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THE CARTESIAN CLOSED TOPOLOGICAL
HULL OF THE CATEGORY OF
APPROACH UNIFORM SPACES

MARK NAUWELAERTS

ABSTRACT. The category AUnif of approach uniform
spaces and uniform contractions properly combines uniform
spaces and extended pseudo-metric spaces but (like Unif)
lacks convenience, such as cartesian closedness. This paper
therefore considers its cartesian closed topological hull, which
is first described as a subcategory of SAULim, the category
of semi-approach uniform limit spaces and uniform contrac-
tions. This hull is then also given a description inside the
topological universe hull of AUnif and is shown to be a rea-
sonable generalization of the corresponding hull of Unif. Fur-
thermore, some referencing notes are provided with respect
to similar results that can be obtained when starting from
qAUnif (where symmetry assumptions are omitted).

1. Introduction. It is often desirable and useful for a (concrete)
category to have extra properties in addition to just being nicely
topological, such as being cartesian closed topological (CCT). However,
many categories are not cartesian closed, which has inspired a theory of
CCT extensions of such (failing) categories, where the least such CCT
extension of a given concrete category, the CCT hull of a category, is
especially interesting.

For instance, in [2], Adámek and Reiterman constructed the CCT
hull of Unif, the category of uniform spaces (and uniformly continu-
ous maps), and in [3], they described the CCT hull of the category
(p)MET(∞) of (extended pseudo-)metric spaces (and nonexpansive
maps). Later the author added to these results by describing the CCT
hull of the category qUnif of quasi-uniform spaces (and uniformly
continuous maps) [16] (and thereby also adding to an alternative char-
acterization of the CCT hull of Unif by Alderton and Schwarz [4])
and by describing the CCT hull of the category pqMET∞ of extended
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pseudo-quasi-metric spaces (and nonexpansive maps) [14], where quasi
refers in both cases to the omitting of symmetry assumptions.

The categories of extended pseudo-(quasi-)metric spaces and (quasi-)
uniform spaces were combined by Lowen and Windels into the category
(q)AUnif of (quasi-)approach uniform spaces (and uniform contrac-
tions) [11], [24], which allows a quantified view on (quasi-)uniform
spaces, such as on uniform properties [12] or on completion [13].

It is the intention of this paper to describe the CCT hull of AUnif
as a subcategory of SAULim, the category of semi-approach uniform
limit spaces (and uniform contractions) and (necessarily) even as a sub-
category of the topological universe (= topological quasitopos) hull of
AUnif which (as shown in [18]) is its final hull in PsAULim, the
category of pseudo-approach uniform limit spaces (and uniform con-
tractions), whose objects are essentially described by ultrafilters [17],
[15]. In particular, the argumentation is constructed such that most of
it can be immediately used to obtain analogous results regarding the
CCT hull of qAUnif , where notes are provided to point out differences
as they occur (and where the full details in such cases can be found
in [19]). Besides that it will be shown that this hull is a reasonable
generalization of the hull of the (nonquantified) Unif; it may also be
interesting to note that the descriptions here have also been inspired by
those obtained in the case of p(q)MET∞ [3], [14] and are reminiscent
of what is described in [15].

2. Preliminaries. A topological construct will stand for a concrete
category over Set which is a well-fibered topological c-construct in the
sense of [1], i.e., each structured source has an initial lift, every set
carries only a set of structures and each constant map (or empty map)
between two objects is a morphism. Also recall that a construct A is
CCT (cartesian closed topological) if A is a topological construct which
has canonical function spaces, i.e., for every pair (A,B) of A-objects
the set hom (A,B) can be supplied with the structure of an A-object,
denoted by [A,B], such that

(a) the evaluation map ev : A× [A,B]→ B is an A-morphism.

(b) for each A-object C and A-morphism f : A × C → B, the map
f∗ : C → [A,B] defined by f∗(c)(a) = f(a, c) is an A-morphism
(f∗ is called the transpose of f). Note that, given f : A × C → B,
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the transpose f∗ : C → [A,B] is the map which makes the following
diagram commute:

A× [A,B] w
ev B

A× C

u

1×f∗

[

[

[

[
[]

f

In general, categorical concepts and terminology used in this paper (and
possibly not recalled here), in particular regarding categorical topology,
can be found in [1] and [20]. Furthermore, a functor shall always be
assumed to be concrete (unless this is clearly not the case from its
definition) and subcategories to be full and isomorphism-closed. The
CCT hull of a construct A (shortly denoted by CCTH(A)) (if it exists)
is defined as the smallest CCT construct B in which A is finally dense
(see [8]), where A is finally dense in B if each B-object is a final lift
of some structured sink in A. Also from [8], recall that given a CCT
construct C in which A is finally dense, the CCT hull of A is the full
subconstruct of C determined by

CCTH(A) :={C∈C | there exists an initial source (fi : C→ [Ai, Bi])i∈I
where ∀ i ∈ I : Ai, Bi ∈ A}.

