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UPPER AND LOWER SOLUTIONS METHOD
FOR EVEN ORDER TWO POINT
BOUNDARY VALUE PROBLEMS

STANIS�LAW SȨDZIWY

ABSTRACT. The note shows the existence of solutions to
an even order boundary value problem for ordinary differen-
tial equation with boundary conditions involving even order
derivatives in the case when upper and lower solutions of the
problem are known.

1. We will be concerned here with the existence of solutions to the
following boundary value problem (BVP for short)

u(2k) = f(t, u, u′′, . . . , u(2k−2)),(1.1)

u(2j−2)(0) = 0, u(2j−2)(1) = 0, j = 1, . . . , k,(1.2)

where f : [0, 1]×Rk → R is continuous, in the case when upper/lower
solutions corresponding to the problem are assumed to exist.

In contrast to a broad literature dealing with upper and lower solution
methods applied to second order BVP’s (see, e.g., [5] for the extensive
literature on periodic BVP’s), the number of papers devoted to BVP for
the higher order differential equations is rather small. For more recent
publications, see, e.g., [6], [4], [7] considering two point fourth order
BVP’s or paper [1] studying periodic problems. Further references can
be found in the quoted papers.

In [1], [4], [7] the existence of solutions to BVP’s is shown by finding
two monotone sequences of functions converging uniformly to solutions
of BVP’s considered. The approach used in [6] is different, the fourth
order differential equations as well as the systems of two second order
equations together with various kinds of nonlinear boundary conditions
are replaced by BVP’s for quasilinear equations.
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The present note is motivated by the result of Ma [4], who considers
the scalar BVP of the form (1.1), (1.2) with k = 2, and the work of
Tsai [7] dealing with the fourth order system (a(t)u′′)′′ = f(t, u, u′′)
subject to conditions u(0) = p0, u′(0) = p1, u(1) = q0, u′(1) = −q1.
Basic for the note is the observation that, in the case of boundary

conditions involving even order derivatives only, BVP’s for even order
differential equations can be replaced by the equivalent two point
problems for the second order systems. This observation not only
simplifies the argument but it permits us also to extend results obtained
in [4], [7].

2. Set J = [0, 1]. Let Rp be the p-dimensional Euclidean space with
Euclidean norm | · |. In Rp introduce the partial order: x ≤ y, x = (xi),
y = (yi) ⇔ xi ≤ yi for i = 1, . . . , p. Denote by Cp(J) the space of p
times continuously differentiable real functions defined on J equipped
with the norm ‖u‖p =

∑p
j=0 sup{|u(j)(t)| : t ∈ J}.

Function α, respectively β, ∈ C2k(J) is said to be an upper, respec-
tively lower, solution to BVP (1.1), (1.2), provided

(−1)k(α(2k) − f(t, α, α′′, . . . , α(2k−2))) ≥ 0,(2.1)

(−1)j−1α(2j−2)(0) ≥ 0, (−1)j−1α(2j−2)(1) ≥ 0,(2.2)
j = 1, . . . , k,

respectively,

(−1)k(β(2k) − f(t, β, β′′, . . . , β(2k−2))) ≤ 0,(2.3)

(−1)j−1β(2j−2)(0) ≤ 0, (−1)j−1β(2j−2)(1) ≤ 0,(2.4)
j = 1, . . . , k.

3. The main result of the paper is the following theorem.

Theorem 1. Assume f : J × Rk → R is continuous, and let
f be mixed monotonous (cf. [7], [4]), for fixed t ∈ J , i.e., let
(−1)kf(t, y1, y2, . . . , yk) be nondecreasing in variables yj for j odd and
nonincreasing with respect to yj with j even.



TWO POINT BOUNDARY VALUE PROBLEMS 1431

If α, β are respectively an upper and lower solution satisfying for
t ∈ J inequalities

(3.1) (−1)j−1(α(2j−2)(t)− β(2j−2)(t)) ≥ 0, j = 1, . . . , k,

then BVP (1.1), (1.2) has at least one solution u(t) satisfying for
j = 1, . . . , k inequalities

(3.2)
(−1)j−1(α(2j−2)(t)− u(2j−2)(t)) ≥ 0,

(−1)j−1(u(2j−2)(t)− β(2j−2)(t)) ≥ 0.

