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ABSTRACT. Fix a sector in the Euclidean plane bounded
by two rays emanating from a common point. We investigate
arc-length minimizing enclosures of two connected regions
in this sector with prescribed areas, where the bounding
rays do not contribute to the arc-length. We show that
the perimeter minimizing configuration is one of two possible
types: two concentric circular arcs, or a truncated standard
double bubble.

1. Introduction. In nature, a soap bubble configuration encloses
and separates several regions of space having fixed volumes while
tending to minimize the total surface area. This observation has
inspired mathematicians to search for the optimal such configuration
of bubbles. The basic question in the mathematics of soap bubbles
is the following: given n positive quantities v1, . . . , vn, how can one
enclose and separate n regions of R3 having volumes v1, . . . , vn with
the smallest possible surface area? The sphere is well known to enclose a
single region of fixed volume with minimal surface area. When n = 2,
up until this year, the minimal configuration was known only in the
special case that the regions enclosed have equal volumes [3] (see Figure
1a). If the regions have different volumes, only very recently has anyone
[4] managed to eliminate troublesome configurations such as the one
pictured in Figure 1b.

We consider the simpler, and more tractable, domain of planar bub-
bles, where the basic problem is to enclose and separate n (not neces-
sarily connected) regions with given areas and minimal perimeter. Of
course, if we wish to enclose a single region, the classical isoperimet-
ric inequality gives that our perimeter minimizing enclosure is a circle.
More recently, it has been shown that the shortest way to enclose and
separate two regions is to use a standard double bubble consisting of
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a) b)

FIGURE 1. (a) The three-dimensional minimal double bubble and (b) a
possible competitor.

three circular arcs meeting at 120◦ angles at two points [2]. For n = 3,
the solution is known [1] only with the additional assumption that the
regions enclosed are connected. In the general case it is conjectured
that the n regions and the exterior of a perimeter minimizing bubble
are each connected (see [5]) but no proof is currently known.

In this paper we allow our bubbles to cling to walls, rigid curves that
they can use for “free” perimeter. We investigate which configurations
of bubbles with given areas have the smallest perimeter if lengths along
the wall are considered not to contribute to perimeter. In particular,
we concentrate on the case that the wall consists of two rays emanating
from a common vertex.

If the wall is a straight line, then the perimeter minimizing bubbles
enclosing one and two regions, shown in Figures 2a and 2b follow
almost immediately from the classical isoperimetric inequality and the
standard double bubble result of [2], respectively.

The technique used for a straight wall does not easily generalize to the
case where the wall has a corner. However, we can still easily determine
that the minimal configuration enclosing a single connected region is a
circular arc centered at the corner as in Figure 2c.

At this point we need to introduce the assumption that all regions
are connected. This assumption is not valid in general since, even if
we restrict ourselves to polygonal walls with a finite number of corners,
perimeter minimizing bubbles can have disconnected regions. Figure 2d
illustrates an example of a perimeter minimizing bubble with a single
disconnected region. Examples of double bubbles with a disconnected
exterior, perhaps not minimizing perimeter, are shown in Figure 3.
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b)

c) d)

a)

FIGURE 2. Perimeter minimizing bubbles enclosing (a) a single area and
(b) two areas with a straight wall, and (c) one area with a single corner.
(d) Presumably, the shortest way to enclose a single area on this wall involves
disconnected regions.

If the wall has a single corner, we conjecture that the double bubble
enclosing two given areas with minimal perimeter has two connected
regions and a connected exterior. We consequently look for the double
bubble that minimizes perimeter among all double bubbles with these
additional properties.

When we assume connectedness, we introduce the annoying theoreti-
cal possibility that bubble edges bump up against each other or against
the wall (as in [5], [1]). When edges bump against each other, they
may separate regions into multiple components that are connected only
by “infinitesimal” strips. This makes sense if we think of such a bubble
as a limit of bubbles without bumping.

ext. ext.

FIGURE 3. Double bubbles with disconnected exteriors.
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The following theorem can be proved analogously to [5].

Theorem 1.1. Let W be the image of a piecewise linear embedding
of R into R2 with finitely many points of nondifferentiability. Given
A1, A2, . . . , An > 0, there is a shortest graph G whose edges may over-
lap, but not cross, each other or the set W and whose vertices may
lie in W such that G ∪W has bounded faces of areas A1, A2, . . . , An.
(Faces are not allowed to overlap, and edges are counted with multiplic-
ity if they overlap.) Furthermore, the edges of G consist of disjoint or
coincident circular arcs or line segments

1. meeting in threes at angles of (2π/3) at vertices of G not in W ,

2. meeting in pairs at angles greater than or equal to (2π/3) at vertices
of G that lie at corners of W so that each arc forms an angle of at least
π/2 with W ,

3. meeting W at right angles at degree one vertices of G,

4. meeting at other isolated points where the edges remain C1.

A single edge of a perimeter minimizing bubble with connected
regions may, in theory at least, change curvature many times as it
bumps against and separates from other edges. This complication
makes bumping bubbles difficult to analyze.

Many arguments become easier if we allow the regions of our bubbles
to overlap, as in [1]. When we allow regions to overlap, bumping edges
can revert to circular arcs of smaller perimeter (see Figure 4). Thus, any
bumping bubble has perimeter greater than or equal to the perimeter
of some overlapping bubble enclosing the same areas, with a strict
inequality if the bubble actually has bumping edges. Additionally, if we
find that a perimeter minimizing overlapping bubble does not overlap,
then it also minimizes perimeter among bumping bubbles.

To determine the perimeter minimizing bumping bubble enclosing
two connected areas using a wall with a single corner, we will show that
any perimeter minimizing overlapping bubble enclosing two connected
areas using a wall with a single corner does not have any overlapping
regions.

Our main theorem will then follow from an analysis of double bubbles
that are allowed to have overlapping regions.
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FIGURE 4. Bumping edges can revert to shorter circular arcs when they are
allowed to overlap.

Main theorem. Given A1, A2 > 0 and a straight wall W with
a single corner of angle θ, the shortest way to enclose and separate
connected regions with areas A1 and A2 in R2 −W with a connected
exterior region is either

1. two concentric circles inside the corner with the smaller area closer
to the corner, or

2. a “truncated standard double bubble” inside the corner, consisting
of three circular arcs meeting at a single vertex at angles of (2π/3) and
meeting the wall at right angle in three distinct points, (see Figure 5).

