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MINIMAL PRESENTATIONS OF FULL
SUBSEMIGROUPS OF N2

J.C. ROSALES AND P.A. GARCÍA-SÁNCHEZ

ABSTRACT. We show that the cardinality of a minimal
presentation for a two-dimensional full affine subsemigroup of

N2 minimally generated by p elements is
(

p−1
2

)
.

A subsemigroup S of N2 is full if S = G(S) ∩ N2, where G(S)
denotes the subgroup of Z2 spanned by S. In this paper we are going to
assume that S is a full subsemigroup of N2 such that rank (G(S)) = 2.
(The case when rank (G(S)) ≤ 1 has no interest, because under this
assumption S = {(0, 0)} or S ∼= N.) Note that if a, b ∈ S and
a − b ∈ N2, then a − b ∈ G(S) ∩ N2 = S. As a consequence, if
M = {(a1, b1), . . . , (ap, bp)} is the set of minimal elements of S \ {0}
with respect to the ordering a ≤ b if and only if b − a ∈ N2, then
S is minimally generated by M . Furthermore, we can assume that
the elements in M are ordered so that a1 < a2 < · · · < ap and
b1 > b2 > · · · > bp.

We define the map

ϕ : Np −→ S

ϕ(λ1, . . . , λp) =
p∑

i=1

λi(ai, bi)

and denote its kernel congruence by σ. Clearly, S ∼= Np/σ. We say
that ρ is a minimal system of generators for σ if ρ generates σ and ρ
has minimal cardinality among the generating systems of σ. It can be
shown that #ρ ≥ p− 2 (see [5]).

Given s ∈ S \{0}, we define the graph Gs as the graph whose vertices
are V (Gs) = Vs = {(ai, bi) ∈M | s− (ai, bi) ∈ S} and whose edges are
E(Gs) = Es = {[(ai, bi), (aj , bj)] | s− ((ai, bi) + (aj , bj)) ∈ S, 1 ≤ i, j ≤
p}.
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It can be shown (see [7] and [2]) that a minimal system of generators,
ρ, of σ can be constructed as follows. For any s ∈ S, define ρs in the
following way

1. If Gs is connected, then ρs = ∅.

2. If Gs is not connected and G1
s, . . . , G

t
s are the connected compo-

nents of Gs, then choose a vertex (aji
, bji

) ∈ V (Gi
s) and an element

αs
i = (λi

1, . . . , λ
i
p) ∈ Np such that ϕ(αs

i ) = s and λi
ji
= 0; define

ρs = {(αs
2, α

s
1), . . . , (α

s
t , α

s
1)}.

Take ρ = ∪s∈Sρs.

Our purpose is to count the number of elements belonging to ρ
under the assumption that S is full and two-dimensional. In terms
of semigroup rings, the problem translates to the following. We
can construct the semigroup ring K[S] associated to S as the set
⊕s∈SKys, where addition is defined componentwise and multiplication
is determined by the rule ysys′

= ys+s′
. The morphism ϕ now can be

viewed as the ring homomorphism defined as

ϕ : K[x1, . . . , xp] −→ K[S]

ϕ(xi) = y(ai,bi).

The kernel IS of this morphism has a tight relationship with σ. As a
matter of fact, the cardinality of a minimal system of generators for IS
equals the cardinality of a minimal system of generators for σ (see [5]
for more details).

Note also that K[S] can be viewed as a subring of K[s, t] us-
ing the injective map y(a,b) �→ satb. In this way, K[S] becomes
K[sa1tb1 , . . . , saptbp ] ∼= K[x1, . . . , xp]/IS , which is the ring of coor-
dinates of the curve CS = {(sa1tb1 , . . . , saptbp) | t, s ∈ K}. Since S is
cancellative and torsion free, K[S] is an integral domain (see [3]) and
therefore IS is a prime ideal. As a consequence of this fact, IS and
its radical are the same ideal and, therefore, our problem translates to
the problem of the minimum number of implicit equations required to
define CS .

We are going to show that the number of elements in a minimal
system of generators for σ, and therefore for IS , is

(
p−1
2

)
and therefore

depends exclusively on the number of generators of S. This contrasts
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with what happens for numerical semigroups, where it can be shown
that no bound for the cardinality of minimal systems of generators can
be found in terms of the number of generators (see [1]).

