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FINITE GROUPS WITH EXACTLY TWO
CONJUGACY CLASSES OF THE SAME ORDER

CHRISTOPHER M. BONER AND MICHAEL B. WARD

ABSTRACT. We show that the only finite groups having a
nilpotent derived subgroup and having exactly two conjugacy
classes of the same order are Z2, D10, the dihedral group of
order 10, and A4. As a corollary, the only supersolvable finite
groups having exactly two conjugacy classes of the same order
are Z2 and D10.

1. Introduction. Investigation of the S3-conjecture, that S3 is
the only finite group whose conjugacy classes all have different orders
began with Markel [7] in 1973 and continued through a string of papers
[1], [3], [6], [9] each examining a special case. Recently, the conjecture
was confirmed in the class of finite solvable groups by Zhang [10] and,
independently, by Knörr, Lempken and Thielcke [5].

Weakening the hypothesis on conjugacy class orders by allowing
exactly two conjugacy classes to have the same order, one obtains
a larger supply of examples. For instance, in the symmetric and
alternating groups, where conjugacy classes are easy to compute [8,
11.1.1, 11.1.5], we find S2, S4, S5, A4, A5 and A7 each have exactly two
conjugacy classes of the same order and those are the only such groups
among the symmetric and alternating groups.

Here we begin a systematic study of which finite groups satisfy the
weakened hypothesis where Markel began: with supersolvable groups.
Specifically, we show that the only finite groups having a nilpotent
derived subgroup and having exactly two conjugacy classes of the
same order are Z2, D10 (the dihedral group of order 10) and A4. As
a corollary, the only supersolvable finite groups having exactly two
conjugacy classes of the same order are Z2 and D10.

The proof uses elementary techniques. However, the fact that a group
satisfying our weakened hyypothesis is not necessarily a rational group
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(defined below) results in a number of cases, each requiring detailed
analysis.

2. Some preliminaries. All groups considered herein are finite.
For any element g of a group G, [g] denotes the conjugacy class of g in
G and NG(g) abbreviates NG(〈g〉). Other notation is standard, see [2].

Recall a finite group G is rational if every complex character of G is
rational valued. The following characterization is fundamental.

Proposition 2.1 [4, Proposition 9]. G is a rational group if and
only if for all y ∈ G and every positive integer k, 〈y〉 = 〈yk〉 implies
that [y] = [yk], that is, Aut (〈y〉) ∼= NG(y)/CG(y).

Examining the proof of Proposition 2.1, we see that the following
element-wise version holds.

Proposition 2.2. Let G be a finite group, and let t be an element
of G such that 〈t〉 = 〈tk〉 implies [t] = [tk] for every positive integer
k, that is, NG(t)/CG(t) ∼= Aut (〈t〉), then χ(t) is rational for every
complex character χ of G.

We need three facts about rational groups.

Proposition 2.3 [7, Proposition 1]. If G is a rational group and N
is a normal subgroup of G, then G/N is rational.

Proposition 2.4 [7, Corollary 2]. If G is an abelian rational group,
then G is an elementary abelian 2-group.

Proposition 2.5 [7, Proposition 1.31]. If G is a rational group with
G′ nilpotent, then G is a {2, 3}-group.

The next result will be useful in locating distinct conjugacy classes
having the same order.
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Proposition 2.6. Let N be a normal subgroup of a group G such that
G/N is cyclic of order n > 2. If G/N = 〈Nt〉, then there is a positive
integer k such that 〈t〉 = 〈tk〉 and [t] �= [tk]. Suppose further that there
is a positive integer m such that n > 2m and 〈t〉 �= 〈tm〉. Then there
are positive integers k and l such that 〈t〉 = 〈tk〉 and 〈tm〉 = 〈tml〉,
but [t] [tk], [tm] and [tml] are all distinct. Moreover, |[t]| = |[tk]| and
|[tm]| = |[tml]|.

Proof. Let ρ denote the canonical homomorphism G → G/N . Let
Ψ : G/N → C be the natural isomorphism from G/N to 〈e(2πi)/n〉
defined by Ψ(Ntk) = e(2πki)/n for every positive integer k. Let
Φ = Ψ◦ρ, then Φ is a linear character of G. Since n > 2, Φ(t) = e(2πi)/n

is not a rational number. Thus, Proposition 2.2 implies that there exists
a positive integer k such that 〈t〉 = 〈tk〉 and [t] �= [tk].