In short, the CCT hull of A is the initial hull in C of the power-
objects of A-objects. A more recent survey of such properties and
hull concepts can be found in [7] and [22]. First, some necessities
regarding (approach) uniform spaces and generalizations thereof need
to be recalled.

Given a setX, F(X) stands for the set of all filters onX; if F ∈ F(X),
then U(F) stands for the set of all ultrafilters on X finer than F . In
particular, U(X) := U({X}) stands for the set of all ultrafilters on X.
Given A ⊂ X, we recall that stack A := {B ⊂ X | A ⊂ B} and if A
consists of a single point a, we also denote ȧ := stack a := stackA. If
F ∈ F(X2), then F−1 denotes the filter generated by {F−1 | F ∈ F}
where, given F ⊂ X2, it holds that F−1 := {(y, x) | (x, y) ∈ F}. If
F ,G ∈ F(X2), then F◦G (the composite of F and G) is defined to be the
filter on X2 generated by the filterbasis {F ◦G | F ∈ F , G ∈ G}, where
F ◦G := {(x, z) ∈ X2 | ∃y ∈ X : (x, y) ∈ G and (y, z) ∈ F}. Besides the
“normal” (cartesian) product of sets, maps, filters, etc., we also define
the following special product of filters. If F ∈ F(X2) and G ∈ F(Y 2),
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then F ⊗ G denotes the filter generated by {F ⊗ G | F ∈ F , G ∈ G}
where, given F ⊂ X2 and G ⊂ Y 2, the set F ⊗ G is given by
F ⊗ G := {((x, y), (x′, y′)) | (x, x′) ∈ F, (y, y′) ∈ G}. Also, given a set
X, ∆X denotes the diagonal of X2, that is, the set {(x, x) | x ∈ X}.
Given F ⊂ X, we let

Sq(X,F ) := {F ∈ F(X2) | F ⊂ stack∆F and F × F ∈ F}

and

S(X,F ) := {F ∈ Sq(X,F ) | F−1 = F},

elements of which are called quasi-semi-uniformities (on F ) and semi-
uniformities (on F ), respectively. Also let Sq(X) := ∪F⊂XSq(X,F )
and S(X) := ∪F⊂XS(X,F ) denote the collection of quasi-semi-
uniformities (in X) and semi-uniformities (in X), respectively, and
observe that the set F ⊂ X such that F ∈ Sq(X,F ) is uniquely deter-
mined by F ∈ Sq(X), i.e., Sq(X,F ) ∩ Sq(X,G) = ∅ whenever F �= G.
Indeed, if F ∈ Sq(X,F ), G ∈ Sq(X,G) and F ⊂ G, then it follows that
∆G ⊂ F × F , hence G ⊂ F . Consequently, Sq(X,F ) ∩ Sq(X,G) �= ∅

implies that F = G.

An approach uniform space is a pair (X, (Uε)ε∈R+) where (Uε)ε∈R+ is
a uniform tower on X, meaning a family of filters (Uε)ε∈R+ on X ×X
such that

(UT1) for all ε ∈ R+ and for all U ∈ Uε: ∆X ⊂ U .
(UT2) For all ε ∈ R+ and for all U ∈ Uε: U−1 ∈ Uε.
(UT3) For all ε and for all ε′ ∈ R+: Uε ◦ Uε′ ⊃ Uε+ε′ .
(UT4) For all ε ∈ R+: Uε = ∪α>εUα.
Thus, a uniform tower is a stack of semi-uniformities satisfying (UT3)

and (UT4).

Using the prefix quasi in the sequel will indicate that (UT2) need
not necessarily by satisfied, while semi indicates that (UT3) need not
necessarily be satisfied.

