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STURM-LIOUVILLE EIGENVALUE
PROBLEMS FOR HALF-LINEAR

ORDINARY DIFFERENTIAL EQUATIONS

TAKAŜI KUSANO AND MANABU NAITO

ABSTRACT. In this paper we discuss the half-linear Sturm-
Liouville eigenvalue problem{

(p(t)|x′|α−1x′)′ + λq(t)|x|α−1x = 0, a ≤ t ≤ b,

Ax(a)− A′x′(a) = 0, Bx(b) +B′x′(b) = 0,

for the case where q(t) may change signs in the interval [a, b].
As a typical result we have the following theorem. If q(t) takes
both a positive value and a negative value, then the totality of
eigenvalues consists of two sequences {λ+

n }∞n=0 and {λ−
n }∞n=0

such that · · · < λ−
n < · · · < λ−

1 < λ−
0 < 0 < λ+

0 < λ+
1 < · · · <

λ+
n < · · · , limn→∞ λ+

n = +∞ and limn→∞ λ−
n = −∞. The

eigenfunctions associated with λ = λ+
n and λ−

n have exactly
n zeros in (a, b). This gives a complete generalization of the
well-known results for the linear case (α = 1).

1. Introduction. In this paper the second order half-linear ordinary
differential equation

(1.1) (p(t)|x′|α−1x′)′ + λq(t)|x|α−1 x = 0, a ≤ t ≤ b,

is considered together with the boundary conditions

(1.2) Ax(a)−A′x′(a) = 0, Bx(b) +B′x′(b) = 0.

In equation (1.1) we assume that α > 0 is a positive constant, p and
q are real-valued continuous functions for a ≤ t ≤ b, and p(t) > 0,
a ≤ t ≤ b, and λ ∈ R is a real parameter. In the boundary conditions
(1.2), A,A′, B and B′ are given real numbers such that A2 + A′2 �= 0
and B2 +B′2 �= 0.
If α = 1, then equation (1.1) reduces to the linear equation

(1.3) (p(t)x′)′ + λq(t)x = 0, a ≤ t ≤ b,
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and the reduced problem is the Sturm-Liouville eigenvalue problem.
This topic is one of the most important subjects in the theory of second
order linear equations. In the special case that q(t) > 0, a ≤ t ≤ b,
very complete treatments can be developed ([7], [9], [16], [17]), and it
is well known that there exists a sequence of real numbers (which are
called eigenvalues) λ0 < λ1 < · · · < λn < · · · with limn→∞ λn = +∞
such that (i) (1.3) (1.2) has a nontrivial solution (which is called
eigenfunction) if and only if λ = λn for some n = 0, 1, 2, . . . ; (ii) the
eigenfunction x = x(t;λn) associated with λ = λn has exactly n zeros
in the open interval (a, b).

Moreover, in the case where q(t) changes signs in (a, b), the following
is known ([9], [16]). Let AA′ ≥ 0, BB′ ≥ 0 and A2 + B2 �= 0.
Then there exists a sequence of positive eigenvalues λ+

0 < λ+
1 <

· · · < λ+
n < · · · with limn→∞ λ+

n = +∞ and a sequence of negative
eigenvalues λ−

0 > λ−
1 > · · · > λ−

n > · · · with limn→∞ λ−
n = −∞

such that (i) (1.3) (1.2) has a nontrivial solution (eigenfunction) if and
only if λ = λ+

n or λ
−
n for some n = 0, 1, 2, . . . ; (ii) the eigenfunctions

x = x(t;λ+
n ) and x(t;λ−

n ) associated with λ = λ+
n and λ−

n have exactly
n zeros in (a, b).

The main purpose of this paper is to extend the above results for (1.3)
in a natural way to the more general equation (1.1). By a solution
x of (1.1) is meant a real-valued function x such that x ∈ C1[a, b],
p|x′|α−1x′ ∈ C1[a, b], and x satisfies (1.1) at every point of [a, b]. A
local solution of (1.1) is similarly defined, and it is known [15] that all
local solutions of (1.1) can be continued on the whole interval [a, b].
Equation (1.1) has the half-linear property in the sense that if x(t) is
a solution of (1.1) then, for any constant c, cx(t) is also a solution of
(1.1). Equation (1.1) always has the trivial solution x(t) ≡ 0 for all
λ ∈ R. As in the linear case, if there is a nontrivial solution x of
(1.1) satisfying (1.2) for a certain value of λ ∈ R, then λ is called an
eigenvalue of the problem (1.1) (1.2), and the solution x is called an
eigenfunction associated with λ.