Suppose, in addition, that there is a positive integer m such that
n > 2m and 〈t〉 �= 〈tm〉. Then Φ(tm) = e(2πmi)/n is also not rational
so applying Proposition 2.2 again we get that there exists an integer l
such that 〈tm〉 = 〈tml〉 and [tm] �= [tml]. To see that [t], [tk], [tm] and
[tml] are all distinct it suffices to note that t and tm do not have the
same order.

Inasmuch as 〈t〉 = 〈tk〉, CG(t) = CG(tk). Hence, |[t]| = |[tk]|.
Similarly, |[tm]| = |[tml]|.

Lemma 2.7. Suppose [x] and [w] are the only two distinct conjugacy
classes of a group G having the same order and z /∈ [x] ∪ [w], then
NG(z)/CG(z) ∼= Aut (〈z〉).

Proof. It suffices to show any two generators of 〈z〉 are conjugate in
G. Assume 〈z〉 = 〈zk〉, then CG(z) = CG(zk). Therefore, |[z]| = |[zk]|.
By hypothesis, [z] = [zk], otherwise, we would have a second pair of
distinct conjugacy classes having the same order.

Finally, we record a well-known lemma for reference.

Lemma 2.8. If H is a subgroup of G and H ∩G′ = 1, then no two
distinct elements of H are conjugate in G.
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Proof. If h, hg ∈ H, then [h, g] ∈ H ∩G′ = 1.

3. Main theorem.

Theorem 3.1. G is a finite group with exactly two conjugacy classes
of the same order whose commutator subgroup G′ is nilpotent if and
only if G is isomorphic to either Z2, A4 or D10, the dihedral group of
order 10.

Corollary 3.2. G is a supersolvable finite group with exactly two
conjugacy classes of the same order if and only if G is isomorphic to
either Z2 or D10.

Before proving the theorem, we show how Corollary 3.2 follows from
Theorem 3.1. If G satisfies the hypotheses of the corollary, then G′ is
nilpotent [8, 7.2.13]. To verify the corollary, it is sufficient to note that
Z2 and D10 are supersolvable whereas A4 is not supersolvable.

In the proof of the theorem, we repeatedly apply the same general
strategy:

1. Determine which primes may divide the order of a group that
satisfies the hypotheses in each case.

2. Eliminate the possibility of certain large conjugacy class orders.

3. Using our hypothesis that there can be at most one duplicate
conjugacy class order, obtain an upper bound on the order of the group
from the class equation.

4. Examine the resulting groups.

Proof of Theorem 3.1. Obviously Z2 is a group with exactly two
conjugacy classes of the same order with a nilpotent commutator
subgroup. Also, the commutator subgroup of A4 is abelian and the
conjugacy classes are [1], [(12)(34)], [(123)], [(132)] having orders 1,
3, 4, 4, respectively. For D10, the commutator subgroup is cyclic of
order 5. The involutions form a conjugacy class of order 5 while the
elements of order 5 form two classes, each of order 2. The conjugacy
class orders of D10, therefore, are 1, 2, 2 and 5.
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We prove the converse by proving four lemmas corresponding to
four possible group configurations. We show no group having the first
configuration can satisfy our hypothesis on conjugacy class orders while
the other three each lead to one of the groups in the conclusion.

Lemma 3.3. Assume G is a rational group with G′ nilpotent and
Z(G) = 1. Then G cannot have exactly two conjugacy classes of the
same order.

Proof. In this case we essentially follow the proof of Markel. Assume
G does have exactly two conjugacy classes of the same order.

By Proposition 2.5, G is a {2, 3}-group, so |G| = 2a3b for some
nonnegative integers a and b. Since Z(G) = 1, a and b are both positive.
Let S be an arbitrary Sylow 2-subgroup of G. We first derive some
preliminary results that will prove useful in determining the possible
conjugacy class orders of G in this case.

(3.1) G = G′S.

By Propositions 2.3 and 2.4, G/G′ is an elementary abelian 2-group.
Hence, G = G′S.

