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SOME REMARKS ON THE THEORY OF
CYCLOTOMIC FUNCTION FIELDS

PABLO LAM-ESTRADA AND GABRIEL DANIEL VILLA-SALVADOR

ABSTRACT. Let Fq be the finite field of q elements. First
we calculate the Galois group of the extension Fq(T )(ΛP∞)/
Fq(T ) obtained by adjoining all the Hayes’ modules ΛP n with
n → ∞ and P an irreducible polynomial. Next we prove
that for the class of cyclotomic function fields, an analogue of
the Brauer-Siegel theorem holds. Finally we give examples
of Zp-extensions in cyclotomic function fields which show
that an analogue of a conjecture of Gross holds for some Zp-
extensions, but not for all.

1. Introduction. There is a close analogy between algebraic
number fields and algebraic function fields of one variable. This analogy
is most pronounced for the class of congruence function fields, that is,
when the field of constants is a finite field.

The class field theory of the field of rational numbers Q is “explicit”
in the sense that one can write down a sequence of polynomials whose
roots generate the maximal abelian extension of Q. These polynomials
define the cyclotomic extensions of Q. The ring of integers in the
ground field, Q, Z, acts on an algebraic closure of Q. The maximal
abelian extension of Q is obtained by adjoining the torsion points of
that action.

Using the ideas of Carlitz [1], Hayes [5] developed a similar descrip-
tion for the class field theory of a rational function field over a fi-
nite field. The Carlitz-Hayes theory goes as follows: let k be the
rational function field over the finite field Fq of q elements (q = pr

with p a prime number and r ≥ 1). Fix a generator T of k so that
k = Fq(T ), and let RT = Fq[T ]. Let kac be an algebraic closure of
k. Then kac is an RT -module under the action. For u ∈ kac and
M = M(T ) ∈ RT , uM := M(ϕ + µ)(u), where ϕ : kac → kac is
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the Frobenius automorphism, ϕ(u) = uq and µ : kac → kac is mul-
tiplication by T , µ(u) = Tu. Thus, uM is a separable polynomial
in u of degree qd where d = deg (M), and ΛM , the set of M -torsion
points of kac under the given RT -action, is a finite cyclic RT -submodule
of kac containing qd elements. The field k(ΛM ) is an abelian exten-
sion of k so that if λ is a generator of ΛM as an RT -module, the
map (RT /(M))∗ → Gal (k(ΛM )/k) given by A + (M) �→ σA, where
σA(λ) = λA, is an isomorphism of the group of units of RT /(M) onto
the Galois group of the extension k(ΛM )/k ([5, Theorem 2.3]). This
extension is a cyclotomic function field that is quite similar to the usual
cyclotomic extensions Q(ζm) of Q.

We shall obtain the structure of Gal (k(ΛP n)/k) with P an irre-
ducible monic polynomial and n ≥ 1. More generally, if k(ΛP∞) =
∪n≥1k(ΛP n), then we shall obtain the structure of Gal (k(ΛP∞)/k)
and as a consequence the structure of Gal (k(Λ)/k), where k(Λ) =
∪M∈RT

k(ΛM ).

In [6] Inaba establishes a partial analogue of the Brauer-Siegel theo-
rem for the class of all congruence function fields with a finite field of
constants Fq. More precisely, he proved that

lim inf
g→∞

lnh
g ln q

≥ 1,

where the limit is taken from the elements of the class of all congruence
function fields over Fq, g being the genus and h the class number.
Further, Inaba proved that if we fix a positive integer m and we take
the class of all congruence function fields K over Fq such that there
exists x ∈ K with [K : Fq(x)] ≤ m, then

lim
g→∞

lnh
g ln q

= 1.

Madan and Madden [9] generalized this last result for the class of
congruence function fields K over Fq for which there exists x ∈ K with
[K : Fq(x)] = m and (m/g)→ 0; this is

lim
(m/g)→0

lnh
g ln q

= 1.
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Using this last result, we prove that for the class of cyclotomic
function fields k(ΛM ), we have

lim
g→∞

lnh
g ln q

= 1.