Additionally, if

θ ≥ θ0 =
A1π

(
√
A1 +

√
A1 +A2 −

√
A2)2

,

then the truncated standard double bubble has shorter perimeter. This
θ0 has a minimum of π/2 when A1 = A2. There is an angle θ1 (the

b)
a)

FIGURE 5. The two possibilities for a perimeter minimizing double bubble
in a corner: (a) two concentric circles and (b) a truncated standard double
bubble.
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value of θ1 depends on A1 and A2), for which the concentric circle
configuration has the shorter perimeter for all θ < θ1.

In proving the main theorem, we first enumerate the possible combi-
natorial types for double bubbles in a corner and use simple arguments
to eliminate all but the two associated to the double bubbles described
in the main theorem. We then examine all possible regular configu-
rations of these two double bubbles and eliminate all cases that have
overlapping regions or lie on the outside of the corner. So we are left
with two possible bubbles for the minimizer. The angle of the cor-
ner and the sizes of the areas will determine which bubble has shorter
perimeter.

The obvious question one might ask at this point is, “How can one
tell which configuration is shorter?” We have only been able to show
that for certain large values of θ, the truncated standard is better, and
for sufficiently small θ, the concentric circles are better. We do not
know what happens in between these two points. It is not even known
whether there is a unique angle at which the two configurations have
equal perimeter.

Many other questions remain unanswered. Obviously, a unique
“concentric circles” configuration exists for each choice of θ, A1 and A2.
We have not shown the uniqueness of the “truncated standard double
bubble” configuration. In fact, for small values of θ, this configuration
does not seem to be geometrically possible. The issue of determining
when the truncated standard double bubble exists seems difficult. We
believe that, if the configuration exists for some choice of θ, A1 and A2,
then, in fact, two such configurations exist, depending on which region
lies adjacent to the corner. We believe that the perimeter will be less
if the larger region is nestled in the corner, although we cannot prove
this.

If we define P (θ,A1, A2) to be the smallest perimeter of any double
bubble enclosing areas A1 and A2 in a corner of angle θ, then one might
ask whether P is monotonic as a function of each of its parameters. We
conjecture that P is monotone increasing in each of the parameters, A1,
A2 and θ.
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2. The perimeter minimizing bubble configurations with
a straight wall. In this section we will show that the perimeter
minimizing bubbles enclosing one and two areas with a straight wall
are, respectively, a semi-circle and a split standard double bubble.

Theorem 2.1. For any A > 0, a semi-circle is the unique minimal
set S of smallest one-dimensional measure H1(S)in R2, up to transla-
tion, such that S ∪ R encloses a (not necessarily connected) region of
area A.

Proof. Suppose S ∪R encloses a region U of area A. Without loss of
generality, we may assume that all components of U lie in the upper half
plane. (Any component in the lower half plane can be replaced with its
reflection in the upper half plane, possibly translating the component
to the left or right before reflecting.)

Let S′ be the set consisting of S and its reflection in the lower
half plane. Then S′ encloses a region of area 2A. By the classical
isoperimetric inequality, H1(S′) ≥ 2√2πA, with equality if and only
if S′ is a circle (plus possibly an unnecessary additional set of one-
dimensional measure 0). Thus S is a semi-circle (and a one-dimensional
measure 0 set which can be removed).

The standard double bubble consists of three circular arcs (or two arcs
and one line segment) all meeting in two points at angles of (2π/3). The
split standard double bubble is a standard double bubble bisected by a
straight line through the common center points of the three arcs, as in
Figure 6.

a) b)

FIGURE 6. (a) A standard double bubble and (b) a split standard double
bubble.
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Theorem 2.2 [2]. For any two prescribed quantities of area A1, A2 >
0, there is a set S ⊂ R2 of least one-dimensional Hausdorff measure
H1(S) such that R2−S is a disjoint union of (not necessarily connected)
components R0, R1 and R2, with only R0 unbounded, and area (Ri) =
Ai, i = 1, 2. S consists of a unique standard double bubble (plus possibly
an additional unnecessary set of H1 measure 0).

Corollary 2.3. For any two prescribed quantities of area and a
straight line, the split standard double bubble is the unique minimal
perimeter-minimizing set (up to congruence), enclosing the prescribed
quantities of area.

Proof. The proof is analogous to that of Theorem 2.1.

3. Overlapping bubbles. If ϕ is a piecewise smooth 1-cycle in R2,
we define the area enclosed by ϕ, which we denote A(ϕ), by

A(ϕ) =
∫

ϕ

1
2
(x dy − y dx).

By Green’s theorem, this definition agrees with the usual definition of
area for simple closed curves, up to orientation.

A wall W is the image of a piecewise linear embedding f : R → R2

with finitely many points of nondifferentiability, which we call corners.
The inside of a corner is defined as the sector with an angle less
than π. The outside will be the other sector. A wall segment is a
maximal connected subset of the wall containing no corners. We say
that a map h from W to W is nondecreasing if the corresponding map
(f−1 ◦ h ◦ f) : R → R is nondecreasing, where f : R → W is any
homeomorphism.

An embedded graph with wall (G,W ) consists of a wallW and a finite
graph G embedded in R2 so that G intersects W only at vertices of
G. We now define an overlapping bubble with wall B = (G,W, g) to
be an embedded graph with wall (G,W ) together with a piecewise C1

map g : G ∪ W → R2 mapping W onto itself, nondecreasing. We
visualize g as deforming G, preserving intersections of vertices withW ,
but possibly sliding these intersections around within the set W . The
nondecreasing requirement means that when vertices slide around in
W , their relative order “left to right” cannot change.
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embedded graph

FIGURE 7. Two examples of overlapping bubbles with wall. In each example,
the wall and underlying embedded graph is the same. For the second example,
g is the identity map.

The combinatorial type of a bubble with wall (G,W, g) is the collec-
tion of all embedded graphs with wall (G′,W ) homotopic to (G,W )
through embeddings that map W onto itself, nondecreasing. Since the
type of (G,W, g) does not depend on the map g, we frequently refer
to the combinatorial type of (G,W ). If one of the edges of (G,W ) is
mapped by g to a single point, we say that (G,W, g) is degenerate of
type (G,W ).

Number the bounded faces of (G,W ) with 1, . . . , n. Let ϕi be a cycle
that consists of one copy of each of the curves in the boundary of the ith
fact, such that each curve is “positively oriented” with respect to the
face. Then the area of the ith region enclosed by (G,W, g) is defined to
be A(g∗(ϕi)). The length of (G,W, g), denoted l((G,W, g)), is defined
to be the sum over all the edges γ in G, and thus not on the wall W ,
of the lengths of the arcs g ◦ γ.

4. Existence and regularity of length minimizing overlapping
bubbles with wall. In this section we generalize the existence
and regularity results proved in [1] for length minimizing overlapping
bubbles without walls. We will need to use the following two lemmas
from [1], presented here without proof.