In addition, if BVP (1.1), (1.2) is not uniquely solvable, then it has
(maximal/minimal) solutions ξ(t), η(t) with the property that, for any
solution u(t) to BVP (1.1), (1.2) satisfying (3.2), the following inequal-
ities for j = 1, . . . , k hold

(3.3)
(−1)j−1(ξ(2j−2)(t)− u(2j−2)(t)) ≥ 0,

(−1)j−1(u(2j−2)(t)− η(2j−2)(t)) ≥ 0.

Solutions ξ(t), η(t) can be obtained as limits of uniformly convergent
in J sequences {ξn(t)}, {ηn(t)}, where ξ0(t) = α(t), η0(t) = β(t),
functions ξn(t), ηn(t), n=1, 2, . . . , are defined by ξ(2k)

n =f(t, ξn−1, ξ
′′
n−1,

. . . , ξ
(2k−2)
n−1 ), η(2k)

n =f(t, ηn−1, η
′′
n−1, . . . , η

(2k−2)
n−1 ) and satisfy (1.2).

The next theorem, being a direct corollary of Theorem 1, extends the
result of Tsai to the case of the following BVP

(a(t)u′′)′′ = f(t, u, u′′),(3.4)
u(0) = u′′(0) = 0, u(1) = u′′(1) = 0.(3.5)

Theorem 2. Suppose a ∈ C2(J) is positive and let f : J×R2p → Rp

be continuous. Suppose that there exist functions α, β ∈ (C4(J))p (the
Cartesian product of p copies of C4(J)) satisfying

(3.6) (a(t)α′′)′′ ≥ f(t, α, α′′), (a(t)β′′)′′ ≤ f(t, β, β′′) for t ∈ J

and inequalities (2.2), (2.4) with k = 2.
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If, for a fixed t ∈ J function, f(t, y, z) is nondecreasing with respect
to y and nonincreasing with respect to z, then there exists at least one
solution u(t) of BVP (3.4), (3.15) satisfying (3.2).

In the case of the lack of uniqueness, BVP (3.4), (3.5) has maximal
and minimal solutions (cf. (3.3)) being the uniform limits of approxi-
mate solutions to problem (3.4), (3.5).

4. Proof of Theorem 1. Set y=(y1, y2, . . . , yk)=(u, u′′, . . . , u(2k−2))
and replace BVP (1.1), (1.2) by the equivalent BVP for a second order
system

y′′ = F (t, y),(4.1)
y(0) = 0, y(1) = 0,(4.2)

with F : J ×Rk → Rk defined by F (t, y) = (y2, y3, . . . , yk, f(t, y1, . . . ,
yk)).

Let X = C2k−2(J) × C2k−4(J) × · · · × C0(J) with norm |y| =∑k
j=1 ‖yj‖2(j−1) and define T : X → X by

(4.3) T [y](t) =
∫ 1

0

G(t, s)F (s, y(s)) ds,

where

G(t, s) =
{−s(1− t) 0 ≤ s ≤ t,
−t(1− s) t ≤ s ≤ 1.

A direct computation shows that y(t) satisfies (4.1), (4.2) if and only if

y(t) =
∫ 1

0

G(t, s)F (s, y(s)) ds,

i.e., y(t) is a fixed point of the map T . Since T is completely continuous
(it takes bounded sets into relatively compact sets), by the Schauder
fixed point theorem, to prove the existence of solution to BVP (4.1),
(4.2) it remains to construct a bounded, closed and convex set K ⊂ X
satisfying T [K] ⊂ K (cf. e.g., [3, Chapter XII, Corollary 0.1]).

Let Q be the k × k diagonal matrix with entries (−1)j−1, j =
1, 2, . . . , k on the main diagonal.
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By the definition of F and the mixed monotony of its last component,
we conclude that, for y, v ∈ X and t ∈ J ,

(4.4) Qy(t) ≥ Qv(t) implies that QT [y](t) ≥ QT [v](t).