Next, we consider again a finite field F with q elements (q = pr),
a field K of algebraic functions of one variable with F as its exact
field of constants. Let K∞/K be a Zp-extension with Galois group
Γ = Gal (K∞/K), and let S be the set of ramified primes of K in K∞.
We denote by C∞,S(p) the p-primary part of the S-ideal class group
of K∞. The topological group Γ acts in a natural way on C∞,S(p).
Is the subgroup consisting of invariant classes finite? In the number
field case, if K∞/K0 is the cyclotomic Zp-extension of fields of CM -
type, Gross’s conjecture states that the number of invariant S-classes
under the action of Γ on the minus part of the p-class group of K∞ is
finite, if S is the set of ramified primes [7]. This conjecture has been
verified for absolute abelian fields [2], [3]. Villa and Madan analyzed
the finiteness of the group CS(p)Γ in [12] for congruence function fields.
Assume that for p an odd prime number, K∞/K is either a purely
constant extension or one with no new constants such that when no
new constants are introduced, S is a finite set for which each prime
divisor in S is fully ramified. If K∞/K is a constant Zp-extension,
then the group C∞,S(p)Γ is finite. When K∞/K is a geometric Zp-
extension, Villa and Madan use a formula of Witt [13] for the norm
residue symbol in cyclic extensions of p-power degree of local fields of
characteristic p, and they give necessary and sufficient conditions for the
finiteness of the group C∞,S(p)Γ in terms of norms of S-units. These
norm conditions are reflected in a certain square matrix C of order
|S|−1 with coefficients in Zp such that the nonsingularity of C implies
the finiteness of C∞,S(p)Γ. The converse holds if C has coefficients in
Q.

In the case of Carlitz-Hayes extensions, we give examples of Zp-
extensions which show that the analogue of Gross’s conjecture holds
for some Zp-extensions, but not for all.

2. Galois groups of cyclotomic function fields. In this section
we shall use the notation given in the introduction and in general in [5].
Furthermore, we shall assume that M = Pn where P is a nonconstant
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monic irreducible polynomial in RT of degree d and n is a positive
integer. Also q = pr for some r ≥ 1, where q is the number of elements
of Fq.

We shall determine the structure of the multiplicative group of units
of RT modulo P pt

for any t ≥ 1.

Proposition 1. If M = Pn, then

(1) (RT /(M))∗ ∼= HM ⊕ Cqd−1,

where HM is a p-group of order qd(n−1) and Cqd−1 is a cyclic group of
order qd − 1.

Proof. Let Φ(M) denote the order of (RT /(M))∗. Then the statement
is an immediate consequence of that Φ(M) = qd(n−1)(qd − 1), the
natural map ϑ : (RT /(M))∗ → (RT /(P ))∗ is onto, and (RT /(P ))∗

is a cyclic group of order qd − 1.

Our objective is to give the structure of the abelian group HM

obtained in Proposition 1 for M = P pt

with t ≥ 0. If t = 0, we
have that HP = {0}. Therefore we shall assume t ≥ 1.
Thus, ifM = Pn, then the Galois group of the extension k(ΛM )/k is a

direct sum of a Sylow p-subgroup of order qd(n−1) and a cyclic subgroup
of order qd − 1, that is, Gal (k(ΛM )/k) ∼= (RT /(M))∗ = HM ⊕ Cqd−1

with Gal (k(ΛM )/k(ΛP )) ∼= HM and Gal (k(ΛP )/k) ∼= Cqd−1.

The proof of the following two lemmas is straightforward.

Lemma 1. If M = Pn, then the elements of HM are of the form

1 + CP s + (M),

where 1 ≤ s ≤ n and (C,P ) = 1. Furthermore, for a fixed s,
1 ≤ s ≤ n− 1, HM has

qd(n−s) − qd(n−s−1)

elements of the form 1 + CP s + (M) with (C,P ) = 1.
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Lemma 2. Let M = Pn and let t be the positive integer satisfying
pt−1 < n ≤ pt. Let n0 be the integral part of n/pt−1. Then the elements
in HM of maximal order are exactly those of order pt. Furthermore,

(i) if n0 = n/pt−1, then the number of elements of order pt in HM

is
qd(n−1) − qd(n−n0);

(ii) if n0 < n/p
t−1, then the number of elements of order pt in HM

is
qd(n−1) − qd(n−n0−1).