Lemma 4.1. Given an oriented line segment
−→
PQ and a real number

r, the unique shortest curve α from Q to P such that A(
−→
PQ+ α) = r
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is an arc of a circle or a line segment.

Lemma 4.2. Suppose α is an edge of an overlapping bubble that goes
from vertices P to Q. If we replace α by another curve α′ such that
A(α+

−→
QP ) = A(α′+

−→
QP ), then the areas of the regions enclosed by the

overlapping bubble will remain unchanged.

The following lemma allows us to bound the amount that the perime-
ter of a bubble must increase when we transfer areas between regions.

Lemma 4.3. Let B = (G,W, g) be an overlapping bubble with wall
whose edges are all line segments or arcs of circles, and let x /∈W be a
point on some edge E separating regions Ri and Rj of B. We allow for
the possibility that one of the regions is an exterior component. Then
for any ε > 0 there are positive constants δ and β so that, whenever
|∆A| ≤ δ, the edge E may be deformed within a ball of radius ε about x
so as to transfer an area ∆A from Ri to Rj and increase the perimeter
of B by at most β|∆A|.

Proof. For any circular arc S, define C to be the distance between
the endpoints, and let θ be the angle between the arc and the segment
joining the endpoints (see Figure 8). Then the curvature κ of S, the area
A of the region between S and the segment connecting the endpoints,
and the length l of S are given by the following formulas from [2]:

κ(θ, C) =
2 sin θ
C

,

A(θ, C) =
C2(θ − sin θ cos θ)

4 sin2 θ
,

and

l(θ, C) =
Cθ

sin θ
.

A simple calculation shows that, if we hold C constant and vary θ,
then κ = dl/dA. Thus we can transfer area between two adjacent
regions of a bubble by varying the curvature of a small arc about the
point x, changing the perimeter of the bubble with a rate equal to the
oriented curvature of the edge E.
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S

C

FIGURE 8. The circular arc S has curvature κ, area A and length l.

We can now show that a length-minimizing overlapping bundle with
wall exists for any given combinatorial type. Furthermore, by vari-
ational arguments, we can determine many local properties of these
length minimizing bubbles.

Proposition 4.4 (Weak regularity). Let (G,W ) be an embedded
graph with wall whose bounded faces are number 1, 2, . . . , n, and let
A1, A2, . . . , An be given real numbers. Then there exists an overlapping
bubble with wall of type (G,W ) (which may be degenerate) such that the
ith region has area Ai and the perimeter is minimal for the type (G,W ).

Furthermore, this minimal bubble has the following properties:

1. All edges are line segments or arcs of circles.

2. (a) At any vertex not on W , the sum of the unit tangent vectors
of incident edges is zero. (b) At any vertex on the straight sides of
W , the sum of the unit tangent vectors of edges incident to the wall is
perpendicular to the wall. (c) If a vertex lies at a corner of W , then
the sum of the unit tangent vectors of the incident edges must form an
angle greater than or equal to (π/2) with each incident edge of the wall.

3. At any vertex not on W , the sum of the oriented curvatures of
incident edges is zero.

Proof. To show the existence of a minimizer, it suffices by Lemmas
4.1 and 4.2 to consider only bubbles whose edges are all line segments
or arcs of circles. Since the set of all such bubbles with the correct
combinatorial type and enclosed areas can be parameterized by a finite
number of variables, (1) follows from a standard compactness argument
as in [1]. Here we use the fact that the wall has only a finite number
of corners. Outside of some bounded set, the wall consists of just two
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straight rays. So any bubble far away from the corners can be slid
back near the corners without changing its perimeter or enclosed areas.
Thus we see that all small perimeters are achieved in some compact
collection of bubbles.

To show (2), let V be a vertex of an overlapping bubble with wall
B = (G,W, g) that has minimal perimeter for its combinatorial type.
Inspired by [5], we claim that the outward unit tangent vectors of
all the edges of G or segments of W incident to V form a minimal
network connecting the vectors’ heads among all such networks of its
combinatorial type that keep the set W within itself. In other words, if
we deform the network without changing the shape of any nearby wall,
but possibly moving the vertex V along the wall, then the total length
of the network, not counting the wall, cannot decrease.

To see why this is so, suppose there were a shorter such network.
Then we could deform the bubble B within a ball of some small radius
r, decreasing the total perimeter by at least αr for some positive α.
The areas of the incident regions change by at most πr2. If r is small
enough, we can restore the areas of these regions with a finite number
of edge deformations of the type described in Lemma 4.3, increasing the
total perimeter by at most βr2 for some positive β. If r is sufficiently
small, then αr − βr2 > 0 so B could not have been minimal. Thus we
must have a minimal network.

Now in case (a) we assume that V is not onW so we have the freedom
to move each of the unit vectors v1, v2, . . . , vk in our network. Consider
variations moving the central vertex in the direction of some unit vector
u at a distance t. The total length of the network must have a local
minimum when t = 0, i.e.,

0 =
dl

dt

∣∣∣∣
t=0

= −
k∑

i=1

vi · u.

Since this equality holds for any unit vector u, we must have
∑

i vi = 0.

The case (b) is similar to (a), except that we only have the freedom
to move the vertex V in a direction u tangent to W . In this case we
can only conclude that (

∑
i vi) · u = 0. In other words, the sum of the

unit tangent vectors at V must be normal to W .

In case (c) the vertex V is at a corner of W . So our variations can
only move V a nonnegative distance t in the directions u1 and u2 of
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the two incident wall segments at this corner. Thus we find that
( ∑

i

vi

)
· uj ≤ 0 for j = 1, 2,

where the vi’s range over only bubble edges and not wall edges. This
completes the proof of (2).

Part (3) can be proved exactly as in [1].

Note that if a vertex lies on the wall, we have drawn no conclusion
about the curvatures of the incident edges. In fact, the perimeter
minimizing bubble that encloses a single area, give a straight wall,
consists of a single semi-circular edge with endpoints on the wall. By
varying the area of the enclosed region, the edge may achieve any
desired curvature. Thus we cannot determine the curvature of an edge
incident to the wall without knowing the specific areas enclosed by the
bubble.

We can now prove the existence of an overlapping double bubble with
a wall that minimizes perimeter for any given areas. This theorem
is a stronger version of Proposition 4.4 without the restriction on
combinatorial types.