Qualitative properties of solutions of the half-linear equation (1.1)
were studied first by Mirzov [15] and Elbert [3]. Further analysis
on (1.1) was made by several authors including Del Pino et al. [2],
Elbert [4], [5], Hoshino et al. [8], Kusano et al. [10], [11], [13] and
Li and Yeh [14]. Their study shows that most of the basic results for
the linear equation (1.3) can be completely extended to the half-linear
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equation (1.1).

For eigenvalue problems of the form (1.1) (1.2), a natural extension
of the results for (1.3) (1.2) is given by Elbert [3] and Kusano, Naito
and Tanigawa [12]. However, in [3], [12], the case where q(t) > 0,
a ≤ t ≤ b, is considered. Therefore, in this paper we pay attention
to the case where q(t) may change signs in (a, b) and give a complete
generalization of the results for the Sturm-Liouville eigenvalue problem
(1.3) (1.2).

The main theorem is as follows.

Theorem 1.1. Consider the problem (1.1) (1.2). Let AA′ ≥ 0,
BB′ ≥ 0 and A2 + B2 �= 0, and suppose that q(t) has a positive value
at some point t ∈ [a, b]. Then the totality of the positive eigenvalues of
(1.1) (1.2) is composed of a sequence {λ+

n }∞n=0 such that

λ+
0 < λ+

1 < · · · < λ+
n < · · · , lim

n→∞λ+
n = +∞.

The eigenfunction x = x(t;λ+
n ) associated with λ = λ+

n has exactly n
zeros in (a, b) where n = 0, 1, 2, . . . .

It should be noticed that, in the above theorem, the positive property
of q(t) on the whole interval [a, b] is not assumed.

Equation (1.1) can be rewritten as

(1.4) (p(t)|x′|α−1x′)′ + (−λ)(−q(t))|x|α−1x = 0, a ≤ t ≤ b.

Therefore, we get the next result corresponding to Theorem 1.1.

Theorem 1.2. Consider the problem (1.1) (1.2). Let AA′ ≥ 0,
BB′ ≥ 0 and A2 + B2 �= 0, and suppose that q(t) has a negative value
at some point t ∈ [a, b]. Then the totality of the negative eigenvalues of
(1.1) (1.2) is composed of a sequence {λ−

n }∞n=0 such that

λ−
0 > λ−

1 > · · · > λ−
n > · · · , lim

n→∞ λ−
n = −∞.

The eigenfunction x = x(t;λ−
n ) associated with λ = λ−

n has exactly n
zeros in (a, b) where n = 0, 1, 2, . . . .
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We can show without difficulty that the value λ = 0 is not an
eigenvalue of (1.1) (1.2). Thus Theorems 1.1 and 1.2 yield the following
theorem.

Theorem 1.3. Consider the problem (1.1) (1.2). Let AA′ ≥ 0,
BB′ ≥ 0 and A2 + B2 �= 0, and suppose that q(t) takes both a positive
value and a negative value on [a, b]. Then the totality of eigenvalues of
(1.1) (1.2) consists of two sequences {λ+

n }∞n=0 and {λ−
n }∞n=0 such that

· · · < λ−
n < · · · < λ−

1 < λ−
0 < 0 < λ+

0 < λ+
1 < · · · < λ+

n < · · ·

and
lim

n→∞λ+
n = +∞, lim

n→∞λ−
n = −∞.

The eigenfunctions x = x(t;λ+
n ) and x(t;λ−

n ) associated with λ = λ+
n

and λ−
n have exactly n zeros in (a, b) where n = 0, 1, 2, . . . .

Remark. In Theorems 1.1, 1.2 and 1.3, the eigenvalues of (1.1) (1.2)
are simple, i.e., for each eigenvalue, the associated eigenfunction is
unique up to a multiplicative constant.

For the proof of Theorem 1.1, a variant of the generalized Prüfer
transformation for the half-linear equation (1.1) plays a crucial role.
This transformation involves the generalized sine function and the
generalized cosine function. The definition and the basic properties of
these generalized trigonometric functions are briefly stated in Section 2.