Corollary 1. With the notations of Lemma 2, let

HM
∼= (Z/ptZ)α × Z/pn1Z× · · · × Z/pnsZ

with t > n1 ≥ · · · ≥ ns ≥ 0. Then

(i) α = rd(n0 − 1) if n0 = n/pt−1,

(ii) α = rdn0 if n0 < n/p
t−1,

where r is given by q = pr. In particular, if n = pt, then α = rd(p−1).

Proof. We have that HM has pαt+m − pα(t−1)+m elements of order
pt, where m = n1 + · · · + ns. Thus the corollary follows immediately
from Lemma 2.

For each t positive integer, let pHP pt denote the subgroup of HP pt of
all elements vp with v ∈ HP pt .

Proposition 2. The map ψ : HP pt−1 → pHP pt , defined by

ψ
(
1 + CP s +

(
P pt−1

))
=

(
1 + CP s +

(
P pt

))p

,

with (C,P ) = 1 and 1 ≤ s ≤ pt−1, is an isomorphism for every positive
integer t ≥ 2.
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The proof of the following theorem is easy.

Theorem 1. We have

(i) HP p ∼= (Z/pZ)α1 where α1 = rd(p− 1);
(ii) For each positive integer t ≥ 2,

HP pt ∼=
t∏

i=1

(Z/piZ)αi ,

where αi = rdpt−i−1(p− 1)2 if 1 ≤ i ≤ t− 1 and αt = rd(p− 1).

Theorem 2. If P is an irreducible polynomial of degree d in RT

and Cqd−1 is a cyclic group of order qd − 1, then

(i) Gal (k(ΛP p)/k) ∼= (Z/pZ)α1 × Cqd−1 with α1 = rd(p− 1);
(ii) For each positive integer t ≥ 2,

Gal (k(ΛP pt )/k) ∼=
t∏

i=1

(Z/piZ)αi × Cqd−1,

where αi = rdpt−i−1(p− 1)2 if 1 ≤ i ≤ t− 1 and αt = rd(p− 1).

Proof. It follows immediately from Proposition 1 and Theorem 1.

We have that ΛP ⊆ ΛP 2 ⊆ · · · ⊆ ΛP n ⊆ · · · , so that k ⊆ k(ΛP ) ⊆
k(ΛP 2) ⊆ · · · ⊆ k(ΛP n) ⊆ · · · is a tower of field extensions. In
particular, for each n ≥ 1, there exists t ≥ 1 such that k(ΛP n) ⊆
k(ΛP pt ). We denote by k(ΛP∞) the union of the fields k(ΛP n), n ≥ 1.

Theorem 3. With the previous notation, we have

Gal (k(ΛP∞)/k(ΛP )) ∼= lim←−HP pt ∼= lim←−
( t∏

i=1

(Z/piZ)αi

)
,

where αi = rdpt−i−1(p− 1)2 if 1 ≤ i ≤ t− 1 and αt = rd(p− 1).
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Proof. For t ≥ 2, let Ψt be the composition of the homomorphism

HP pt → pHP pt → HP pt−1

1 + CP s +
(
P pt

)
�→

(
1 + CP s +

(
P pt

))p

�→ 1 + CP s +
(
P pt−1

)
.

Let λ be a generator of ΛP pt . Then λP (pt−pt−1)
is a generator of ΛP pt−1 .

Let σ ∈ HP pt and A ∈ RT be such that (A,P ) = 1 and σ(λ) = λA.

We have that σ(λP (pt−pt−1)
) = (λP (pt−pt−1)

)A. Therefore, Ψt is the
homomorphism

HP pt → HP pt−1

σ �→ σ|k(Λ
P pt−1 ).

Hence, the homomorphisms Ψt, t ≥ 2, induce the projective system of
the groups Gal (k(ΛP pt )/k(ΛP )), and consequently

Gal (k(ΛP∞)/k(ΛP )) = lim←−Gal (k(ΛP pt )/k(ΛP )) ∼= lim←−HP pt .

The second isomorphism follows from Theorem 1.