Theorem 4.5 (Strong regularity). Given a wall W and prescribed
areas A1, A2, . . . , An, there exists an overlapping bubble with wall,
B = (G,W, f), that encloses A1, A2, . . . , An with minimal perimeter.
Additionally, B has the following properties:

1. Edges of the bubble must be arcs of circles or line segments.

2. Vertices not on the wall must be of degree three with an angle of
(2π/3) between each incident edge.

3. Single edges must meet the wall at an angle of π/2.

4. The only point on W where two bubble edges can meet is on the
outside of the corner, and there is no place on W where three or more
bubble edges can meet. Also, the incident edges of a bubble, whose vertex
is on the outside of a corner, must obey the additional two properties:

(a) There must be an angle of at least (2π/3) between the two incident
bubble edges.
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(b) The angle between each incident bubble edge and the segment W
that it is closest to must be at least π/2.

Proof. By applying Proposition 4.4 to the finitely many combinatorial
possibilities, we will obtain an overlapping bubble with wall, B, that
will minimize perimeter. We now need to show that B obeys the above
four laws. The proof of (1) comes directly from Proposition 4.4.

The proof of (2) is as follows: since this vertex does not rest onW by
the proof of Theorem 2.3 in [5], we know that the angle between any
two unit tangent vectors is at least (2π/3). Therefore, there can be no
more than three edges meeting at the same vertex.

The proof of (3) follows immediately from Proposition 4.4.2b. The
proof of (4) is as follows. Recall that, from a similar argument as (2),
the degree of a vertex is no more than three, where the degree of a
vertex is the number of bubble edges, not wall segments, meeting at
this vertex. It now suffices to show that, when this vertex is on W ,
the degree must be at most one and at most two if the vertex is at a
corner.

Consider the case where two edges intersect the wall at the same
point. We know, by an argument similar to Proposition 4.4.2b, where
we allow changes in combinatorial type, that if perimeter is minimal
then the angle between the bubble edge and the wall segment that is
closest is at least π/2. From a similar argument as in (2), there must
be an angle of at least (2π/3) between each incident bubble edge. Now
we can conclude that the only place on W where both of these rules
can be obeyed by two edges is on the outside of a corner, completing
the proof of this theorem.

5. The perimeter minimizing bubble enclosing one area
with a given angle. We wish to find the perimeter minimizing
configuration enclosing one connected area A within a given angle θ
where 0 < θ < π. We assume regularity as proved in Proposition 4.4.
The four possibilities for bubble configurations are shown in Figure 9.

Theorem 5.1. Given a wall with a corner of angle θ and one area
A, the perimeter minimizing overlapping bubble enclosing A bounds it
on the inside of the corner with a circular arc centered at the corner.
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a) b)

d)c)

FIGURE 9. Types for enclosing one area with a wall.

For a given area A and angle θ, the perimeter is
√
2Aθ.

Proof. Straightforward calculations show that the configuration
shown in Figure 9a has least perimeter given an area A and angle θ.

In fact, similar computations show that the circular arc inside the
corner has minimal perimeter even among planar bubbles with discon-
nected regions.

6. Combinatorial types of double bubbles.

6.1 Allowable types. Suppose, throughout this section, that W is
a wall with a single corner. A combinatorial type represented by an
embedded graph with wall (G,W ) is allowable if and only if it has the
following properties:

1. G ∪W is connected.
2. Every edge of G is on the boundary of two distinct regions.

3. Every vertex of G not on W has degree 3.

4. Every vertex of G on W has degree 1 except for possibly a corner
that can be of degree 2.
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1

2

3

4

embedded graph

FIGURE 10. We do not consider this type of configuration as a potentially
minimizing double bubble because the original graph and wall contains four
bounded faces.

Lemma 6.1. If an overlapping bubble with wall B = (G,W, g) has
minimal perimeter for its enclosed areas, then (G,W ) is an allowable
type.

Proof. If G ∪W is not connected, then we can slide two components
of B together until two bubble edges are tangent. If we form a new
vertex at the point of tangency, we will have a new bubble B′ enclosing
the same areas as B with the same perimeter. But B′ does not satisfy
the strong regularity requirements of Theorem 4.5. Thus B was not
perimeter minimizing.

If some edge of G is only on the boundary of a single region, then
that edge can be detected without changing the area of any region of
B.

The requirements on the degrees of vertices follow directly from
Theorem 4.5.

6.2 Eliminating combinatorial types. We do not allow compo-
nents of the same region to be separated by the wall as in Figure 10.

Proposition 6.2. Given a wall W with one corner and two areas,
Figure 12 shows all allowable combinatorial types with two connected
regions.

Proof. Let R1 and R2 be the regions enclosing our two given areas. If
R1 and R2 do not share any common edges, then up to symmetry the
only possible combinatorial types are numbers 3, 4, 5 or 6 in Figure 12.
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2 1

embedded graph

FIGURE 11. This configuration is considered a potentially minimizing double
bubble since the original graph and wall contains two bounded faces.

If R1 and R2 share a common edge, but lie on different sides of the wall,
then up to symmetry, numbers 7 and 8 describe all possible types.

Now we assume R1 and R2 share a common edge and lie on the same
side of the wall. We treat different cases, depending on how many
vertices lie on the wall. We first point out that there can be no more
than 4 vertices on the wall if R1 and R2 are to remain connected (see
Figure 13).

Without loss of generality, we can consider combinatorial types of
bubbles on a straight wall and see how they can be mapped onto a wall
that forms a corner.

In case there are three vertices on the wall, there are three different
possible types. If each vertex is degree 1, then type number 2 in
Figure 12 results. If the left-most vertex (or by symmetry, the right-
most vertex), is of degree 2, then type number 12 in Figure 12 results
(which is a degenerate version of a type number 1 configuration).
Finally, if the middle vertex is of degree 2, then type number 11 in
Figure 12 results.

In case there are four vertices on the wall, each has to be of degree 1
in order for the regions to remain connected. This results in type
number 1 in Figure 12.

In case of two vertices on the wall, when one vertex has degree 2 we
have type number 10. When both vertices are of degree 1, we have
type number 13. Finally, when there is only one vertex on the wall, it
must be of degree 2 and type number 9 results.

Proposition 6.3. Given a wall W with one corner and two areas,
only types 1 and 2 in Figure 12 can possibly be perimeter minimizing
types.
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1) 2)

8)

9)

4)

12)

3)

7)

13)

5) 6)

10)

11)

FIGURE 12. Combinatorial types.

ext. ext.R
1

R R R
1

2 2

FIGURE 13. In this diagram all vertices are assumed to be of degree 1. There
is no way for R1 and R2 to each be connected in this configuration.
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a) b)

FIGURE 14. Types 4, 6 and 11.

Proof. In this proof we will go through an argument for types 3
through 13 in Figure 12 to eliminate them as possible minimizers for
two regions. We can eliminate types 4, 6 and 11, because we can
translate the circular region along the edge of the other region as
shown in Figure 14, keeping the areas and perimeter constant, but
contradicting regularity by creating a degree 4 vertex.