The fundamental theorems (such as the existence, uniqueness and
continuous dependence on parameters of solutions) and the Sturmian
theorems (such as comparison and separation properties concerning the
zeros of solutions) are also important tools in this paper. These are also
formulated in Section 2. The proof of Theorem 1.1 is given in Section 3.

2. Preparatory results. We begin by formulating a fundamen-
tal theorem on existence, uniqueness and continuous dependence on
parameters for solutions of the half-linear equation (1.1).

It is easy to see that x(t) is a solution of (1.1) if and only if

(u1(t), u2(t)) = (x(t), p(t)|x′(t)|α−1x′(t))
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is a solution of the first order system

(2.1)
{
u′

1 = r1(t)|u2|λ1−1u2,

u′
2 = r2(t)|u1|λ2−1u1,

where λ1 = 1/α, λ2 = α, r1(t) = 1/(p(t))1/α and r2(t) = −λq(t). In
this sense, the second order equation (1.1) and the first order system
(2.1) are the same.

Fundamental theorems on the initial value problem for equation (1.1)
or system (2.1) are given in the papers of Mirzov [15] and Elbert [3].
By a result in [15], we have the following theorem.

Lemma 2.1. Let c ∈ [a, b], ξ ∈ R, η ∈ R and λ ∈ R be any given
constants, and consider equation (1.1) under the initial condition

(2.2) x(c) = ξ, x′(c) = η.

Then the solution x(t) = x(t; c, ξ, η, λ) of the initial value problem
(1.1) (2.2) exists on [a, b] and is unique.

Since the initial value problem (1.1) (2.2) has a unique solution, we
find that, for each λ ∈ R, every nontrivial solution of (1.1) has at most
a finite number of zeros in [a, b]. Further we find that, for each λ ∈ R,
the solution of (1.1) which satisfies

Ax(a)−A′x′(a) = 0, respectively Bx(b) +B′x′(b) = 0,

is uniquely determined up to a multiplicative constant.

Applying a standard continuous dependence result (e.g., [1, pp.
18 19]) in the theory of ordinary differential equations, we see that
the solution x(t; c, ξ, η, λ) in Lemma 2.1 is a continuous function of
(t, c, ξ, η, λ) ∈ [a, b] × [a, b] × R × R × R. Further, if a sequence
{(ci, ξi, ηi, λi)} tends to (c, ξ, η, λ) as i → ∞, then the corresponding se-
quence of solutions {x(t; ci, ξi, ηi, λi)} tends to x(t; c, ξ, η, λ) uniformly
for a ≤ t ≤ b as i → ∞.
For the half-linear equation (1.1), the Sturm comparison theorem is
still valid as follows.
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Lemma 2.2. Consider the two equations

(2.3) (p1(t)|x′|α−1x′)′ + q1(t)|x|α−1x = 0, a ≤ t ≤ b,

and

(2.4) (p2(t)|x′|α−1x′)′ + q2(t)|x|α−1x = 0, a ≤ t ≤ b,

where pi(t) and qi(t) are continuous functions on [a, b] and pi(t) > 0,
a ≤ t ≤ b, i = 1, 2. Suppose that

(2.5) p1(t) ≥ p2(t) and q1(t) ≤ q2(t) for a ≤ t ≤ b.

If a nontrivial solution of (2.3) has two zeros t1 and t2, a ≤ t1 < t2 ≤ b,
then every nontrivial solution of (2.4) has at least one zero in [t1, t2].

The proof of Lemma 2.2 is found in [3], [15]. As an immediate
corollary of Lemma 2.2, we get the following result. Suppose that
(2.5) holds, and let x1(t) and x2(t) be nontrivial solutions of (2.3) and
(2.4), respectively. If x1(t) has zeros at t = t1 and t2, then either
x2(t) has a zero in (t1, t2) or x2(t) is a constant multiple of x1(t). A
further corollary is the following extension of the well-known Sturm
separation theorem: the zeros of linearly independent solutions of the
same equation (2.3) separate each other.

Now let us define the generalized trigonometric functions S(τ ), C(τ )
and T (τ ) which generalize the classical trigonometric functions sin τ ,
cos τ and tan τ , respectively. The generalized trigonometric functions
are used to extend in a natural way the notion of the Prüfer transfor-
mation, known for the Sturm-Liouville equation (1.3), to the half-linear
equation (1.1). These generalized functions are introduced by Elbert
[3]. For the properties stated below, see [3].