A map f : (X, (Uε)ε∈R+) → (Y, (U ′
ε)ε∈R+) between quasi-semi-

approach uniform spaces is called a uniform contraction if it fulfills
the property that for all ε ∈ R+:

f : (X,Uε) −→ (Y,U ′
ε) is uniformly continuous (i.e., U ′

ε ⊂ (f×f)(Uε)).
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Quasi-semi-approach uniform spaces together with uniform contrac-
tions form a category, denoted by qsAUnif , having qAUnif , sAUnif
and AUnif as subcategories, which are described and studied in [24]
(see also [11]).

In [24], [17], it is shown that (q)AUnif is a subconstruct of
(q)SAULim, the category of (quasi)-semi-approach uniform limit
spaces, the objects of which are described by means of a concept of a
(quasi-)semi-approach uniform limit structure (on X), which is a map
η : F(X2)→ [0,∞] satisfying
(SAUCS1) For all x ∈ X: η(ẋ× ẋ) = 0.

(SAUCS2) For all F ,G ∈ F(X2): F ⊂ G ⇒ η(G) ≤ η(F).
(SAUCS3) For all F ∈ F(X2): η(F) = η(F−1).

(SAULS) For all F ,G ∈ F(X2): η(F ∩ G) ≤ η(F) ∨ η(G).
The pair (X, η) is a semi-approach uniform limit space and again (but
now in this context), the prefix quasi indicates that (SAUCS3) need
not necessarily be satisfied, which yields, in particular, a quasi-semi-
approach uniform limit space.

A map f : (X, ηX) → (Y, ηY ) between quasi-semi-approach uniform
limit spaces (X, ηX) and (Y, ηY ) is said to be a uniform contraction
provided that

∀F ∈ F(X2) : ηY ((f × f)(F)) ≤ ηX(F).

Quasi-semi-approach uniform limit spaces and uniform contractions
form the objects and morphisms of a topological construct, denoted
qSAULim. More information on this category (and various of its
subcategories) can be found in [17] and [24], while only properties
that are required in the sequel are recalled here.

A (quasi)-approach uniform limit is a (quasi-)semi-approach uniform
limit that additionally satisfies the property

(AULS) For all F ,G ∈ F(X2) : η(F ◦ G) ≤ η(F) + η(G)
and a (quasi-)(semi-)approach uniform limit η : F(X2) → [0,∞] is
called principal (and (X, η) a principal (quasi-)(semi-)approach uni-
form limit space) if it additionally satisfies the condition

(PrSAULS) For any family (Fj)j∈J ∈
∏
j∈J F(X2) : η (∩j∈JFj)

≤ supj∈J η(Fj),
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which ensures it to be equivalent to a (quasi-)(semi-)uniform tower
in the sense of the following result, that allows us to conclude that
(q)(s)AUnif ↪→ (q)SAULim.

Proposition 2.1 [24]. (1) Given a set X and a principal (quasi-)
(semi-)approach uniform limit structure η on X,

U ′
ε := U(η)ε :=

⋂
F∈F(X2)
η(F)≤ε

F , ∀ ε ∈ R+

defines a (quasi-)(semi-)uniform tower (U(η)ε)ε∈R+ (on X), and vice
versa, if (Uε)ε∈R+ is a (quasi-)(semi-)uniform tower on X, then

η′ := η((Uε)ε∈R+)(F) := min{α ∈ R+ | Uα ⊂ F} ∀F ∈ F(X2)

is a principal (quasi-)(semi-) approach uniform limit structure on X,
such that

η((U ′
ε)ε∈R+) = η and (U(η′)ε)ε∈R+ = (Uε)ε∈R+ .

(2) If (X, ηX) and (Y, ηY ) are principal quasi-semi-approach uniform
limit spaces, then the following are equivalent:

(a) f : (X, ηX)→ (Y, ηY ) is a uniform contraction.

(b) f : (X, (U(ηX)ε)ε∈R+) → (Y, (U(ηY )ε)ε∈R+) is a uniform con-
traction.

To obtain some results (elegantly), there are some other concepts
regarding approach uniform spaces (and variations thereof) to be in-
troduced from [24] such as a characterization by means of uniform
gauges (see also [23]).

To this end, first recall that an extended pseudo-(quasi-)metric d (on
X) is a map d : X ×X → [0,∞] satisfying
(1) For all x ∈ X : d(x, x) = 0.

(2) Symmetry: for all x, y ∈ X : d(x, y) = d(y, x).