We can eliminate type 3 as follows. At least one of the regions does
not touch the corner. Translate the region that does not touch the
corner in the direction of the other region until it touches the other
region at exactly one point. In this case there are two edges coming
into a vertex on a flat wall segment, which is a degenerate version of a
type 2 bubble that is not regular, see Figure 15. If the translated region
does first hit the opposite wall before the vertices make contact, then
one can still slide the region until it touches the other region because
the opposite wall influences neither the area nor the perimeter of our
configuration.

For types 5, 7 and 8, we have two possibilities: when both regions
touch the corner and when at least one of them does not. It is sufficient
to consider the angle of the corner not equal to π, otherwise reflecting
one of the regions to the other side, we would get type 3.

For the first possibility, both regions touching the corner, since edges
are arcs of circles and must meet wall segments at an angle of π/2,

FIGURE 15. Type 3 is not minimizing.
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FIGURE 16. Translating.

the corner must be the center of those arcs. Results from Section 5
show that the perimeter of this bubble is bigger than the perimeter of
the bubble that results when the region that touches the outside of the
corner is moved to the straight wall segment. Therefore, it is sufficient
to consider only the second case.

In the second case we can reflect the region that is on the straight
wall segment to the other side of the wall preserving area and perimeter,
transforming to type 3.

For type 12, in order for the left vertex to be regular, it must be
mapped on the outside of the corner. This configuration has all of its
edges intersecting the same segment of the wall. Thus, if we translate
it away from the corner, along the wall, as in Figure 16, the resulting
bubble would contradict regularity, since we would have two edges
meeting together on the same vertex on the wall. Similar arguments
work for types 9 and 10.

For type 13, we use [1], which states that the arcs touching each wall
are arcs of the same circle. If we translate the region that does not
touch either wall segment along one of the arcs, we will preserve areas
and perimeter. Hence, we can translate it until it hits the wall, yielding
a degenerate version of a type 2 bubble that is not regular.

7. The perimeter minimizing type 1 double bubble. Now
that we have eliminated all but two combinatorial types for the double
bubble in a single corner, we need to examine these two types more
carefully. We know that each type has a perimeter minimizer satisfying
the weak regularity conditions of Proposition 4.4. If possible, we would
like to determine what this perimeter minimizer looks like and whether
it also satisfies the stronger regularity properties of Theorem 4.5.
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2
1

FIGURE 17. The perimeter minimizer of type 1.

For type 1, we can easily determine that the unique perimeter
minimizer is the bubble pictured in Figure 17.

Theorem 7.1. Let (G,W ) be the embedded graph with wall pictured
in Figure 17 where W contains a single corner of angle θ, 0 < θ < π.
Let A1, A2 > 0 be given real numbers. Then the overlapping bubble with
wall of type (G,W ) enclosing areas A1 and A2 with minimal perimeter
consists of two circular arcs centered at the corner. Additionally, these
arcs lie on the inside of the corner with the larger region farther from
the center.

Proof. Let γ1 and γ2 be the inner and outer edges respectively of
(G,W ), as shown in Figure 17. Notice that, if B = (G,W, g) is any
bubble of type (G,W ), then

l(B) = l(g ◦ γ1) + l(g ◦ γ2).
The length of g0 ◦ γ1 cannot be less than

√
2θ(min{A1, A2}), the

perimeter of the shortest way of enclosing either A1 or A2 against the
wall W , by Theorem 5.1. Similarly,

l(g ◦ γ2) ≥
√
2θ(A1 +A2).

So
l(B) ≥

√
2θ(

√
min{A1, A2}+

√
A1 +A2).

The result follows because the bubble described in the statement of the
theorem achieves this minimal perimeter.

The technique used in the above proof is essentially that of [1]. Also
note that, for fixed A1 and A2, if B is the perimeter minimizing bubble
of type 1, then l(B)→ 0 as θ → 0.
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A
B B

A

a) b)

FIGURE 18. The two concentric circle configuration versus the configuration
consisting of two disjoint regions on the wall.

We now compare the perimeter minimizing bubble consisting of two
concentric circles with the bubble consisting of two disjoint regions on
the wall (see Figure 18).

When the angle θ = π, then obviously the bubble in Figure 18 b)
has smaller perimeter. On the other hand, we know that perimeter in
Figure 18 a) tends to 0 as θ → 0. So there must exist an angle θ0 when
they are equal.

Note that if we translate region A in Figure 18 b) until it hits region
B in one point, the new bubble would have the same perimeter but
contradict regularity. Since the new configuration is a degenerate
version of type 2 (from Figure 12), the minimizing type 2 always has a
smaller perimeter than the bubble of type b above. Since, for any angle
larger than θ0, the perimeter minimizing bubble of type 1 has greater
perimeter than that of the type in figure b, it also has more perimeter
than the perimeter minimizer of type 2.

Explicit calculations show that when A ≤ B

θ0 =
Aπ

(
√
A+

√
A+ B −√

B)2
.

If we rewrite θ0 as

θ0 =
( √

π

1 +
√
A/(

√
A+ B +

√
B)

)2

,

we note that θ0 → π as A→ 0 or B → ∞, and that

θ0 =
( √

π

1 + 1/(
√
1 + (B/A) +

√
B/A)

)2

,
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since A ≤ B, θ0 has a minimum, equal to π/2 when A = B.

We have thus established the following:

Proposition 7.2. If the perimeter minimizing bubbles of types 1 and
2 in Figure 12 are equal for given areas A and B and angle α0, then
α0 must obey the inequality 0 < α0 < θ0, where

θ0 =
Aπ

(
√
A+

√
A+ B −√

B)2
.

When A = B, we have 0 < α0 < π/2.

Corollary 7.3. For θ > θ0, the double bubble of type 1 is not
minimizing.

8. Bubbles of type 2. We must analyze the geometric possibilities
for a perimeter minimizing overlapping bubble of type 2. We need to
examine all possible ways that a bubble of type 2 can satisfy the weak
regularity properties of Proposition 4.4. Of these configurations, we
will eliminate those that could not possibly be perimeter minimizing
enclosures for two positive areas.

We begin with the following lemma that tells us that the three edges
of a nondegenerate bubble of type 2 can be extended to form three
circles (or two circles and a line) that intersect in two common points
(see Figure 20). We will then just need to enumerate all possible ways
that the wall can cut across this diagram to give an overlapping double
bubble.

Lemma 8.1. Suppose V is a vertex of degree three in some overlap-
ping bubble that minimizes perimeter for its combinatorial type. Then
we can extend the incident edges α1, α2 and α3 to a second common
point of intersection V ′. Thus these three arcs are parts of three circles
(or two circles and one line) with two common points of intersection.