As a corollary to Theorem 3, we have

Theorem 4. If Cqd−1 is a cyclic group of order qd − 1, then

Gal (k(ΛP∞)/k) ∼= lim←−Gal (k(ΛP pt )/k(ΛP ))× Cqd−1

∼= lim←−
( t∏

i=1

(Z/piZ)αi

)
× Cqd−1

∼= Z∞
p × Cqd−1,

where αi = rdpt−i−1(p − 1)2 if 1 ≤ i ≤ t − 1, αt = rd(p − 1) and Z∞
p

denotes direct product of a denumerable number of copies of the ring of
p-adic integers Zp.

We denote by KRT
to the composite of the cyclotomic function fields

k(ΛM ) in the algebraic closure kac of k, with M ∈ RT . We have that
the Galois group of the extension KRT

/k is the inverse limit of the
multiplicative groups (RT /(M))∗.
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The main result in this section is

Theorem 5. Let M be the set of all monic irreducible polynomials
in RT . Then

Gal (KRT
/k) ∼= Z∞

p ×
∏

P∈M
CqdP −1 ,

where CqdP −1 is a cyclic group of order qdP −1 with dP = deg(P ) for
each P ∈M.

Proof. Let M ∈ RT be a nonconstant polynomial with M =
αPn1

1 · · ·Pnr
r its factorization into powers of monic irreducible poly-

nomials. We have that k(ΛM ) = k(ΛP
n1
1
, . . . ,ΛP nr

r
). Therefore KRT

is the composite, in the algebraic closure kac of k, of the fields k(ΛP∞)
with P ∈ RT monic irreducible polynomial. Furthermore, for each
P ∈ RT monic irreducible polynomial, P is fully ramified in the ex-
tension k(ΛP∞)/k and unramified in the extension k(ΛQ∞)/k for all
Q ∈ RT monic irreducible polynomial with Q �= P . Thus, if P and
Q are distinct monic irreducible polynomials in RT , the extensions
k(ΛP∞)/k and k(ΛQ∞)/k are linearly disjoint. Then the result follows
immediately from this.

3. Zeta functions and an analogue of the Brauer-Siegel
theorem. We shall denote by F = Fq the finite field of q elements and
by K a function field of one variable with constant field F. It is well
known that the divisor class group of K/F of degree zero is finite. We
denote the order of this group by h which is called the class number of
K/F. The genus of K/F is denoted by g.

We first prove that the analogue of the Brauer-Siegel theorem holds
for the class of cyclotomic function fields.

Theorem 6 (Madan and Madden [9, Theorem 2]). Let C be a class
of congruence function fields over the finite field of constants F. For
each field K in C, let m be the least integer such that there exists x in
K with [K : F(x)] = m. If limg→∞m/g = 0, then

lim
g→∞

lnh
g ln q

= 1,
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where h is the class number and g is the genus of K/F.

We shall prove that in the class of cyclotomic function fields over the
finite field of constants Fq

lim
g→∞

Φ(M)
g

= 0.

Therefore, in this class of function fields, the conditions of Theorem 6
are satisfied and

lim
g→∞

lnh
g ln q

= 1.

LetM =
∏t

i=1 P
ni
i be the factorization ofM ∈ RT \Fq into powers of

irreducible polynomials with ni ≥ 1 and di = deg (Pi) ≥ 1, i = 1, . . . , t.
Let gM be the genus of k(ΛM ). Then from [5] it follows that

(2) gM =
Φ(M)
2

( t∑
i=1

(
nidi − di

qdi − 1
)
− q

q − 1
)
+ 1.

Now, if d = deg (M), we have

gM ≤ Φ(M)d+ 1 = d
t∏

i=1

qdi(ni−1)(qdi − 1) + 1

≤ d
t∏

i=1

qdini + 1 = dqq + 1.

Suppose that d is sufficiently large, d ≥ 4q/(q− 1). If ni = di = 1 for
some i ∈ {1, . . . , t}, we have

Φ(M) = (q − 1)
t∏

j=1
j �=i

Φ(Pnj

j ).

Since we want to estimate the quotient Φ(M)/gM when gM is suffi-
ciently large and the number of irreducible polynomials of degree one
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in RT is finite, let us assume that ni ≥ 2 or di ≥ 2 for i = 1, . . . , t.
Hence for i = 1, . . . , t, we have that ni(qdi − 1) ≥ 2. Therefore,

(3) nidi − di

qdi − 1 ≥
nidi

2

for i = 1, . . . , t.