(3) Triangle inequality: for all x, y, z ∈ X : d(x, z) ≤ d(x, y)+d(y, z).
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(and the prefix quasi again means that symmetry need not necessarily
be satisfied). A (quasi-)uniform gauge on a set X is then a collection D
of extended pseudo-(quasi-)metrics (on X) which is closed under finite
suprema and which is saturated, in the sense that D contains every
extended pseudo-(quasi-)metric d such that

∀ ε > 0, ∀N <∞, ∃e ∈ D : d ∧N ≤ e+ ε.

Before proceeding, a matter of notation; in the sequel, for any γ :
Z → [0,∞] and α ∈ [0,∞], let {γ < α} := {z ∈ Z | γ(z) < α} and
{γ ≤ α} := {z ∈ Z | γ(z) ≤ α}.

Proposition 2.2 [24]. (1) Given a set X and a (quasi-)uniform
tower (Uε)ε∈R+ on X, D′ := D((Uε)ε∈R+) defined by

D((Uε)ε∈R+) := {d | d is extended pseudo-(quasi-)metric and
∀ ε ∈ R+, ∀α > ε : {d < α} ∈ Uε}

is a (quasi-)uniform gauge on X, and vice versa, if D is a (quasi-)
uniform gauge on X, then (U ′

ε)ε∈R+ := Tut(D) defined by

U ′
ε := 〈

{
{d < α} | d ∈ D, α > ε

}
〉

is a (quasi-)uniform tower on X, such that

Tut(D′) := (Uε)ε∈R+ and D((U ′
ε)ε∈R+) = D.

(2) If (X, (UXε )ε∈R+) and (Y, (UYε )ε∈R+) are (quasi-)approach uni-
form spaces, then the following are equivalent:

(a) f : (X, (UXε )ε∈R+)→ (Y, (UYε )ε∈R+) is a uniform contraction.

(b) For all d ∈ D((UYε )ε∈R+) : d ◦ (f × f) ∈ D((UXε )ε∈R+).

Next, some facts need to be recalled regarding convenient extensions
of (q)AUnif .

Proposition 2.3 [17]. qSAULim is a cartesian closed topological
construct. Moreover, given a source (fi : X → (Xi, ηi))i∈I , the initial
lift ηX on X is given by

ηX(F) := sup
i∈I

ηi((fi × fi)(F)), F ∈ F(X2).
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Also, given quasi-semi-approach uniform limit spaces (X, ηX) and
(Y, ηY ), the function space (Z, η) := [(X, ηX), (Y, ηY )] (in qSAULim)
is given by

η(Ψ) := inf {α ∈ [0,∞] | ∀F ∈ F(X2) : ηY (Ψ(F)) ≤ ηX(F) ∨ α},
Ψ ∈ F(Z2))

= sup {ηY (Ψ(F)) | F ∈ F(X2) and ηY (Ψ(F)) > ηX(F)},

(where Ψ(F) := (ev×ev)(F⊗Ψ) and ev : X×hom ((X, ηX), (Y, ηY ))→
Y ). The following relations hold (where r(c) : A→ B means that A is
a bi(co)reflective subconstruct of B):

qAUnif w
r qsAUnif w

r qSAULim

AUnif

u

r c

w
r sAUnif

u

r c

w
r SAULim

u

r c

.

In particular, all indicated subconstructs are topological constructs and
the bireflectors of the bottom row are obtained as restrictions of the
respective bireflector of the top row, such as the (q)AUnif-bireflector

R : (q)SAULim −→ (q)AUnif : (X, η) �−→ (X, (q)AUnif(η)).

Furthermore, the embedding of SAULim in qSAULim not only pre-
serves initial sources, but also function spaces (hence, function spaces
in SAULim are obtained by just forming them in qSAULim).

It should now be noted that, henceforth, we will concentrate on the
symmetric (non-quasi) situation, but in such a way that the interested
reader is invited to consider the applicability of the sequel to obtain
results in a quasi situation. Whenever necessary, he will be guided with
appropriate notes to point out some occurring differences, whereas full
details can be found in [19].

As mentioned earlier, in order to describe the CCT hull of a construct,
one should start by having some finally dense CCT extension available.
The following results, shown in [17], indicate such an appropriate
candidate in the present setting.
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Definition 2.4. Let saug be the full subconstruct of SAULim con-
sisting of semi-approach uniformly generated spaces, i.e., semi-approach
uniform limit spaces (X, η) satisfying

(saug) ∀F ∈ F(X2), ∃H ∈ S(X) : (H ⊂ F and η(H) = η(F)),

i.e.,

∀F ∈ F(X2) : η(F) = min
H∈S(X)
H⊂F

η(H)

(saug∆) ∀H ⊂ X : η(stack∆H) <∞⇒ η(stack∆H) = 0.