Proof. This is essentially the same as the proof of [1, Lemma 8.1].
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FIGURE 19. The edges of a nondegenerate perimeter minimizing bubble of
type 2 can be extended (or shortened) to form a standard double bubble.

Corollary 8.2. If a nondegenerate overlapping bubble B minimizes
perimeter for type 2, then the edges of B can be extended or shortened
to form a standard double bubble (see Figure 19).

8.1 Type 2 bubbles have less perimeter inside a corner than
on a straight wall.

Theorem 8.3. Given a wall W with one corner and two areas, the
perimeter minimizing type 2 bubble enclosing these areas is a bubble
with one of its areas bounded by a region that touches the corner.

Proof. Let B be a type 2 bubble on a straight part of W where
W has one corner. Translate B toward the corner until the vertex
closest to the corner hits the corner, making sure that the bubble edge
coming out of that vertex is on the inside of the corner, reflecting if
necessary. After sliding, the bubble configuration may intersect the
opposite wall segment. We can ignore this for the moment, since the
wall segment will influence neither the perimeter nor the area of our
configuration. In either case, we have a contradiction of our regularity
laws. We know that we can decrease perimeter by altering the bubble
edge within a circle of small radius about the corner, so that the edge
comes in perpendicular to the opposite wall segment (and the resulting
configuration will still be of type 2).

Our goal now is to eliminate all type 2 bubbles with overlapping
regions. Then we will show that the minimizer must touch the inside
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cba

v 1

v 2

FIGURE 20. Overlapping standard double bubbles formed from the edges
emanating from v1.

of the corner. We first enumerate all possible configurations of type 2
bubbles. By Corollary 8.2, we know that we can extend the edges
emanating from the degree three vertex, v1, to form two overlapping
(literally) standard double bubbles, consisting of three overlapping
circles. By a symmetry argument, the centers of each of the circles all
lie on the same line, namely, the line that bisects each double bubble
(see Figure 20). We shall let v2 denote the point that is the reflection
of v1 through the bisecting line.

Since bubble edges meet the wall segments at right angles, the wall
segments are going to have to pass through at least two of the centers of
the three circles formed, namely two of the three points a, b and c. We
are going to need a few elementary geometric facts pertaining to this
configuration in order to enumerate all possible configurations. Given
the degree three vertex, v1, that does not lie on the wall in a type 2
double bubble, we will form standard double bubble by extending (or

cba

v 1

v 2

FIGURE 21. The radii of Ca and Cb.
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shortening) the arcs emanating from v1 until they hit the point v2. In
Figure 20, we have highlighted the standard double bubble formed by
the edges emanating from v1 in this way. The center a corresponds to
the separating edge of the double bubble, the center b to the leftmost
(smaller) region, and the center c to the rightmost region. This brings
us to our first fact. We use Ca, respectively Cb, Cc, to denote the circle
centered at a, with corresponding radius Ra, respectively, Rb, Rc.

Lemma 8.4. The vertex a lies outside and to the left of the region
enclosed by Cb. By symmetry, vertex c lies outside and to the right of
the region enclosed by circle Cb.

Proof. Since the arcs of Ca and Cb meet at an angle of 120 degrees,
their radii meet at v1 at an angle of 60 degrees. Assuming the distance
between v1 and v2 is one unit, we also have that Ra, the radius of
Ca, is equal to 1/2 sin(θa) and that Rb is equal to 1/2 sin(θb) (see [2]),
where θa, respectively θb, is the angle that the arc of Ca, respectively
Cb, makes with the line segment from v1 to v2. Now 0 ≤ θa < π/3
(see [2]). It follows that π/3 < θb ≤ 2π/3. Finally we may conclude
that Ra > .5 and that Rb ≤ 1/√3. Thus Ra ≥ Rb. Since the measure
of angle av1b is 60 degrees, and Ra ≥ Rb, the segment ab is of greater
length than Rb. This completes our argument.

Now we are ready to justify the following claim:

Lemma 8.5. The 22 configurations given in the Appendix represent
all possible configurations of type 2 bubbles.

Proof. We work with the two overlapping standard double bubbles
shown in Figure 20. In this proof when we refer to “the vertices,”
we will mean the vertices a, b and c that are the centers of the three
circles in Figure 20. We start by considering all possible configurations
with two adjacent vertices on the same wall segment. Up to symmetry,
we may assume the corner will be at vertex a or b. We first consider
configurations with corner at a which means that b and c lie on the
same wall segment (hence the arc from Cb and the arc from Cc both
intersect the same wall segment).
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8

4

a b c

7

5, 20

6, 21

v 2

v 1

FIGURE 22. Possible configurations with corner at a.

In Figure 22 we have indicated all possibly type 2 configurations
with corner at point a and degree three vertex v1. The vertices with
numerical labels indicate where the second wall segment intersects the
configuration. There are two choices for the three edges emanating
from v1. If we pick the solid edges in Figure 22, we get the following
configurations: those labeled 4, 5 and 6 (see the Appendix). If we pick
the dashed edges, we get the following configurations: those labeled 7,
8, 20 and 21 (see Appendix).

Now we consider possible type 2 configurations with corner at b.
This time the arcs from Ca and Cc in the configuration intersect
the same wall segment. In Figure 23 we have indicated all such
possible configurations. Again there are two choices for the three
edges emanating from v1. If we pick the solid edges in Figure 22,
we get the following configurations: those labeled 10, 11 and 12 (see
the Appendix). If we pick the dashed edges, we get the following
configurations: those labeled 13, 14, 15 and 22 (see the Appendix).

a b c

10, 14

11, 22

v 1

v 2

15

12, 13

FIGURE 23. Possible configurations with corner at b.
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19

b

16

v 1

FIGURE 24. The remaining possible configurations with corner at b.

There are two more configurations with corner at b, namely 16 and
19, that arise when one of the arcs emanating from v1 is a straight line.
In Figure 24 the only possible arcs emanating from v1 are the solid
ones.

Now we consider cases with vertices on different wall segments, first
a on one segment and c on another, then a on one segment with b
on the other, with the arc associated to the third vertex meeting the
corner. We first consider such possible configurations with one wall
segment through a and the other through c, with the corner on Cb.
By Lemma 8.4 neither a nor c lie inside Cb, see Figure 25. The corner
lies at point w. Now, in order to be minimal, one of the arcs on Cb

emanating from w must form an angle of 90 degrees or greater with
both of the line segments aw and cw meeting at w. Let t be the vertex
on circle b that forms segment tb, which lies perpendicular to the line
through a, b and c. By symmetry, we may assume the vertex w lies
on or above the line through a, b and c. If w lies to the left of, or on,
the vertex t, then the segment aw will make an angle of less than 90
degrees with one of the arcs of circle b emanating from w; choose the
other arc for the configuration. For the chosen arc, the segment from
cw makes an angle of less than 90 degrees. So neither arc works. By
symmetry, w cannot lie to the right of t. It follows that it is impossible
for minimizing configurations to exist with one wall segment through
a and the other through c, with the corner on the circle about b.