From (2) and (3), we obtain

gM ≥ gM
Φ(M)

≥ 1
2

( t∑
i=1

(
nidi − di

qdi−1

)
− q

q − 1
)

≥ 1
2

( t∑
i=1

nidi

2
− q

q − 1
)
=
1
2

(
d

2
− q

q − 1
)
≥ d
8
.

Therefore we have the following

Proposition 3. In the class of cyclotomic function fields k(ΛM )
over the finite field of constants Fq, we have

gM → ∞ ⇔ d → ∞

where M ∈ RT \ Fq, d = deg (M) and gM is the genus of k(ΛM ).
Furthermore,

lim
gM→∞

Φ(M)
gM

= 0.

Corollary 2. In the class of cyclotomic function fields k(ΛM ) over
the finite field of constants Fq,

lim
gM→∞

lnhM

gM ln q
= 1,

where hM is the class number of k(ΛM )/Fq.

Proof. It follows immediately from Theorem 6 and Proposition 3.



CYCLOTOMIC FUNCTION FIELDS 493

As a consequence of Corollary 2, we may rewrite Inaba’s result [6] as
follows.

Theorem 7. In the class of the congruence function fields over the
finite field of constants Fq, we have

lim inf
g→∞

lnh
g ln q

= 1.

Now we establish an equivalent form of the analogue of the Brauer-
Siegel theorem.

The number of integer divisors in a given class of divisors C of K/F
equals

qdim (C) − 1
q − 1 .

Thus, if An denotes the number of integer divisors of K/F of degree n,
we have

An =
∑

deg (C)=n

qdim (C) − 1
q − 1 .

In particular,

(4) An = h
(
qn−g+1 − 1
q − 1

)
,

for n ≥ 2g − 1.
With the substitution u = q−s, the zeta function of the function field

K/F is given by

Z(u) =
L(u)

(1− u)(1− qu) ,

where L(u) = a0 + a1u + · · · + a2gu
2g is a polynomial with rational

coefficients.

If k = F(x) is the rational function field over F, we denote the zeta
function of k/F by ζ0(s) and Z0(u). We have in this case g = 0, h = 1
and

ζ0(s) =
1

(1− q−s)(1− q1−s)
, Z0(u) =

1
(1− u)(1− qu) .
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For Re (s) > 1, |u| > q−1, we have

(5) ζ(s) =
∏
P

1
1−N(P)−s

=
∏
P

1
1− udeg(P)

where P runs over the prime divisors ofK/F and the product converges
absolutely.

Theorem 8. Let Ni be the number of prime divisors of degree i in
K/F. Then

An =
∑

r1+2r2+···+nrn=n
ri≥0

n∏
i=1

(
ri +Ni − 1

ri

)
,

where the sum runs over the partitions of n, that is, over the elements
(r1, . . . , rn) ∈ Zn with ri ≥ 0, and

n∑
i=1

iri = n.

Proof. We have

1
(1− x)p =

∞∑
n=0

(
n+ p− 1
p− 1

)
xn for |x| < 1.

Now for s ∈ C with Re (s) > 1 and u = q−s, we have

ζ(s) =
∏
P

(
1− 1

N(P)s
)−1

=
∞∏

n=1

(
1− 1

qns

)−Nn

=
∞∏

n=1

(
1

1− un

)Nn

=
∞∏

n=1

( ∞∑
rn=0

(
rn +Nn − 1

rn

)
unrn

)

= 1 +
∞∑

n=1

( ∑
r1+2r2+···+nrn=n

ri≥0

n∏
i=1

(
ri +Ni − 1

ri

) )
un,
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where P runs over all the prime divisors of K/F and Nn is the number
of prime divisors of degree n in K/F. That is,

∞∑
n=0

Anu
n = Z(u) = 1+

∞∑
n=1

( ∑
r1+2r2+···+nrn=n

ri≥0

n∏
i=1

(
ri +Ni − 1

ri

) )
un.

Comparing coefficients in the series above, we obtain the theorem.

Now for n ≥ 2g − 1, we have

An = h
(
qn−g+1 − 1
q − 1

)
=

∑
p(n)

n∏
i=1

(
ri +Ni − 1

ri

)
,

where p(n) is the set of partitions of n. For n = 2g − 1, we obtain

h

(
qg − 1
q − 1

)
=

∑
p(2g−1)

2g−1∏
i=1

(
ri +Ni − 1

ri

)
.