The generalized sine function S = S(τ ) is defined as the solution of
the specific half-linear equation

(2.6) (|Ṡ|α−1Ṡ)· + α|S|α−1S = 0
(
· = d

dτ

)

satisfying the initial condition

(2.7) S(0) = 0, Ṡ(0) = 1.
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The generalized sine function S(τ ) has the same properties as the
classical sine function sin τ . First of all, it is defined on R and is
periodic with period 2πα, where

(2.8) πα =
2π

α+ 1

/
sin

π

α+ 1
.

Further, S(τ ) is an odd function having zeros at τ = jπα, j ∈ Z; it is
positive on the intervals 2jπα < τ < (2j + 1)πα, j ∈ Z, and negative
on the intervals (2j + 1)πα < τ < 2(j + 1)πα, j ∈ Z.

The generalized cosine function C(τ ) is the derivative Ṡ(τ ) of S(τ ):
C(τ ) = Ṡ(τ ). The C(τ ) is periodic with period 2πα and is an even
function. It has zeros at τ = (j + (1/2))πα, j ∈ Z, and is positive
for (2j − (1/2))πα < τ < (2j + (1/2))πα, j ∈ Z, and negative for
(2j + (1/2))πα < τ < (2j + (3/2))πα, j ∈ Z.

We have

S(τ + πα) = −S(τ ) and C(τ + πα) = −C(τ ) for all τ ∈ R.

Moreover, the generalized Pythagorean theorem holds for S(τ ) and
C(τ ):

(2.9) |S(τ )|α+1 + |C(τ )|α+1 = 1 for all τ.

The generalized tangent function T (τ ) is defined by

(2.10) T (τ ) =
S(τ )
C(τ )

for τ �=
(
j +

1
2

)
πα, j ∈ Z.

It is periodic with period πα and satisfies

(2.11) Ṫ = 1 + |T |α+1 > 0 for τ �=
(
j +

1
2

)
πα, j ∈ Z,

so that T (τ ) is strictly increasing for (j−(1/2))πα < τ < (j+(1/2))πα,
j ∈ Z. We have

limT (τ ) = −∞ as τ →
(
j − 1

2

)
πα + 0,
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and

limT (τ ) = +∞ as τ →
(
j +

1
2

)
πα − 0.

There exists the inverse function T−1(τ ) of T (τ ) which is multivalued,
and the principal value, denoted by T−1

p (τ ), can be taken as

− 1
2
πα < T−1

p (τ ) <
1
2
πα for all τ.

Then, any value T−1(τ ) is expressed as T−1(τ ) = T−1
p (τ ) + jπα for

some j ∈ Z. It is easy to see that T−1(τ ) is strictly increasing for
τ ∈ R and

lim
τ→−∞T−1(τ ) =

(
j − 1

2

)
πα, lim

τ→+∞T−1(τ ) =
(
j +

1
2

)
πα.

3. Proof of the main theorem. In this section we give the proof
of Theorem 1.1. We assume throughout this section that AA′ ≥ 0,
BB′ ≥ 0 and A2+B2 �= 0, and that q(t) takes a positive value at some
point t ∈ [a, b].
For each λ ∈ R, let x(t;λ) be the solution of (1.1) satisfying the
initial condition

(3.1) x(a) = A′, x′(a) = A.

By the underlying hypothesis A2 + A′2 �= 0, this solution x(t;λ) is
nontrivial. Note that x(t;λ) satisfies the first part of the boundary
conditions (1.2):

(3.2) Ax(a)−A′x′(a) = 0.

As mentioned in the preceding section, x(t;λ) exists on [a, b] and is
continuous for (t, λ) ∈ [a, b]×R. In addition, if {λi}∞i=1 tends to λ ∈ R
as i → ∞, then the corresponding sequence of solutions {x(t;λi)} tends
to x(t;λ) uniformly on [a, b] as i → ∞.
It is clear that if x(t;λ) satisfies the second part of the boundary
conditions (1.2):

(3.3) Bx(b) +B′x′(b) = 0
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for some λ ∈ R, then the λ is an eigenvalue and x(t;λ) is an eigenfunc-
tion for the problem (1.1) (1.2).