S ∩G′ = 1, S is an elementary abelian and(3.2)
G′ is a Sylow 3-subgroup of G.

If S ∩G′ > 1, then let z be any nonidentity element of Z(S) ∩G′ ≤
Z(G′), utilizing the nilpotency of G′. Thus, G = G′S ≤ CG(z),
contrary to the hypothesis. Therefore, S ∩ G′ = 1. The rest now
follows from (3.1).

(3.3) CG(G′) ≤ G′.

Since S is abelian, S ∩ CG(G′) ≤ Z(G) = 1. Therefore, CG(G′) is a
3-group and the result follows.

(3.4) CG(S) = S.
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By (3.1) and (3.2), CG(S) = S(G′ ∩ CG(S)). Assume G′ ∩ CG(S) >
1, and let y be an element of order three in G′ ∩ CG(S). Then
|NG(y)/CG(y)| is odd. However, Proposition 2.1 implies that |NG(y)/
CG(y)| = 2.

With the preliminaries complete, we’ll count the elements of G
according to their order. We begin with the 3-elements. Since G′ is a
normal Sylow 3-subgroup of G, |G′| = 3b is the number of 3-elements.

Every conjugacy class containing 2-elements contains a representative
in S by the Sylow theorems. By (3.2) and Lemma 2.8 the number of
nonidentity 2-elements in G is given by

∑
s∈S� |[s]|, S� denoting the

set of nonidentity elements of S. S is abelian so, for every s ∈ S�,
|[s]| = [G : CG(s)] = 3j for some integer j such that 1 ≤ j ≤ b.

Next, let y be any mixed element of G, that is, an element whose
order is divisible by 6, then |[y]| divides 2a−13b−1.

Suppose 3b divides |CG(y)|. Then CG(y) contains G′. That means
y ∈ CG(G′) ≤ G′, which contradicts that y is a mixed element. Thus 3
divides |[y]|.
Now suppose 2a divides |CG(y)|; then we may assume S ≤ CG(y).

That means y ∈ CG(S) = S, a contradiction. Therefore, 2 divides |[y]|.
It follows that |[y]| = 2i3j with 1 ≤ i ≤ a− 1 and 1 ≤ j ≤ b− 1.

Let [w] be one of the two conjugacy classes of equal order. Counting
the elements of G according to their order (3-elements, 2-elements not
in [w], mixed elements not in [w], then if necessary, the elements in [w]),
we obtain an upper bound for the order of G from the class equation:

|G| = 2a3b ≤ 3b +
b∑

j=1

3j +
a−1∑
i=1

b−1∑
j=1

2i3j + d

for some integer d. If w is a 3-element, we may take d = 0 for 3b is the
total number of 3-elements. If w is a 2-element or a mixed element,
take d = 3b or 2a−13b−1, respectively, because |[w]| ≤ d in each case.

If d = 0, the inequality is equivalent to

2a − 1 ≤ 3b−1(3− 2a),

which implies a = 1. Hence, if the duplicate ordered conjugacy class
contains 3-elements, then a = 1.
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If d = 3b or 2a−13b−1, the inequality is, respectively, equivalent to

2a − 1 ≤ 3b−2(15− 3 · 2a)
2a − 1 ≤ 3b−2(9− 2a+1)

either of which implies a ≤ 2.

Suppose that a = 1, that is, |S| = 2. Let S = 〈s〉, and let τs be the
automorphism of G′ induced by conjugation by s. Suppose that y ∈ G′

is a fixed point of τs. Then y ∈ CG(s)∩G′ = CG(S)∩G′ = S ∩G′ = 1.
Hence, τs is a fixed point free automorphism of order 2 and [2, 10.1.4]
implies G′ is abelian. Therefore, |[y]| ≤ 2, for all y ∈ G′.

Since there can be at most one repeated conjugacy class order for
3-elements, |G′| ≤ 1 + 2 + 2 = 5. As G′ is a 3-group, |G′| = 3, hence
|G| = 6. However, the only two nonisomorphic groups of order 6, S3

and Z6, do not satisfy the hypothesis of the theorem. Hence, a �= 1 and,
furthermore, no conjugacy class of repeated order contains 3-elements.
(We showed that can happen only when a = 1).