Proposition 2.5. (1) saug is the final hull of AUnif in SAULim.

(2) saug is a cartesian closed topological construct. Moreover, given
a source (fi : X → (Xi, ηi))i∈I (in saug), the initial lift ηX on X is
given by

ηX(H) := sup
i∈I

ηi((fi × fi)(H)), H ∈ Sq(X).

Given (X, ηX), (Y, ηY ) ∈ saug, the function space (Z, η) := [(X, ηX),
(Y, ηY )] (in saug) is the saug-bicoreflection of the SAULim-function
space and is given by

η(Ψ) :=∞ if ∃H ∈ Sq(X) : ηY ((stack∆ψ)(H)) > ηX(H),
Ψ ∈ Sq(Z,ψ),

otherwise

η(Ψ) := inf {α ∈ [0,∞] | ∀H ∈ Sq(X) : ηY (Ψ(H)) ≤ ηX(H) ∨ α}
= sup {ηY (Ψ(H)) | H ∈ Sq(X) and ηY (Ψ(H)) > ηX(H)}.

It is also shown in [17] that SAULim has various relations to several
“nonquantified,” classical constructs in the following sense.

First recall (from [5], [21]), that a semi-uniform limit space (X,L)
consists of a set X and L ⊂ F(X2) satisfying
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(SUC1) for all x ∈ X : ẋ× ẋ ∈ L.

(SUC2) For all F ∈ L, for all G ∈ F(X2) : F ⊂ G ⇒ G ∈ L.

(SUC3) For all F ∈ F(X2) : F ∈ L⇒ F−1 ∈ L.

(SUL) For all F ,G ∈ L : F ∩ G ∈ L,

and that f : (X,LX) → (Y,LY ) is called uniformly continuous if and
only if F ∈ LX implies that (f × f)(F) ∈ LY .

Clearly, the category SULim of semi-uniform limit spaces and uni-
formly continuous maps is concretely isomorphic to the full subcon-
struct of SAULim consisting of objects (X, η) such that η(F(X2)) ⊂
{0,∞} (by, for instance, associating (X, η−1(0)) to (X, η)).

Proposition 2.6. The following diagram holds:

AUnif w
r sAUnif w

r saug w
c SAULim

Unif

u

r c

w
r sUnif

u

r c

w
r sug

u

r c

w
c SULim

u

r c

where all constructs on the bottom level are obtained as the restriction
of the corresponding top level construct to SULim, yielding several
“non-quantified,” classical constructs. (For further background see also
[6], [9], [10], [5] and [21]), and where all bicoreflectors from the top
level to the respective bottom level are restrictions of the bicoreflector

C : SAULim −→ SULim : (X, η) �−→ (X, η0)

where

η0 : F(X2) −→ [0,∞] : F �−→
{
0 if η(F) = 0,
∞ otherwise.

Definition 2.7. The right-order topology Tr on [0,∞] is the topology
whose open sets are { ]a,∞] | a ∈ [0,∞]} ∪ {[0,∞]}, hence for any
A ⊂ [0,∞], clr(A) = [0, supA].

3. The CCT hull of AUnif.
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Definition 3.1. Let X be a set and E ⊂ X2 such that ∆X ⊂ E.
Define a Čech closure operator E(−), called E-enlargement in X2, by

E(−) : P(X2) −→ P(X2) : A �−→ E(A) := E ◦A ◦ E.

Since it holds for any A ⊂ B ⊂ X2 that E(A) ⊂ E(B), it follows
that {E(F ) | F ∈ F} is a filterbasis whenever F ∈ F(X2). The filter
generated by it will be denoted E(F) and is called the E-closure of F .
Also recall the following concept (for instance, used in [3]) which has

been inspiring in defining the foregoing E-enlargement in X2.

Definition 3.2. Let X be a set and E ⊂ X2 such that ∆X ⊂ E.
Define the Čech closure operator E(−), called E-enlargement in X, by

E(−) : P(X) −→ P(X) : A �−→ E(A) := {x ∈X | ∃a ∈ A : (x, a) ∈ E}.

There is the following connection between these E-enlargements.