Now we consider configurations with one wall segment through a,
one through b, with corner on a Cc. By symmetry, this will give us all
remaining configurations with vertices of different walls. As before, we
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ba c

w t

FIGURE 25. Forbidden configurations.

can either pick the solid or the dashed arcs emanating from v1. If the
corner lies at vertex 1 in Figure 26, then we cannot pick the solid arcs
due to the angle that the arc from Cc would make with the corner. The
dashed edges give configuration 1 in the Appendix. If the corner lies at
vertex 2, for the same reason as given for vertex 1, we cannot use the
solid edges; the dashed edges give configuration 2 in the Appendix.

If the corner lies at vertex 3, and we use solid edges emanating from
v1, then the angle that the wall segment through b makes with the
bubble arc emanating with 3 will be less than 90 degrees. If we use the
dashed edges emanating from v1, then we get configuration 3 in the
Appendix.

If the corner lies at vertex 17, and we use dashed edges emanating
from v1, then the angle that the wall segment through a makes with
the bubble arc emanating from 17 will be less than 90 degrees. If we

18

1

cba

v 1

v 2
17

3

2

FIGURE 26. The remaining configurations with a and b on different wall
segments.
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Embedded Graph

I)  configuration 4
II) configuration 6

III)  configuration 21
IV) config. 4bc

FIGURE 27. Orienting pathological cases I IV.

use the solid edges emanating from v1, then we get configuration 17 in
the Appendix.

Finally, we get configuration 18 by using the solid edges emanating
from v1. We cannot use the dashed edges, as this would create
an edge of the configuration that intersects the inside of the corner.
This concludes our analysis of possible cases with different vertices on
different wall segments.

Finally, we consider possible cases with all three vertices on the same
wall segment. These give configuration 9 in the Appendix.

This concludes our rather long proof of Lemma 8.5.

8.2 Elimination of configurations with overlapping regions.
Here we go through the six methods (explained in the following sub-
sections) used to eliminate the finite number of pathological, or over-
lapping, bubble configurations of type 2 (see Appendix). We will use
the notation R1 and R2 to denote the two regions enclosing areas A1

and A2, respectively.

8.2.1 Pathological case I. For case I we use an orientation argument
to note that the edges cannot be consistently oriented so as to give
both regions enclosing positive areas (see configuration 4 in Figure 27).
Since we are not concerned with negative areas, we can eliminate these
bubble configurations. This type of argument eliminates configurations
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Case II)
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Case III)
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FIGURE 28. Eliminating pathological cases II IV.

2, 2b, 4, 4b, 4c, 5, 5b, 5c, 6bc, 7b, 7c, 7bc, 8b, 8c, 8bc, 9a, 9b, 9c, 9ab,
9ac, 9bc, 16, 17, 17b, 19, 20b, 20c, 20bc, 21b, 21c and 21bc.

8.2.2 Pathological case II. For this case we notice that one of the
regions, say R1, consists of two components, one with positive area and
the other containing negative area (see configuration 6 in Figure 27).
The positive region has to be bigger than the negative one in order for
the total area to be positive. We can erase one of the arcs as in Figure 28
and eliminate the negative region. We can then translate R2 towards
the corner until the original area of R1 is obtained inside the corner.
Thus we have created a new configuration with area preserved, but with
less perimeter. It follows that the case II bubble is not minimizing. This
type of argument also shows that configurations 6, 6b and 6c are not
minimizing.

8.2.3 Pathological case III. To eliminate this case (see configuration 21
in Figure 27), we note that by extending the wall segment that two
bubble edges form vertices with a split standard double bubble forming
on the wall together with a sector of angle π + θ (see Figure 28). If
we erase the other wall segment and form a semi-circle on the new
(straight) wall containing the same area as the sector, we decrease
perimeter. By Corollary 2.3, we can enclose the same areas on a
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FIGURE 29. Configuration 3, case V, is not minimizing.

straight wall using less perimeter with a split standard double bubble.
Thus the case III bubbles (configurations 12 and 21) are not perimeter
minimizing.

8.2.4 Pathological case IV. Configuration 4bc is typical of this case
(see Figure 27). This case has R1 divided into a positive region at
the corner and a negative region partially overlapping the other region,
R2, which is completely positive. Note that the region at the corner
is a piece of a sector of a circle centered at the corner. Consolidate
R1 by decreasing the radius of the sector, moving the arc closer to
the corner and decreasing the perimeter. Clearly R2 is divided up
into a split standard double bubble and two semi-circles. We can
decrease perimeter by putting all of R2 inside one semi-circle on the
wall (see Figure 28). We can then translate the newly formed R2 until
it touches R1, breaking regularity. It follows that the case IV bubbles
(configurations 2a, 2ab, 4bc, 5bc, 9abc, 14, 15, 17a, 17ab, 18 and 22)
are not perimeter-minimizing.

8.2.5 Pathological case V. Here we deal with configurations 3, 3b,
3a and 3ab. For the configuration 3, the angle of the corner must be
less than π or else Ac could not meet the corner and obey regularity.
Note that the only possible orientation gives one positive component
and one negative component for R2 (see Figure 29). Create a split
standard double bubble enclosing A2 and the area enclosed by R1 that
lies above the top wall segment (see Figure 29). The remainder of R1

lies below the top wall segment. By Theorem 5.1, we can enclose the
remainder of the area of R1 using the inside of the corner. We may
then move the split standard double bubble enclosing R1 and R2 down
to the bottom wall segment and translate it until it touches the sector
with R1, contradicting regularity. We thus have a new configuration
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a b

v2

v1

FIGURE 30. The configuration 3a, case V, is not minimizing.

enclosing A1 and A2 with less perimeter than the original, and the new
configuration is not regular. We may conclude that configuration 3 is
not perimeter-minimizing. One can show that configuration 3b is not
perimeter-minimizing by a similar argument.

For configuration 3a, we must orient our regions as shown in Fig-
ure 30. This shows that R2 has all of its positive area to the left of
the line segment connecting v1 to v2. We can use less perimeter by
placing all of the area of R2 into a semi-circle, using the wall. Simi-
larly, we can place all of the area of R1 in a sector touching the corner.
The new configuration has less perimeter and holds the same areas.
Thus the configuration, namely 3a, is not perimeter-minimizing. The
configuration 3ab is not minimizing by a similar argument.