Assume that a = 2. Further suppose that there is an element s in S
such that |[s]| = 3b. Then S = CG(s). Arguing exactly as above, G′ is
abelian and so, for any element y in G′, |[y]| divides |S| = 4. Therefore,
|G′| ≤ 1 + 2 + 4 = 7. Once again, |G′| = 3. Thus, for all t in S, [t]
has order either 1 or 3. By (3.2) and Lemma 2.8, no two elements of S
are conjugate, contradicting our hypothesis on the number of repeated
conjugacy class orders.

Therefore, there are no conjugacy classes of order 3b. Hence, the
order of the duplicate conjugacy class cannot exceed 2 ·3b−1. Counting
the elements of G according to their order once again, we have

|G| = 223b ≤ 3b +
b−1∑
j=1

3j +
b−1∑
j=1

2 · 3j + 2 · 3b−1

= 3b +
(
3
2

)
(3b − 3) + 2 · 3b−1.

Dividing both sides of the inequality by 223b, we get

1 ≤ 1
4
+

3
8

(
1− 3

3b

)
+

1
6
< 1.
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That contradiction completes the proof of Lemma 3.3.

Lemma 3.4. Assume G is a rational group with G′ nilpotent and
Z(G) > 1. If G has exactly two conjugacy classes of the same order,
then G ∼= Z2.

Proof. If |Z(G)| > 2, there are at least three distinct conjugacy
classes of order 1. Hence |Z(G)| = 2. Thus, for every y ∈ G, 2a does
not divide |[y]|.
Now suppose there exists y ∈ G such that |[y]| = 2a−13b. That

means |CG(y)| = 2, so CG(y) = Z(G), which implies CG(y) = G and
G is isomorphic to Z2. Hence we may assume there are no conjugacy
classes of order 2a−13b. We can obtain an upper bound on the order
of G by summing the possible orders of its conjugacy classes, adding
1 twice for the classes of the two central elements and subtracting the
impossible class order:

(3.5)
|G| = 2a3b ≤ 1 +

a−1∑
i=0

b∑
j=0

2i3j − 2a−13b

= 1 + (2a − 1)
3b+1 − 1

2
− 2a−13b.

Dividing both sides of inequality (3.5) by 2a3b, we get a contradiction,
thereby completing the proof of Lemma 3.4.

Henceforth, assume G is not rational; G has exactly two conjugacy
classes of the same order and G′ is nilpotent. We establish some
notation and a preliminary result for use in the final two lemmas.
Proposition 2.1 implies that there exist an element x in G and a positive
integerm such that 〈x〉 = 〈xm〉 but [x] �= [xm]. Since CG(x) = CG(xm),
[x] and [xm] are the two conjugacy classes that have the same order.

Next we show Z(G) = 1. For, suppose Z(G) > 1, then as in
Lemma 3.4, Z(G) has order 2. Furthermore, x ∈ Z(G), for otherwise
we would have two pairs of conjugacy classes of the same order. Thus,
〈xm〉 = 〈x〉 ≤ Z(G) which implies x = xm, a contradiction.
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Lemma 3.5. Assume G is not rational; G′ is nilpotent and G = G′S
where S is a Sylow 2-subgroup of G. If G has exactly two conjugacy
classes of the same order, then G ∼= D10.

Proof.

(3.6) S ∩G′ = 1.

By the nilpotence of G′, Z(S) ∩G′ ≤ Z(S) ∩ Z(G′) ≤ Z(G) = 1.

(3.7) S ∼= G/G′ and, therefore, S is abelian.

That follows immediately from our hypotheses and (3.6).

(3.8)
If z is an element of prime order in Z(G′), then NG(z)/CG(z)
is cyclic and isomorphic to a factor group of a subgroup of S.

Suppose z has prime order q. Then NG(z)/CG(z) is isomorphic to
a subgroup of Aut (〈z〉) ∼= Zq−1. Since G′ ≤ CG(z), NG(z)/CG(z) is
isomorphic to a factor group of a subgroup of G/G′ ∼= S.

(3.9) If S is elementary abelian, then G ∼= D10.

Let q be any prime dividing the order of G′. We know q is odd by
(3.6). Let z be an element of order q in Z(G′). By (3.8), NG(z)/CG(z)
is either trivial or isomorphic to Z2.