In fact, from Q(y − v) ≥ 0, it follows that yj − vj ≥ 0 for j odd and
yj − vj ≤ 0 for j even, which by the mixed monotony of f implies
that (−1)k(f(t, y(t))− f(t, v(t))) ≥ 0 and consequently, the inequality
Q(F (t, y)(t)− F (t, v(t))) ≤ 0. Since G(t, s) is negative, from (4.3) we
get Q(T [y](t)− T [v](t)) =

∫ 1

0
G(t, s)Q(F (s, y(s))− F (s, v(s))) ds ≥ 0.

Set α0(t) = (α(t), α′′(t), . . . , α(2k−2)(t)), β0(t) = (β(t), β′′(t), . . . ,
β(2k−2)(t)). From (2.1), (2.3) and the definition of F , it follows
that α0(t), β0(t) are upper/lower solutions of BVP (4.1), (4.2), i.e.,
Qα0(0) ≥ 0, Qα0(1) ≥ 0, Qβ0(0) ≤ 0, Qβ0(1) ≤ 0 and (−1)k(α′′

0 (t) −
F (t, α0(t))) ≥ 0, (−1)k(β′′

0 (t) − F (t, β0(t)) ≤ 0 for t ∈ J . By the last
inequalities, Q(α′′

0(t) − F (t, α0(t))) ≤ 0, Q(F (t, β0(t)) − β′′
0 (t)) ≥ 0.

Recalling that α0(t) = U(t) +
∫ 1

0
G(t, s)α′′

0(s) ds, β0(t) = L(t) +∫ 1

0
G(t, s)β′′

0 (s) ds, where U ′′(t) = L′′(t) = 0, L(0) = β0(0), L(1) =
β0(1), U(0) = α0(0), U(1) = α0(1), and hence QU(t) ≥ 0, QL(t) ≤ 0,
from the inequalities above we get

(4.5) Qα0(t) ≥ Qα1(t), Qβ0(t) ≤ Qβ1(t), t ∈ J,

where α1 = T [α0], β1 = T [β0].

Define now the set K : K = {y ∈ X : Qβ0(t) ≤ Qy(t) ≤ Qα0(t), t ∈
J}. Obviously, K is closed and convex. To see that K is mapped into
itself by T , let y ∈ K; then Qβ0 ≤ Qy ≤ Qα0 and, by (4.4) and (4.5),
we get

Qβ0 ≤ Qβ1 ≤ QT [y] ≤ Qα1 ≤ Qα0,

implying that T [K] ⊂ K, which completes the proof of the first
conclusion of Theorem 1.

To prove the remaining one, define sequences {αn}, {βn} by αn =
T [αn−1], βn = T [βn−1], n = 1, 2, . . . . Applying (4.4) to inequalities
Qα0 ≥ Qα1, Qβ0 ≤ Qβ1, we conclude that sequences {Qαn} and
{Qβn} are monotone. Moreover, they are bounded. Since T is
completely continuous, there exist limits (in X): limn→∞Qαn = Qξ,
limn→∞Qβn = Qη. Obviously, ξ, η are solutions of BVP (4.1), (4.2)
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and if y ∈ K is another solution, then Qβ0 ≤ Qy ≤ Qα0 and
consequently, by (4.4), Qβn ≤ Qy ≤ Qαn, implying that Qη ≤ y ≤ Qξ
and showing that ξ, η are extremal. The proof is complete.

Proof of Theorem 2. BVP (3.4), (3.5) is equivalent to BVP (4.1),
(4.2), where y = (y1, y2) = (u, u′′a(t)), F (t, y) = (y2/a(t), g(t, y1, y2)),
g(t, y1, y2) = f(t, y1, y2/a(t)). Since a is positive, g preserves the mixed
monotonicity property of f .

Let I be the p × p unit matrix, and let Q be the 2p × 2p diagonal
block matrix with blocks I and −I on the main diagonal. As in the
previous proof, introduce the space X = (C2(J))p × (C0(J))p with the
norm |y| = ‖y1‖2 + ‖y1‖0 and define T : X → X by (4.3). Setting
α0(t) = (α(t), α′′(t)a(t)), β0(t) = (β(t), β′′(t)a(t)), by (3.6) and the
argument similar to the one used above, it can be verified that functions
α0(t), β0(t) are upper/lower solutions to BVP (4.1), (4.2). Now, the
proof of Theorem 1 can be repeated to obtain the conclusions stated in
Theorem 2.
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