8.2.6 Pathological case VI. Here we examine configuration 13. In
order for both regions to enclose positive area, the regions must be
oriented as in Figure 31. Note that one region, say R1, has a positive

Embedded Graph

FIGURE 31. Orienting configurations 13, case VI.
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1
2

FIGURE 32. Configuration 13 is not minimizing.

component and a negative component. If we extend the wall segment
that two bubble edges are incident upon, a semi-circle is formed on
the new wall. We can transform all of the area in R1 into this semi-
circle, then scale the semi-circle down so that it encloses area A1, then
translate the semi-circle along the wall until it is disjoint from R2, see
Figure 32. We may keep the area in R2 where it is and eliminate one of
the walls inside of R2, see Figure 32. The new configuration encloses the
same areas as the original, with less perimeter, thus configuration 13
cannot be the minimizer.

We summarize the above discussion with a table.

Pathological Case Eliminates the following configurations
from consideration:

I 2, 2b, 4, 4b, 4c, 5, 5b, 5c, 6bc,
7b, 7c, 7bc, 8b, 8c, 8bc, 9a, 9b,
9c, 9ab, 9ac, 9bc, 16, 17, 17b, 19,
20b, 20c, 20bc, 21b, 21c, 21bc

II 6,6b,6c

III 12,21

IV 2a, 2ab, 4bc, 5bc, 9abc, 14,
15, 17a, 17ab, 18, 22

V 3, 3a, 3b, 3ab

VI 13
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8.3 Elimination of bubbles that lie on the outside of the
corner. Eliminating all overlapping bubbles, we are left with the
nonoverlapping type 2 bubble cases, on the inside or the outside of the
corner. The following theorem can now be proven for the remaining
cases.

Theorem 8.6. For two fixed areas A1 and A2, the split standard
double bubble enclosing A1 and A2 has less perimeter than the trun-
cated double bubble enclosing A1 and A2 on the outside of the corner
(configurations 1, 8, 11 or 20 from the Appendix).

Proof. Given a truncated double bubble enclosing A1 and A2 touching
the outside of the corner, our strategy is to enclose regions with area
A′ and A2 in a split standard double bubble of perimeter less than
or equal to the original bubble, with A′ ≥ A1. Then, since we
know that decreasing either area enclosed by a standard double bubble
decreases perimeter [2], we can decrease A′ in the split standard double
bubble until A1 and A2 are bounded with necessarily less perimeter,
proving that the bubble on the outside of the corner is not perimeter
minimizing.

Given a truncated double bubble of configuration type 8 or 20, with
region R1 enclosing A1 and region R2 enclosing A2, extend to a line
the wall segment touching two bubble edges, segment 1, and make it
the new wall. Now draw a line segment orthogonally from the new wall
to point v1, the vertex off the wall; call this line segment v1w. From
previous arguments, we know that point v1 must lie on the same side
of the new wall as the two bubble edges that are incident to segment 1.
Now draw line segments from the two ends of the line segment v1w
to the end of the arc not on the new wall, v3, creating a triangle (see
Figure 33 a, c).

Note that the line segment v1v3 in the figures is a chord of circle.
Redraw the chord and its arc so that they touch the new wall as shown
in 33b). Recall that keeping two side lengths of a triangle constant, the
largest area is obtained when there is an angle of π/2 between the fixed
sides and that the area decreases as that angle is increased or decreased
away from π/2. Because we increase the measure of angle v3v1w to an
angle of measure less than π/2, the area enclosed by R1 has increased
to A′ but the perimeter has not. The new configuration is one on a
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FIGURE 33. Eliminating bubbles on the outside.

single straight wall. By Corollary 2.3 the split standard double bubble
will enclose the same areas with less perimeter. We may then decrease
A′ back down to A1, decreasing perimeter.

For configuration type 11, replace the wall segments with wall seg-
ments that go through the same points with the corner touching the
middle vertex (see Figure 34). The resulting corner angle is less than
the original corner angle.

The following argument, used to show configurations of type 11
are not minimizing, also shows that configurations of type 1 are not
minimizing. Given a configuration of type 11, let v3 and v4 denote
the vertices at which the two outer arcs of the configuration touch the
wall segments. The segments v1v3 and v1v4 are chords of circles (see
Figure 34). Label the corner point as P . Let α denote the angle v4v1P .
If α measures less than π/2, move the chord v1v4 and its associated
arc up so that the measure of α increases, fixing v1 and the corner.
Redraw the wall segment so that it still passes through the corner and
the new v4. If during this process the corner disappears, stop. The
split standard double bubble will use less perimeter than the resulting
configuration. If the corner does not disappear, continue to increase
α until it measures π/2. In the process, perimeter remains constant,
but the area enclosed increases. Now apply the same procedure to the
angle δ (the angle v3v1P ) moving v3. If during the process the corner
disappears, stop. Otherwise stop when δ measures π/2. The sum of α
and δ must measure less than π, else v1v3 and v1v4 would lie in a half
plane that does not contain the wall segments, thus the procedure must
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FIGURE 34. Eliminating configuration 11.

stop with the corner disappearing. It follows that the split standard
double bubble is more minimizing than configurations 1 and 11.

From the above, we can conclude with the following theorem:

Theorem 8.7. If the perimeter minimizing overlapping bubble with
areas A1 and A2 on a wall with one corner of angle θ is of type 2, then
the bubble is on the inside of the corner with one region touching the
corner (configurations 7 or 10 from the Appendix).

We have now established our main theorem.

Appendix

Regular configurations of type 2 overlapping bubbles. The
following diagrams depict the 22 configurations described in the proof
of Lemma 8.5. We use the notation Aa, Ab and Ac to denote the arcs
from Ca, Cb and Cc, respectively. The a, b or c after a configuration
number indicates that we include the optional piece of the arc from
Ca, Cb or Cc.
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FIGURE A.1. Cases 1 and 2.
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FIGURE A.2. Cases 3 and 4.
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FIGURE A.3. Cases 5 and 6.
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FIGURE A.4. Cases 7 and 8.



478 HRUSKA, LEYKEKHMAN, PINZON, SHAY AND FOISY

A b

A a

A c

A b

A a

A c

A b

A a

A c

A b
A a

A c

9ac)

9a)

9ab)

9)

A c

A a

A b

A a

A b

A c

A a

A b

A c
A c

A a

A b

9abc)

9c)

9b)

9bc)

FIGURE A.5. Case 9.
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FIGURE A.6. Cases 10 to 16.
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FIGURE A.7. Cases 17, 18, 19 and part of 20.
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