AssumeNG(z)/CG(z) is trivial. ThenNG(z) = CG(z). It follows that
no two distinct elements in 〈z〉 are conjugate. If q > 3, then z, z2 and
z3 are all generators for 〈z〉, and [z], [z2] and [z3] are pairwise disjoint
conjugacy classes of equal order, which contradicts our hypothesis on
the number of repeated conjugacy class orders. Therefore, in case
NG(z)/CG(z) = 1, q = 3.

Assume NG(z)/CG(z) ∼= Z2. Let y be an element of NG(z) that
does not centralize z. Then y induces a fixed point free automorphism
of order 2 on 〈z〉. By [2, 10.1.4], (zk)y = (zk)−1 for every zk ∈ 〈z〉.
Hence, two distinct elements of 〈z〉 are conjugate if and only if they are
inverses. If q > 5, then [z], [z2] and [z3] are pairwise disjoint conjugacy
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classes of the same order, a contradiction. Thus, if NG(z)/CG(z) ∼= Z2,
q is either 3 or 5.

In either case, G′ is a {3, 5}-group.
Suppose that both 3 and 5 divide the order of G′. There exists

elements u and t in Z(G′) of order 5 and 15, respectively, so u and t
cannot both be conjugate to a generator of 〈x〉.
If u is not conjugate to any generator of 〈x〉, then by Lemma 2.7

NG(u)/CG(u) ∼= Aut (〈u〉) ∼= Z4, a contradiction since we are assuming
S is elementary abelian. If t is not conjugate to any generator of 〈x〉,
we obtain a similar contradiction.

G is not a 2-group, since Z(G) = 1. Hence either 3 or 5 divides the
order of G. In either case we will see that one can mimic the proof of
Lemma 3.3 to derive the desired conclusions. Since S is abelian and
G = G′S, we get that S ∩ CG(G′) = 1 and therefore CG(G′) ≤ G′ by
the same argument given in Lemma 3.3. In order to obtain all of the
preliminary results utilized in the proof of Lemma 3.3 we must also
show that CG(S) = S.

Suppose that G′ ∩ CG(S) > 1, and let y be a nonidentity element of
prime order in G′ ∩ CG(S). Then y has order either 3 or 5. Let t be
any involution in S. Since y commutes with t, ty has order either 6 or
10. It follows that y and ty cannot both be conjugate to a generator of
〈x〉.
If y is not conjugate to any generator of 〈x〉, then by Lemma 2.7,

once again, NG(y)/CG(y) ∼= Aut (〈y〉), which has order either 2 or 4.
However, S ≤ CG(y), so |NG(y)/CG(y)| is odd, a contradiction. If ty
is not conjugate to any generator of 〈x〉, we obtain a contradiction by
the same argument. Hence, G′ ∩ CG(S) = 1 and so CG(S) = S.

The proof of Lemma 3.3 shows G cannot be a {2, 3}-group. Therefore,
|G| = 2a5b for some positive integers a and b.

By imitating the proof of Lemma 3.3, we bound the order of G:

|G| = 2a5b ≤ 5b +
b∑

j=1

5j +
a−1∑
i=1

b−1∑
j=1

2i5j + d

where d = 0, 5b or 2a−15b−1. In all three cases, simple algebra shows
a = 1.
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Still following the proof of 3.3, we can deduce |G′| = 5 and |G| = 10.
Therefore, G is isomorphic to either Z10 orD10. As Z10 does not satisfy
our hypotheses, G ∼= D10.

We complete the proof by establishing that S is elementary abelian.

Assume S is not elementary abelian. Then S ∼= Z2r1×Z2r2×· · ·×Z2rn

for some positive integers r1, . . . , rn, where, without loss of generality,
r1 > 1. By (3.7) there exists a normal subgroup N of G such that
N/G′ ∼= Z2r2 × · · · × Z2rn and G/N ∼= Z2r1 . That means there exists
an element t in S such that Nt generates G/N . Proposition 2.6 implies
that a positive integer k exists such that 〈t〉 = 〈tk〉 but [t] �= [tk]. Thus,
by our hypothesis on the number of conjugacy classes of repeated order,
x must be conjugate to some power of t. Hence x is a 2-element and
we may assume x ∈ S.