In order to prove that #ρ =
(
p−1
2

)
, we need some technical lemmas

which will tell us which elements s in S fulfill the assumption that Gs

is not connected, and how many connected components these graphs
can have. We start with a result that tells us how the sets of vertices
of the graphs Gs are.

Lemma 1. Given s ∈ s, there exist i, j ∈ N such that

Vs = {(ai+1, bi+1), . . . , (ai+j , bi+j)}.

Proof. Let us assume that s = (x, y). Take {a1, . . . , at} = {ai | ai ≤
x}. Since (x, y) ∈ S, there must exist an element (ak, bk) ≤ (x, y)
and therefore 1 ≤ k ≤ t. Hence, bt ≤ bk ≤ y. Take i such
that bt < bt−1 < · · · < bi+1 ≤ y < bi < · · · < b1. Clearly,
{(ai+1, bi+1), . . . , (at, bt)} = {(ak, bk) ∈ M | (ai, bi) ≤ (x, y)} = Vs.

The following result, at first glance, seems to have no connection with
our problem. But we will see later that with it we can use a property
of semigroups fulfilling the notion that their semigroup ring is Cohen-
Macaulay. A subsemigroup T of N2 is normal if T = G(T ) ∩ LQ+(T ),
where LQ+(A) = {∑n

i=1 qiai | n ∈ N, ai ∈ A, qi ∈ Q+}. The use of the
word “normal” to refer to this type of semigroups comes from the fact
that T is normal if and only if K[T ] is normal. Furthermore, Hochster
shows in [6] that if K[T ] is normal, then K[T ] is Cohen-Macaulay. We
will say, under this setting, that T is Cohen-Macaulay.

Lemma 2. Let i = j ∈ {1, . . . , p} and S = S∩LQ+({(ai, bi), (aj , bj)}).
Then S is a normal subsemigroup of N2.

Proof. Since S is always a subset of G(S) ∩ LQ+(S), it is enough
to show that G(S) ∩ LQ+(S) ⊆ S. Take g ∈ G(S) ∩ LQ+(S). By
the definition of S, it is clear that G(S) ⊆ G(S), and therefore
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g ∈ G(S) ∩ LQ+(S) ⊆ G(S) ∩ N2 = S. From the hypothesis
that g ∈ LQ+(S) ⊆ LQ+({(ai, bi), (aj , bj)}), we get that g ∈ S ∩
LQ+({(ai, bi), (aj , bj)}) = S.

Note that since S normal, it is Cohen-Macaulay. The fact that a
semigroup is Cohen-Macaulay has been characterized in several papers.
It can be shown that since S is Cohen-Macaulay, if s − (ai, bi) and
s − (aj , bj) ∈ S then s − ((ai, bi) + (aj , bj)) ∈ S, because (ai, bi) and
(aj , bj) are the extremal rays of S (see Theorem 1.1 in [8] for a proof of
this fact, which is a straightforward consequence of a characterization
appearing in [4]). This idea yields the following two results which
enables us to know how s must be in order to ensure that Gs is not
connected.

Lemma 3. If s − (ai, bi) and s − (aj , bj), with i < j, are in
〈(ai, bi), . . . , (aj , bj)〉, then s− ((ai, bi) + (aj , bj)) ∈ S.

Proof. Put S = S ∩ LQ+({(ai, bi), (aj, bj)}. We already know that
S is Cohen-Macaulay with extremal rays (ai, bi) and (aj , bj). Since
(ai, bi), (ai+1, bi+1), . . . , (aj , bj) ∈ S ∩ LQ+({(ai, bi), (aj , bj)}) = S, if
s− (ai, bi) and s− (aj , bj) are in 〈(ai, bi), . . . , (aj , bj)〉 then s− (ai, bi)
and s−(aj , bj) must belong to S. Hence s−((ai, bi)+(aj , bj)) ∈ S ⊆ S.

Lemma 4. Let s ∈ S. Then Gs is not connected if and only if
s = (ai, bi) + (aj , bj) with |i− j| ≥ 2.