For λ = 0, x(t; 0) is explicitly given by

(3.4) x(t; 0) = A′ + (p(a))1/αA

∫ t

a

ds

(p(s))1/α
, a ≤ t ≤ b.

Using the conditions on A,A′, B and B′, we easily see that the value
λ = 0 is not an eigenvalue of (1.1) (1.2).

In what follows, we discuss the case λ > 0. For the solution
x(t;λ), λ > 0, we perform the next transformation, which consists in
associating with x(t;λ) the polar functions ρ(t;λ) and θ(t;λ) defined
by

(3.5)
x(t;λ) = ρ(t;λ)S(θ(t;λ)),

(p(t))1/αx′(t;λ) = λ1/aρ(t;λ)C(θ(t;λ)).

Here S(τ ) and C(τ ) are the generalized sine and cosine functions, re-
spectively, which are introduced in Section 2. The transformation (3.5)
is a variant of the generalized Prüfer transformation. Note that (3.5)
is slightly different from the standard generalized Prüfer transforma-
tion, in which the polar functions ρ̃(t;λ) and θ̃(t;λ) are defined by
x(t;λ) = ρ̃(t;λ)S(θ̃(t;λ)), (p(t))1/αx′(t;λ) = ρ̃(t;λ)C(θ̃(t;λ)).

In view of (2.9), we have

ρ(t;λ) =
{∣∣x(t;λ)∣∣α+1 +

(
p(t)
λ

)(α+1)/α∣∣x′(t;λ)
∣∣α+1

}1/(α+1)

.

Therefore, the nontrivial property of x(t;λ) implies

ρ(t;λ) > 0 for a ≤ t ≤ b and λ > 0.

It can be shown that (ρ, θ) = (ρ(t;λ), θ(t;λ)) is determined as the
solution of the system of differential equations

(3.6) ρ′ = ρ

{(
λ

p(t)

)1/α

− q(t)
α

}
|S(θ)|α−1S(θ)C(θ),
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(3.7) θ′ =
(

λ

p(t)

)1/α∣∣C(θ)∣∣α+1 +
q(t)
α

∣∣S(θ)∣∣α+1
,

under the initial condition

(3.8) ρ(a;λ) =
{
|A′|α+1 +

(
p(a)
λ

)(α+1)/α

|A|α+1

}1/(α+1)

,

(3.9) θ(a;λ) = T−1

((
λ

p(a)

)1/α
A′

A

)
,

where T−1 denotes the inverse of the generalized tangent function
T = S/C. We have ρ(a;λ) > 0. Further, since AA′ ≥ 0, we may
assume with no loss of generality that

0 ≤ θ(a;λ) <
πα

2
for the case A �= 0(3.10)

and

θ(a;λ) =
πα

2
for the case A = 0.(3.11)

Observe that θ = θ(t;λ) can be solved independently of ρ = ρ(t;λ) as
the solution of the initial value problem (3.7) (3.9) and that if θ(t;λ)
is known, then ρ(t;λ) can be explicitly determined as the initial value
problem (3.6) (3.8):

ρ(t;λ) = ρ(a;λ) exp
[ ∫ t

a

{(
λ

p(s)

)1/α

− q(s)
α

}

· ∣∣S(θ(s;λ))∣∣α−1
S(θ(s;λ))C(θ(s;λ)) ds

]
.

Thus it is quite important to discuss the initial value problem
(3.7) (3.9). We denote by f(t, θ, λ) the righthand side of (3.7):

f(t, θ, λ) =
(

λ

p(t)

)1/α∣∣C(θ)∣∣α+1 +
q(t)
α

∣∣S(θ)∣∣α+1
.

It is clear that, for each fixed λ > 0, f(t, θ, λ) is bounded on a ≤ t ≤ b
and −∞ < θ < +∞. In view of (2.9), f(t, θ, λ) is rewritten as

f(t, θ, λ) =
(

λ

p(t)

)1/α

+
{
−

(
λ

p(t)

)1/α

+
q(t)
α

} ∣∣S(θ)∣∣α+1
.
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Since |S(θ)|α+1 has a bounded continuous derivative (α+ 1)|S(θ)|α−1