Now suppose that rj > 2 for some 1 ≤ j ≤ n. Without loss
of generality we may assume r1 > 2. With N and t as above,
Proposition 2.6 (withm = 2) implies that there exist positive integers k
and l such that 〈t〉 = 〈tk〉 and 〈t2〉 = 〈t2l〉, but [t] �= [tk] and [t2] �= [t2l],
a contradiction. Hence, S contains no elements of order greater than
4.

With that structure, if S is not isomorphic to Z4, then it is easy to
find elements r and s in S of order 4 such that 〈r〉 �= 〈s〉. By Lemma 2.8,
[r], [r−1], [s] and [s−1] are all different, a contradiction again. Therefore,
S ∼= Z4, from which it follows that S = 〈x〉 and [x] and [x−1] are the
only distinct conjugacy classes having the same order.

Let q be any prime dividing the order of G′ and z an element of order
q in Z(G′). By (3.6) q is odd. Thus z is not conjugate to any power
of x. Therefore, NG(z)/CG(z) ∼= Aut (〈z〉) ∼= Zq−1 by Lemma 2.7. By
(3.8) NG(z)/CG(z) is isomorphic to either Z2 or Z4, so q is either 3 or
5. Hence, G′ is a {3, 5}-group.
Suppose both 3 and 5 divide |G′|, and let z be an element of order 15

in Z(G′). Since z is not a 2-element, NG(z)/CG(z) ∼= Aut (〈z〉) ∼=
Z2 × Z4, contradicting S ∼= Z4.

Suppose G′ is a 5-group. Let r be any nonidentity element of G′.
Then |NG(r)/CG(r)| = |Aut (〈r〉)| is divisible by 4. It follows that
|CG(r)| is odd and, consequently, CG(x) = CG(x2) = CG(x−1) = S.
Thus, |[x]| = |[x2]| = |[x−1]|, a contradiction by Lemma 2.8.
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Suppose G′ is a 3-group. Then |G| = 223b for some positive integer b.
We first show b > 1. If b = 1, then G/CG(G′) embeds in Aut (G′) ∼= Z2.
Thus, x2 ∈ CG(G′) ∩ S ≤ Z(G), a contradiction.

Next we’ll show G′ has a small center. Let z ∈ Z(G′), then |[z]|
divides 4. The orders of the conjugacy classes of elements of G′ are all
distinct, so the only possibility is |Z(G′)| = 1+2. Furthermore, if z �= 1,
then x2 ∈ CG(z) and zx = z−1 since |G/CG(z)| = |NG(z)/CG(z)| = 2.

Following our standard strategy, we now show that large conjugacy
classes cannot exist. Suppose |[y]| = 223b−1. Then CG(y) has order 3.
Hence, Z(G′) = CG(y) and G′ ≤ CG(y), contradicting the fact that
b > 1. Suppose |[y]| = 2 · 3b. By a similar argument, CG(y) has order 2
and S ≤ CG(y), a contradiction.

It will take longer to prove that there are no conjugacy classes of
order 3b, but assuming we have shown that, we can obtain a familiar
contradiction. The remaining possible conjugacy class orders are 3i

where 0 ≤ i ≤ b − 1, 2 · 3i where 0 ≤ i ≤ b − 1 and 223i where
0 ≤ i ≤ b− 2. Let 2k3j be the repeated conjugacy class order. We see
that j < b. Thus, from the class equation,

223b ≤
b−1∑
i=0

3i +
b−1∑
i=0

2 · 3i +
b−2∑
i=0

223i + 2k3j

=
3b − 1

2
+ (3b − 1) + 2(3b−1 − 1) + 2k3j

<
3b

2
+ 3b + 2 · 3b−1 + 223j .

Dividing both sides by 223b,

1 <
1
8
+

1
4
+

1
6
+

1
3b−j

≤ 13
24

+
1
3
< 1.

Therefore, to complete the proof, it suffices to show that there are no
conjugacy classes of order 3b. Suppose |[y]| = 3b. Then by conjugating
if necessary, CG(y) = S = 〈x〉. As noted earlier, Z(G′) ≤ CG(x2) and
so y �= x2. Thus, y = x or y = x−1 and the two distinct conjugacy
classes of the same order, [x] and [x−1] each have order 3a.

