian determines in a simple way all the trajectories
of the Hamiltonian flow. It is usually proved by appealing to
the theory of canonical transformations. Our approach con-
sists in noting a fact which is actually at the center of the
existing proofs, whose proof is just a simple differentiation,
and which doesn’t seem to have been noticed so far: Given
a one-parameter family of solutions of the Hamilton-Jacobi
differential equation, its partial derivative with respect to the
parameter is an integral for the corresponding field curves. Ja-
cobi’s theorem is an immediate consequence of this, without
any further computation.

We recall: A Hamiltonian is a function H of 2n + 1 real variables
qi, pi, t with i = 1, . . . , n, defined in some open set D in R2n+1. (We
shall use notations like q for the point (q1, q2, . . . , qn) and Hq for the
sequence of partial derivatives (Hq1 , . . . , Hqn

) ).

A trajectory or extremal (for H) is a curve (q(t), p(t), t) in R2n+1,
defined on some t-interval, that lies in D and satisfies the canonical or
Hamilton equations

(0.1) dq/dt = Hp(q(t), p(t), t), dp/dt = −Hq(q(t), p(t), t).

There is the associated Lagrangian, a function L of 2n + 1 variables
q1, q2, . . . , qn, q̇1, q̇2, . . . , q̇n, t. First one maps the original domain
D to a domain D′ in (q, q̇, t)-space by the map (assumed to be a
diffeomorphism) given by the identity on q and t and

(0.2) q̇ = Hp(q, p, t).

Then one defines L by the relation

(0.3) L(q, q̇, t) + H(q, p, t) =
∑

pi · q̇i.
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(The inverse map to (0.2) has p = Lq̇.) The H-trajectories, or rather
their projections into (q, t)-space, are the curves for which the first
variation of

∫
L dt (with fixed endpoints) vanishes.

A function S = S(q, t), defined in some suitable open set in (q, t)-
space, is called a field function, if it is a solution of the Hamilton-Jacobi
partial differential equation

(0.4) St(q, t) + H(q, Sq(q, t), t) = 0.

(The argument of H is assumed to be a point of D.)

The family of curves in (q, t)-space satisfying the first order ordinary
differential system

(0.5) dq/dt = Hp(q(t), Sq(q(t), t), t)

is called the (Mayer) field associated to S.

The curves (q(t), p(t), t) with p(t)=Sq(q(t), t) are then H-trajectories.
(The simple proof uses the derivatives with respect to qi of equation
(0.4) ).

We come to our main device; it is at the heart of all proofs of Jacobi’s
theorem.

Main lemma. Let S(q, u, t) (or Su(q, t) ) be a family of field
functions (solutions of (0.4)) depending on a real parameter u. Then
the partial derivative ∂/∂uS(q, u, t) (= Su(q, u, t) ) is constant along
any curve of the field associated with Su, i.e., it is an “integral” of the
system (0.5).

Proof. We differentiate the relation (0.4) (which by assumption holds
for all Su) with respect to u, getting

(0.6) ∂/∂uSt +
∑

Hpi
· ∂/∂qiSu = 0.

In particular this holds along the field curves (q, t) = (q(t), u, t) for
Su. With relation (0.5) it transforms into

(0.7) ∂/∂tSu +
∑

∂/∂qiSu · dqi/dt = 0.
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And that says

d/dtSu = 0

along the field curves of Su.

Remark. The lemma has a geometrical meaning; it says that a certain
variation of a field curve, constructed from the family Su, has first
variation equal to 0.

First, it is a standard and basic fact that for any two points Q1 =
(q1, t1), Q0 = (q0, t0) on a field curve for a field function S the difference
of the values of S at the two points equals the integral of the Lagrangian
L along the field curve from Q0 to Q1 (“action integral”).

Let Γū, for a given ū, be a field curve to Sū from Q0 to Q1. The
promised variation assigns to any u near ū the field curve of Su through
Q0, extended to its point of intersection with the level surface of Su

through Q1. Thus the initial end point is fixed under the variation, but
the final one is not. (This construction assumes that the differential
dSū does not vanish on the tangent vector to Γū at Q1).

One can show that the final end point curve is transversal in the usual
sense (Hilbert invariant form) to Γū at Q1. Thus, for this variation,
the endpoint contributions to the first variation vanish, and so does of
course the integral term; and so the first variation, i.e., the u-derivative
of the action integral in this family of curves at ū is equal to 0. But by
an earlier remark this action integral equals S(q1, u, t1) − S(q0, u, t0)
and so Su(q1, ū, t1)− Su(q0, ū, t0) vanishes.

We come to Jacobi’s theorem.

Let S = S(q, a, t) = Sa(q, t) be a function defined in some open set in
(q, a, t)-space; here a means (a1, . . . , an). (Thus S is an n-parameter
family of functions of (q, t)).

S is called a complete integral of the Hamilton-Jacobi equation (0.4)
(at a given point) if

(1) for each fixed a the function Sa satisfies equation (0.4) and

(2) the functional determinant det (∂2/∂qi∂ajS(q, a, t) is not 0 at
the point.
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Condition (2) means that near the point one can solve the equations

(0.8) p = Sq(q, a, t)

for a in terms of (q, p, t) and similarly the equations

(0.9) Sa(q, a, t) = b

for q in terms of (a, b, t). (Here b = (b1, . . . , bn) is a new set of
n variables). More globally one would require that equations (0.8)
(together with the identity on q and t) define a diffeomorphism φ′ of
some open set E in (q, a, t)-space with an open set E′ in (q, p, t)-space
(of course contained in the original set D there), and similarly equations
(0.9) define a diffeomorphism φ′′ of E with an open set E′′ in (a, b, t)-
space.

Jacobi’s theorem. For each (a, b) a solution curve q = q(a, b, t) of
the equations (0.9) (with (a, b, t) in E′′), together with p=Sq(q(a, b, t), a,
t), is an H-trajectory. Conversely, for every H-trajectory (q(t), p(t), t)
in E′ there is an a such that Sa(q(t), a, t) is constant, equal to some b,
with (a, b, t) in E′′.

Thus the trajectories are “parametrized” by a and b; they are ob-
tained by solving the equations Sa(q, a, t) = b for q in terms of a, b
and t.

Proof. As described above, a field curve q(t) for Sa defines a
trajectory (by putting p(t) = Sq(q(t), a, t) ). Every trajectory (in E′)
appears this way because our map φ′ from E to E′ is a diffeomorphism.
(One uses here of course the usual uniqueness, existence, etc., theorems
for solutions of a system of ordinary differential equations under the
appropriate differentiability conditions).

On the other hand, by the main lemma, the “integrals” Sa(q, a, t) are
equal to constants b along any field curve q(t) to Sa. Again, since the
map φ′′ from E to E′′ is a diffeomorphism, this correspondence between
the field curves for all the possible a-values and the “lines” (a, b, t) for
fixed (a, b) is bijective. Putting the two together, the diffeomorphism
φ′ ◦ (φ′′)−1 from E′′ to E′ gives a bijective correspondence of the set
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of lines (a, b, t) for fixed (a, b) in E′′ with the set of trajectories in E′.

Note. The representation of the trajectories by the t-lines in (a, b, t)-
space here is different from the standard representation as the t-lines
in (q0, p0, t)-space with q0, p0 the initial values for some t0.

After this was written the author noticed that the proof given here
is related to (but simpler than) the two proofs appearing on pages
368 372 in [1].
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