Proof. Let us assume that Gs is not connected. Take i = min{k ∈
{1, . . . , p} | (ak, bk) ∈ Vs} and j = max{k ∈ {1, . . . , p} | (ak, bk) ∈ Vs}.
Since (ak, bk) ∈ Vs if and only if s − (ak, bk) ∈ S, and this holds if
and only if s− (ak, bk) ∈ N2, then Vs = {(ai, bi), . . . , (aj , bj)}. Hence,
s − (ai, bi) and s − (aj , bj) are in 〈(ai, bi), . . . , (aj , bj)〉, which, by the
previous lemma, implies that s = (ai, bi)+ (aj , bj)+ s′ for some s′ ∈ S.
Let us show that s′ must be equal to zero. If this is not the case,
then there exist (ak, bk) ∈ M such that s′ − (ak, bk) ∈ S. Note that
this implies that s − (ak, bk) ∈ S and therefore (ak, bk) ∈ Vs. Besides,
(ai, bi) + (aj , bj) − (al, bl) ∈ N2 for all l ∈ {i, . . . , j} and therefore
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(ai, bi)+(aj , bj)−(al, bl) ∈ S. This means that s−((ak, bk)+(al, bl)) =
(ai + bi)+(aj − bj)− (al, bl)+s′− (ak, bk) ∈ S for all l ∈ {i, . . . , j} and
therefore Gs is connected, a contradiction. Hence s′ must be equal to
zero, and consequently s = (ai, bi) + (aj , bj). Observe that |i− j| must
be greater than one, because otherwise s = (ai, bi) + (ai+1, bi+1) and
Vs = {(ai, bi), (ai+1, bi+1)} which would imply that Gs is connected.

Now, let us suppose that s = (ai, bi) + (aj , bj) for some i < j such
that j−i ≥ 2. Clearly, (ai, bi)+(aj , bj)−(ai+1, bi+1) ∈ G(S)∩N2 = S,
and therefore (ai, bi) + (aj , bj) = (ai+1, bi+1) + s for some s ∈ S. Since
{(ai, bi), (aj , bj)} is the set of vertices of a connected component of Gs,
the last equality implies that Gs has another connected component
containing (ai+1, bi+1).

Lemma 5. Let s be an element of S such that Gs is nonconnected.
Then Gs has only one connected component whose vertices are not of
the form {(ai, bi), (aj, bj)}, with |i− j| ≥ 2.

Proof. Since Gs is not connected, we already know that there exists
i < j ∈ {1, . . . , p} such that Vs = {(ai, bi), . . . , (aj , bj)} and j − i ≥ 2.
We also know that {(ai, bi), (aj, bj)} is the set of vertices of a connected
component of Gs.

If Gs only has another connected component, then it must be
{(ai+1, bi+1), . . . (aj−1, bj−1)} and this one is not of the form {(ak, bk),
(al, bl)}, with |k − l| ≥ 2.

Suppose Gs has more than two connected components. Since s −
(ai+1, bi+1) and s − (aj−1, bj−1) are both in S and (ai+1, bi+1) is not
connected with (ai, bi), we get that s− (ai+1, bi+1) and s− (aj−1, bj−1)
are both in 〈(ai+1, bi+1), . . . , (aj−1, bj−1)〉. Using Lemma 3, we get that
s − ((ai+1, bi+1) + (aj−1, bj−1)) ∈ S, and therefore s = ((ai+1, bi+1) +
(aj−1, bj−1)) + s′ with s′ ∈ S. Since there are at least two connected
components in Gs different from those with vertices {(ai, bi), (aj, bj)},
we can deduce, using similar reasoning to that used in the previous
lemma, that s′ = 0 and therefore s = (ai+1, bi+1) + (aj−1, bj−1) =
(ai, bi) + (aj , bj). Repeating this process, we obtain that there is
exactly one connected component in Gs which is not of the form
{(ak, bk), (al, bl)} with |k − l| ≥ 2.
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With this result, we do not need to count how many connected com-
ponents each graph has in order to know the cardinality of ρ, because
this result ensures that there is exactly one connected component in
each nonconnected graph with a special shape, and we can choose this
special connected component to be G1

s in the construction of ρs. Note
that we get a new element in ρs for each connected component of Gs

different fromG1
s, and these connected components have their set of ver-

tices of the form {(ai, bi), (aj, bj)} with |i−j| ≥ 2. Hence, we only have
to count how many expressions there are of the form (ai, bi) + (aj , bj)
with |i − j| ≥ 2. Clearly we get

(
p−1
2

)
, and this proves the following

result.

Theorem 6. Let S be a full subsemigroup of N2 minimally gener-
ated by {(a1, b1), . . . , (ap, bp)} such that rank (G(S)) = 2. Then the
cardinality of a minimal presentation for S is

(
p−1
2

)
.
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