Now suppose there exists w ∈ G with |[w]| = 3j for some j,
1 ≤ j ≤ b. Then without loss of generality, S ≤ CG(w). That means



FINITE GROUPS 413

w ∈ CG(S) = S. We conclude w = x2. Thus, the only conjugacy
classes of order a power of 3 are [1], [x2], [x] and [x−1] of respective
orders 1, 3j , 3b and 3b.

Assume j = b − 1, then |CG(x2)| = 223. Consequently, CG(x2) =
Z(G′)S. Assume further that there exists an element u with |[u]| =
2 · 3k, 1 ≤ k ≤ b − 1. Then u is not a 2-element nor is u in Z(G′).
However, by conjugating if necessary, we may assume x2 ∈ CG(u)
so u ∈ CG(x2) = Z(G′)S. It follows that 〈u〉 = Z(G′)(〈u〉 ∩ S) =
Z(G′)〈x2〉. In particular, CG(u) ≤ CG(x2), but CG(u) �= CG(x2)
under our hypotheses on repeated conjugacy class orders. We conclude
|CG(u)| = 6 and |[u]| = 2 · 3b−1. Thus, under the assumption that
j = b− 1, any conjugacy class having order 2 times a positive power of
3 actually has order 2 · 3b−1. Summing the possible class orders in this
case, we obtain from the class equation

223b ≤ 1 + 3b−1 + 3b + 3b + 2 + 2 · 3b−1 +
b−2∑
i=0

223i

< 1 + 3b−1 + 3b + 3b + 2 + 2 · 3b−1 + 2 · 3b−1.

Dividing both sides by 223b, we have a contradiction (barely).

In the preceding two paragraphs we have shown that if there is a
conjugacy class of order 3j , 1 ≤ j < b, then there is only one such
class, namely, [x2], and j must be less than b − 1. Now the remaining
possible conjugacy class orders are 1, 3j , 3b, 3b, 2 · 3i for 0 ≤ i ≤ b− 1
and 223i for 0 ≤ i ≤ b − 2. Again, the class equation and a little
arithmetic provide a contradiction.

Lemma 3.6. Assume G is not rational; G′ is nilpotent and G′S < G
where S is a Sylow 2-subgroup of G. If G has exactly two conjugacy
classes of the same order, then G ∼= A4.

Proof.

(3.10) G/(G′〈x〉) is an elementary abelian 2-group and G = SG′〈x〉.
Hence, x is not an element of G′S.

For every y /∈ G′〈x〉, y is not conjugate to x nor xm. Thus, if
〈y〉 = 〈yk〉, then [y] = [yk] or else we would have a second pair of
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conjugacy classes of the same order. Let χ be any complex character of
G/(G′〈x〉), and let χ̂ be the character of G defined by χ̂(g) = χ(G′〈x〉g)
for g ∈ G. Then χ(G′〈x〉y) = χ̂(y) is rational by Proposition 2.2.
Therefore, G/(G′〈x〉) is a rational group. The result follows from
Proposition 2.4 and our hypotheses.

(3.11) [G : G′S] = p and x is a p-element for some odd prime p.

By hypothesis, [G : G′S] = n for some odd integer n > 1. From
(3.10), G/G′S is cyclic.

Let p be any prime dividing n, and suppose that p �= n. Then n = pm
for some m > 2. Proposition 2.6 provides a quick contradiction. Hence,
[G : G′S] = p.

Let (G′S)t generate G/G′S where t is a p-element. By Proposi-
tion 2.6, t is contained in a conjugacy class of repeated order. It follows
that x is a p-element.

(3.12) G/G′ is isomorphic to a subgroup of Zp × Z2 × · · · × Z2.

Note (G′S ∩ G′〈x〉)/G′ ≤ G′S/G′, a 2-group. On the other hand,
(G′S ∩ G′〈x〉)/G′ ≤ (G′〈x〉)/G′ ∼= 〈x〉/(G′ ∩ 〈x〉), a p-group. Hence,
G′S ∩ G′〈x〉 = G′ and G/G′ is isomorphic to a subgroup of G/G′S ×
G/(G′〈x〉). Result (3.12) now follows from (3.10) and (3.11).