Let

M = max
p(2g−1)

2g−1∏
i=1

(
ri +Ni − 1

ri

)
.

Then

M ≤ h
(
qg − 1
q − 1

)
≤ |p(2g − 1)|M.

It is well known that |p(2g − 1)| < exp(T
√
2g − 1) with T = π√2/3.

Thus we have

M ≤ h
(
qg − 1
q − 1

)
≤ exp(T

√
2g − 1)M.

Therefore,

(6)
lnM
g ln q

≤ lnh
g ln q

+
ln(qg − 1)− ln(q − 1)

g ln q
≤ T
√
2g − 1
g ln q

+
lnM
g ln q

.
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It follows

Theorem 9. Let C be a class of congruence function fields over the
finite field of constants F. Then in the class C

lim
g→∞

lnh
g ln q

= 1⇐⇒ lim
g→∞

lnM
g ln q

= 2,

where

M = max
p(2g−1)

2g−1∏
i=1

(
ri +Ni − 1

ri

)
.

4. Analogue of a conjecture of Gross in function fields. We
first fix the notation for this section, which is given in [12]. Let Fq

denote the finite field of q elements, q = pr, p > 2 a prime number.
Let K0 be a field of algebraic functions of one variable with field of
constants Fq. For each n ≥ 1, let Kn/K0 be a cyclic extension of
degree pn such that

(i) Kn ⊂ Kn+1 with [Kn+1 : Kn] = p for each n ≥ 1;
(ii) The field of constants of Kn is Fq;

(iii) K∞ = ∪∞n=1Kn,

and if S is the set of ramified primes in the extension Kn/K0, then
these are fully ramified. Let s = |S|. We have that K∞/K0 is a Zp-
extension, that is, Γ = Gal (K∞/K0) ∼= Zp. The S-classes group C∞,S

of the extension K∞/K0 is defined by

C∞,S = lim−→Cn,S ,

where Cn,S is the S-class group of the extension Kn/K0. In this
situation, the p-primary part of the S-class group of K∞ is given by

C∞,S(p) = lim−→Cn,s(p).

The topological group Γ acts in a natural way on C∞,S(p).

Remark 1. If we consider a cyclic extension L/K of local fields
of degree pn determined by the Witt vector (β0, β1, . . . , βn−1), then
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K is isomorphic to a “Laurent series” field k′((T )), k′ a finite field.
Let α ∈ K. Let F be the unramified extension of Qp such that
OF /MF

∼= k′, where OF is the ring of integers of F and MF is the
maximal ideal of OF . Choose A,B0, B1, . . . , Bi, . . . , Bn−1 in OF ((T ))
such that A ≡ α modMF , Bi ≡ βi modMF , 0 ≤ i ≤ n − 1, where
the congruence is defined coefficientwise. From the Grunwald-Hasse-
Wang theorem ([10, Theorem 5]), there exists a normal extension E/Q
with Gal (E/Q) ∼= Gal (F/Qp), that is, p is inert in E/Q. Also,
OE/ME

∼= OF /MF ([4, p. 143]) and OE ⊂ OF . Hence we may
assume that the elements A,B0, B1, . . . , Bn−1 are chosen in OE((T )).

Let S = {P1, P2, . . . , Ps} be the set of ramified prime divisors in
the Zp-extension K∞/K0. We consider integers ai, bi, hi such that the
divisor (

P ai
i

P bi
s

)

is of degree zero and (P ai
i /P

bi
s )hi = (δi) is principal in K0. Let πj,i

be a representative in characteristic 0 of δj when we complete at Pi,
1 ≤ i, j ≤ s − 1, as in Remark 1. Also, if K∞/K0 is determined
by the Witt vector (β0, β1, . . . , βn−1, . . . ), let Bn,i be a representative
in characteristic 0 of βn when we complete at Pi, i = 1, . . . , s − 1,
n = 0, 1, . . . . Then we define

a
(n,m)
j,i = TrRes

[(
dπj,i

πj,i

)
·Bpm

n,i

]
∈ Z(p) 1 ≤ i, j ≤ s− 1.