S(θ)C(θ) on −∞ < θ < +∞, we see that, for each λ > 0, f(t, θ, λ)
satisfies a Lipschitz condition with respect to θ on a ≤ t ≤ b and
−∞ < θ < +∞. Consequently we conclude that, for each λ > 0,
the problem (3.7) (3.9) has a unique solution θ = θ(t;λ) on a ≤
t ≤ b. By a standard continuous dependence result in the theory
of ordinary differential equations, θ(t;λ) is a continuous function of
(t, λ) ∈ [a, b]× (0,∞).
It is easy to see that λ > 0 is an eigenvalue of (1.1) (1.2) if and only
if λ satisfies

(3.12) θ(b;λ) = T−1

(
−

(
λ

p(b)

)1/α
B′

B

)
+ (n+ 1)πα

for some n ∈ Z. Here, by virtue of BB′ ≥ 0, we assume without loss
of generality that

− πα

2
< T−1

(
−

(
λ

p(b)

)1/α
B′

B

)
≤ 0

for the case B �= 0, and

T−1

(
−

(
λ

p(b)

)1/α
B′

B

)
= − πα

2

for the case B = 0.

Lemma 3.1. The function θ(b;λ) is strictly increasing for λ ∈
(0,∞).

Proof. As before, let us denote by f(t, θ, λ) the righthand side of
(3.7). Then f(t, θ, λ) satisfies a Lipschitz condition with respect to θ
on a ≤ t ≤ b and −∞ < θ < +∞. Clearly, f(t, θ, λ) is a nondecreasing
function of λ ∈ (0,∞) and, since AA′ ≥ 0, the initial value θ(a;λ)
given by (3.9) is also nondecreasing for λ ∈ (0,∞). Then a standard
comparison theorem for the first order scalar differential equations
implies that θ(t;λ) is a nondecreasing function of λ ∈ (0,∞) for each
fixed t ∈ [a, b].
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Let 0 < λ < µ be fixed. Then θ(t;λ) ≤ θ(t;µ) for t ∈ [a, b]. Assume
that θ(t;λ) ≡ θ(t;µ) for all t ∈ (a, b). Then θ′(t;λ) ≡ θ′(t;µ), and
so we have f(t, θ(t;λ), λ) ≡ f(t, θ(t;µ), µ) from which it follows that
C(θ(t;λ)) ≡ C(θ(t;µ)) ≡ 0. This implies that θ(t;λ) ≡ (m+ (1/2))πα

for some integer m ∈ Z and hence, by equation (3.7), q(t) ≡ 0 for all
t ∈ (a, b). This is a contradiction to the assumption that q(t) > 0 for
some t ∈ [a, b]. Therefore we have

θ(c;λ) < θ(c;µ) for some c ∈ (a, b).

Then, applying a standard comparison theorem again, we conclude that
θ(b;λ) < θ(b;µ). The proof of Lemma 3.1 is complete.

Now we claim that x(t;λ) has no zeros in the interval (a, b] for all
sufficiently small λ > 0. As stated before, x(t;λ) → x(t; 0) as λ → 0
uniformly on [a, b]. We note that x(t;λ) satisfies

x(t;λ) = A′ +
∫ t

a

∣∣∣∣p(a)p(s)

∣∣A∣∣α−1
A− λ

p(s)
I(s;λ)

∣∣∣∣
(1/α)−1

·
{
p(a)
p(s)

∣∣A∣∣α−1
A− λ

p(s)
I(s;λ)

}
ds

for a ≤ t ≤ b, where

I(s;λ) =
∫ s

a

q(r)
∣∣x(r;λ)∣∣α−1

x(r;λ) dr, a ≤ s ≤ b.

Then it is easy to find that if A = 0 or AA′ > 0, then x(t;λ) has no
zeros in the closed interval [a, b] for all sufficiently small λ > 0 and that,
if A �= 0 and A′ = 0, then x(t;λ) has no zeros in the interval (a, b] for
all sufficiently small λ > 0. Further, since

p(t)
∣∣x′(t;λ)

∣∣α−1
x′(t;λ)

= p(a)
∣∣A∣∣α−1

A− λ

∫ t

a

q(s)
∣∣x(s;λ)∣∣α−1

x(s;λ) ds

for a ≤ t ≤ b, we see that if A �= 0, then x′(t;λ) has no zeros in [a, b]
for all sufficiently small λ > 0.
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Next we claim that the number of zeros of x(t;λ) in [a, b] can be made
as large as possible if λ > 0 is chosen sufficiently large. To this end, we
consider the equation