(3.13) p = 3 and G is a {2, 3, 7}-group.

Let q �= p be any prime dividing the order of G′. We repeat our
standard argument. Let z be an element of order q in Z(G′). Then z
and x have distinct orders. Lemma 2.7 implies NG(z)/CG(z) ∼= Zq−1.
Moreover, z ∈ Z(G′), so NG(z)/CG(z) ∼= (NG(z)/G′)/(CG(z)/G′).
From (3.12) NG(z)/CG(z) is isomorphic to either Z2,Zp or Z2 × Zp.
Thus, q is equal to either 3, p + 1, or 2p + 1. But q = p + 1 implies
p = 2. Hence, we have shown that G is a {2, 3, p, 2p+ 1}-group.
Suppose p divides |G′|. Then there is an element z of order p in

Z(G′) ∩ Z(P ) where P is a Sylow p-subgroup of G. No power of x is
conjugate to z since x /∈ G′. Thus, as usual, NG(z)/CG(z) ∼= Zp−1. By
the choice of z, G′P ≤ CG(z). From (3.12), NG(z)/CG(z) must be an
elementary abelian 2-group. Thus, p = 3 provided p | |G′|.
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Suppose p �= 3, then 〈x〉 ∩G′ = 1. Since p ≥ 5, 〈x〉 has at least four
generators which give rise to four distinct conjugate classes of the same
order, a contradiction. Thus, p = 3 and G is a {2, 3, 7}-group.
(3.14) |G| = 2a · 3.

Assume 2 divides |G/G′|. Let G′y have order 6 in G/G′. Then y is
not conjugate to any power of x. Hence, y and y−1 must be conjugate
or else we would get another repeated conjugacy class order. That
implies G′y = G′y−1, contradicting the order of G′y being 6. Thus,
|G/G′| = 3.

If 3 divides |G′|, then using the nilpotence of G′ we can find an
element of order 3 in Z(G), a contradiction.

Assume 7 divides |G|. Then G′ contains a Sylow 7-subgroup of
G. Take z ∈ Z(G′) having order 7. Then |NG(z)/CG(z)| divides
|G/G′| = 3 so NG(z)/CG(z) �= Aut (〈z〉). Using Proposition 2.1, we
obtain a second pair of repeated conjugacy class orders, a contradiction.

Therefore, G′ is a Sylow 2-subgroup of G and |G| = 2a · 3. Moreover,
the two conjugacy classes of the same order are [x] and [x−1] and |[x]|
divides 2a. We now can analyze possible conjugacy class orders.

Suppose G has a conjugacy class [y] of order 2a−1 ·3. Then |CG(y)| =
2. It follows readily that y ∈ Z(G′) and |G| = 6, which is not possible.

It must be that G has a conjugacy class of order 2a. For, if not, the
only possible conjugacy class orders are 2j with 0 ≤ j ≤ a−1, 2j3 with
0 ≤ j ≤ a − 2, and the repeated class order is 2j for some i < a. The
class equation gives a contradiction.

A representative of a class of order 2a has order 3. Therefore, the
class is [x] or [x−1]. Either way, |[x]| = |[x−1]| = 2a and 〈x〉 is self-
centralizing. As a consequence, |Z(G′)| > 2 for otherwise x would
centralize Z(G′). Furthermore, there is no conjugacy class of order 2j

with 0 < j < a for some representative of such a class would centralize
x.

Assume that there is an element t with |[t]| = 2a−23. Then Z(G′) ≤
CG(t), the latter having order 4. Thus, Z(G′) = CG(t), which implies
CG(t) = G′. Therefore, |G| = 12. The nonabelian groups of order 12
are A4, D12 and 〈a, b : a3 = 1, b4 = 1, ab = a−1〉. The latter two
groups do not have the necessary structure. For example, both have
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a nontrivial center, not to mention too many repeated conjugacy class
orders. Therefore, G ∼= A4.

If there is no conjugacy class of order 2a−2 · 3, then the only possible
class orders are 1, 2a and 2j · 3 with 0 ≤ j ≤ a− 3. The repeated class
order is 2a. One last time, the class equation gives a contradiction.
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