Let

Cn =




c
(n)
1,1 c

(n)
2,1 · · · c

(n)
s−1,1

c
(n)
1,2 c

(n)
2,2 · · · c

(n)
s−1,2

...
...

. . .
...

c
(n)
1,s−1 c

(n)
2,s−1 · · · c

(n)
s−1,s−1


 ∈M(s−1,s−1)(Z(p)),

where

c
(n)
j,i =

n−1∑
t=0

pta
(t,n−t−1)
j,i n ≥ 1.

We have

(7) c
(n+1)
j,i ≡ c(n)

j,i + p
na

(n,0)
j,i mod pn.
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Therefore, the sequence {Cn}∞n=1 is Cauchy in M(s−1,s−1)(Zp). Let
C = limCn.

Proposition 4 [12, Proposition 3]. If C is invertible, then the
analogue of the conjecture of Gross holds.

Proposition 5 [12, Proposition 5]. If C has rational coordinates,
then the analogue of the conjecture of Gross holds if and only if C is
invertible.

The following examples show that, in the class of cyclotomic exten-
sions of Carlitz-Hayes, there exists Zp-extensions for which the analogue
of the conjecture of Gross holds and Zp-extensions for which it does
not.

Example 1. Let β0 = 1/(T − 1)(T − 2) and βi = 0 for all
i ≥ 1. It is easy to see that β0 /∈ {αp − α | α ∈ K0} where K0 =
Fq(T ). Therefore the Witt vector (β0, β1, . . . , βn−1, . . . ) determines
a Zp-extension K∞/K0 where the only ramified prime divisors are
P1 = (T − 1) and P2 = (T − 2). Let K̃0 be the completion of K0

at P1. Since deg (P1) = 1, we have that K̃0
∼= Fq((x)) ∼= Fq((T − 1)).

Let F/Qp be an unramified extension such that OF /MF
∼= Fq. Let

δ1 = (T−1)/(T−2), and let π1,1, respectively Bn,1, be a representative
of δ1, respectively βn, in characteristic 0 when we complete at P1,
n = 0, 1, . . . . We may take Bn,1 = 0 for all n ≥ 1. We have

δ1 =
T − 1
T − 2 =

x

x− 1 = −x(1 + x+ x
2 + · · · ).

Therefore,
π1,1 = −x(1 + x+ x2 + · · · ) .

Similarly we have

B0,1 =
1

(T − 1)(T − 2) =
1

x(x− 1) = −
1
x
(1 + x+ x2 + · · · )

and Bn,1 = 0 for each n ≥ 1.
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The matrix Cn associated to each level Kn/K0 of the Zp-extension
K∞/K0 is of order 1× 1 and its coefficient is given by

c
(n)
1,1 =

n−1∑
t=0

pta
(t,n−t−1)
1,1 n ≥ 1,

where

a
(t,n−t−1)
1,1 = TrRes

[
dπ1,1

π1,1
·Bpn−t−1

t,1

]
.

If t > 0, then a(t,n−t−1)
1,1 = 0. Therefore

c
(n)
1,1 = a

(0,n−1)
1,1 = TrRes

[
dπ1,1

π1,1
·Bpn−1

0,1

]
.

Now

dπ1,1

π1,1
·Bpn−1

0,1 =
1

x(1− x) · b
pn−1

0,1 dx

= − 1
xpn−1+1

(1 + x+ x2 + · · · )pn−1+1 dx.

Hence,

Res
[
dπ1,1

π1,1
·Bpn−1

0,1

]
∈ Z \ {0}.

Thus c(n)
1,1 ∈ Z \ {0}. Since Cn = (c

(n)
1,1 ), we obtain the C = limCn is

invertible, that is, the analogue of the conjecture of Gross holds.

We note that in this Zp-extension, the infinite prime is not ramified.

Example 2. Let β0 = (2T − 1)/T (T − 1) ∈ Fq[T ]. We have that
αp−α �= β0 for all α ∈ K∗

0 . Let P1 = T −1 and P2 = T . Let K̃0 be the
completion of K0 at P1. As in Example 1, we obtain that K̃0

∼= Fq((x))
with x = T − 1. Let δ1 = (T − 1)/T and let π1,1, respectively B0,1,
be a representative of δ1, respectively β0, in characteristic 0 when we
complete at P1. We have that δ1 = x/(x+ 1) so that π1,1 = x/(x+ 1).
Similarly, we have

B0,1 =
2T − 1
T (T − 1) =

2x+ 1
x(x+ 1)

.
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Therefore

dπ1,1

π1,1
·B0,1 =

(
1
x2
− 1 + 2x− 3x2 + · · ·

)
dx.