(|x′|α−1x′)′ + αµα+1
∣∣x∣∣α−1

x = 0,

where µ > 0 is a constant. Clearly, S(µt) is a solution of the above
equation and has zeros at t = jπα/µ, j ∈ Z, where S(τ ) is the
generalized sine function introduced in Section 2. By the assumption
that q(t) is positive at some t ∈ [a, b], there is an interval [a′, b′] ⊂ [a, b]
such that q(t) > 0 for all t ∈ [a′, b′]. Let k ∈ N be any given positive
integer, and take µ > 0 so that S(µt) has at least k+1 zeros in [a′, b′].
Let p∗ > 0 and λ∗ > 0 be numbers such that

p∗ = max
[a′,b′]

p(t) and λ∗ min
[a′,b′]

q(t) = αp∗µα+1.

Then, comparing equation (1.1) with λ > λ∗ and the equation

(p∗|x′|α−1x′)′ + αp∗µα+1|x|α−1x = 0, a′ ≤ t ≤ b′,

we conclude by Lemma 2.2 that all solutions of (1.1) with λ > λ∗ have
at least k zeros in [a′, b′], hence in [a, b]. In particular, x(t;λ) with
λ > λ∗ has at least k zeros in [a, b]. Since k is an arbitrary positive
integer, this shows that the number of zeros of x(t;λ) in [a, b] can be
made as large as possible if λ > 0 is chosen sufficiently large.

Since ρ(t;λ) > 0, a ≤ t ≤ b, λ > 0, it follows from (3.5) that x(t;λ)
has a zero at t = c ∈ [a, b] if and only if there exists j ∈ Z such
that θ(c;λ) = jπα. Moreover, if θ(c;λ) = jπα, c ∈ [a, b], j ∈ Z, then
by (3.7), θ′(c;λ) = (λ/p(c))1/α > 0. Therefore, we easily see that if
θ(c;λ) = jπα, c ∈ [a, b], j ∈ Z, then θ(t;λ) > jπα for c < t ≤ b.

Thus the above results about the number of zeros of x(t;λ) may be
restated in the following way:

Lemma 3.2. (i) For all sufficiently small λ > 0,

{
0 < θ(b;λ) <

πa

2
in the case A �= 0 and

0 < θ(b;λ) < πa in the case A = 0.
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(ii) lim θ(b;λ) = +∞ as λ → +∞.

Proof of Theorem 1.1. We are now ready to prove Theorem 1.1.
We seek λ > 0 satisfying (3.12) for some n ∈ Z. The lefthand side
θ(b;λ) of (3.12) is a continuous function of λ ∈ (0,∞), and it is strictly
increasing for λ ∈ (0,∞) by Lemma 3.1, and moreover it has the
following properties by Lemma 3.2:



0 ≤ limλ→0+ θ(b;λ) <

πα

2
in the case A �= 0 and

0 ≤ limλ→0+ θ(b;λ) < πα in the case A = 0,

and
lim

λ→+∞
θ(b;λ) = +∞.

On the other hand, by virtue of BB′ ≥ 0, the righthand side of (3.12) is
a nonincreasing function of λ ∈ (0,∞) for each n ∈ Z. More precisely,
in the case BB′ > 0, it is strictly decreasing and varies from (n+1)πα

to (n+(1/2))πα as λ varies from 0 to +∞. In the case B′ = 0, it is the
constant function (n+ 1)πα; and in the case B = 0, it is the constant
function (n+ (1/2))πα.

From what was observed in the above, we find that, for each n =
0, 1, 2, . . . , there exists a unique λ+

n > 0 such that

(3.13) θ(b;λ+
n ) = T−1

(
−

(
λ+

n

p(b)

)1/α
B′

B

)
+ (n+ 1)πα.

Then, each λ+
n is an eigenvalue of (1.1) (1.2), and the associated

eigenfunction x(t;λ+
n ) has exactly n zeros in the open interval (a, b)

where n = 0, 1, 2, . . . . It is clear that

λ+
0 < λ+

1 < · · · < λ+
n < · · · , lim

n→∞λ+
n = +∞.

The proof of Theorem 1.1 is complete.

Theorems 1.2 and 1.3 can be easily derived from Theorem 1.1.
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