Hence

Res
(
dπ1,1

π1,1
·B0,1

)
= 0.

Thus c(1)1,1 = a
(0,0)
1,1 = 0, that is, C1 = (0). Assume we have constructed

B0,1, B1,1, . . . , Bn−1,1 such that Ci ≡ 0 mod pi for each i = 1, 2, . . . , n,
where Ci = (c

(i)
1,1). From (7) and from the fact that Cn ≡ 0 mod pn, it

follows that cn+1
1,1 = pn(an + bn) where an = a

(n,0)
1,1 and bn ∈ Zp. We

have

c
(n+1)
1,1 ≡ 0 mod pn+1 ⇐⇒ dn ∈ Zp exists s.t. pn(an + bn) = pn+1dn

⇐⇒ an + bn = pdn

⇐⇒ an + bn ≡ 0 mod p.
Let Bn,1 = rn/rx(x+ 1) where rn ∈ Z and q = pr. We shall choose a
suitable rn. Since

an = a
(n,0)
1,1 = TrRes

[
dπ1,1

π1,1
·Bn,1

]
,

where
dπ1,1

π1,1
·Bn,1 =

1
x(x+ 1)

· rn
rx(x+ 1)

dx

=
(
rn
rx2
− 2rn
rx

+
3rn
r
− · · ·

)
dx,

we have that an = −2rn. Since p is odd, we can choose rn ∈ Z such
that 2rn ≡ bn mod p.
Thus for this Zp-extension C = limCn = 0, and therefore the

analogue of the conjecture of Gross does not hold.

We note that in this Zp-extension, the only ramified prime divisors
are P1 and P2.

Hayes gave an explicit description of the maximal abelian extension
of the field of rational function k = Fq(T ) over the finite field Fq
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in terms of cyclotomic function field extensions over k, constant field
extensions of k and some extensions of k in which the infinite prime
is wildly ramified. In cyclotomic function field extensions over k, the
infinite prime is tamely ramified (see [5]).

A particular consequence of this construction is the following result.

Any finite abelian extension of k in which the infinite prime is
tamely ramified is a subfield of a constant extension of k(ΛM )
for some M ∈ Fq[T ].

Therefore, if L/k is a geometric cyclic extension of degree pn, that is,
where there are not new constants, the infinite prime is not ramified,
and if P1, . . . , Ps are the finite primes of k ramified in the extension
L/K, then there exists a polynomial M ∈ Fq[T ] such that L ⊂
k(ΛM ). Since the finite primes of k ramified in the extension k(ΛM )/k
are exactly the prime divisors corresponding to the monic irreducible
polynomials dividing M (see [5]), we have that Pi | M for each
i = 1, . . . , s.

Assume that there exists a monic irreducible polynomial P such that
P divides M and P �= P1, . . . , Ps. Let N ∈ Fq[T ] be such that
M = NPm with (P,N) = 1. Since the extension k(ΛN )/k is linearly
disjoint from the extension k(ΛP m)/k, we have that L ⊆ k(ΛN ).
Therefore, we may assume P | M if and only if P = Pi for some
i = 1, . . . , s. Let M0 = P1 · · ·Ps. Then there exists t ∈ N such that
M |M t

0, and hence L ⊂ k(ΛMt
0
).

Now, in particular, let M0 = T (T − 1)(T − 2) and let

k(ΛM∞
0
) =

⋃
t≥0

k(ΛMT
0
).

Let K∞,1/k and K∞,2/k be the Zp-extensions obtained in Examples 1
and 2, respectively. We have

K∞,i ⊂ k(ΛM∞
0
) i = 1, 2.

Therefore, in the cyclotomic extension k(ΛM∞
0
)/k, there exist Zp-

extensions for which the analogue of the conjecture of Gross holds and
Zp-extensions for which it does not.
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E-mail address: plam@esfm.ipn.mx
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