Proposition 3.3. Let ∆X ⊂ E ⊂ X × X be symmetric (i.e.,
E−1 = E). Then H ∈ Sq(X,H) implies that E(H) ∈ Sq(X,E(H)).

Proof. First observe that as E is symmetric, it follows that ∆E(H) ⊂
E(∆H) (since, for any x ∈ E(H), there exists h ∈ H such that
(x, h) ∈ E, (h, h) ∈ ∆H and (h, x) ∈ E) and E(H×H) = E(H)×E(H).
Indeed, if (x, y) ∈ E(H×H), then there exists (h, h′) ∈ H×H such that
(x, h) ∈ E and (h′, y) ∈ E; hence (x, y) ∈ E(H) × E(H). Conversely,
if (x, y) ∈ E(H) × E(H), then there exists (h, h′) ∈ H ×H such that
(x, h) ∈ E and (y, h′) ∈ E = E−1; hence (x, y) ∈ E(H ×H).
Since H × H ∈ H, it already follows that E(H) × E(H) ∈ E(H).

To show that E(H) ⊂ stack∆E(H), let G ∈ H, then ∆H ⊂ G; hence
∆E(H) ⊂ E(∆H) ⊂ E(G).

Definition 3.4. Let U : SAULim → Unif be the composition
of the AUnif-bireflection followed by the Unif-bicoreflection (which,
by Proposition 2.6, is just the restriction of the SULim-bicoreflection
in SAULim). Also, given (X, η) ∈ SAULim, let U(η) (by abuse of
notation) also denote the resulting uniformity (on X) of U(X, η).



1384 M. NAUWELAERTS

Definition 3.5. Let (X, η) ∈ SAULim, E ∈ U(η), H ∈ Sq(X) and
W ∈ U(H) and define

VE,W(H) := {G ∈ Sq(X) | E(G) ⊂ W}

and

VE(H) := {G ∈ Sq(X) | E(G) ⊂ H}

and
cluX : P(Sq(X)) −→ P(Sq(X)) : Θ �−→ cluX(Θ),

where

cluX(Θ) := {H ∈ Sq(X) | ∀E ∈ U(η), ∀W ∈ U(H) : VE,W(H)∩Θ �= ∅}

and
clX : P(Sq(X)) −→ P(Sq(X)) : Θ �−→ clX(Θ),

where

clX(Θ) := {H ∈ Sq(X) | ∀E ∈ U(η) : VE(H) ∩Θ �= ∅}.

Next, define

clu,aX : P(Sq(X)) −→ P(Sq(X)) : Θ �−→ clu,aX (Θ)

where

clu,aX :=
{
H ∈ Sq(X,H) | H ∈ cluX(Θ) and

stack∆H ∈ clX({stack∆G | η(stack∆G) = 0})
}
.

The following result is most useful in handling (in the present setting)
the immer elusive (and/or illusive) ultrafilters.

Lemma 3.6. If F ∈ F(X) and Ψ ⊂ F(X), then the following are
equivalent:

(1) For all W ∈ U(F), there exists G ∈ Ψ : G ⊂ W.

(2) For any family (σ(G))G∈Ψ such that σ(G) ∈ G, G ∈ Ψ, there exists
a finite set Ψ′ ⊂ Ψ such that ∪G∈Ψ′σ(G) ∈ F .
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Proof. 1⇒ 2. Let (σ(G))G∈Ψ be a family such that σ(G) ∈ G, G ∈ Ψ.
Suppose the conclusion does not hold, then it follows that the family
F ∪ {X \ σ(G) | G ∈ Ψ} has the finite intersection property and is
therefore contained in some ultrafilter W ∈ U(F). By (1), there exists
G ∈ Ψ such that G ⊂ W . This implies that both σ(G) ∈ G ⊂ W and
X \ σ(G) ∈ W , which is a contradiction.

2⇒ 1. Suppose (1) does not hold. Then there exists someW ∈ U(F)
such that for all G ∈ Ψ : G �⊂ W , which implies that for all G ∈ Ψ there
exists σ(G) ∈ G : σ(G) /∈ W(∗). Applying (2) on the family (σ(G))G∈Ψ

yields a finite set Ψ′ ⊂ Ψ such that ∪G∈Ψ′σ(G) ∈ F . As F ⊂ W and
W is an ultrafilter, there is some G ∈ Ψ′ : σ(G) ∈ W which contradicts
(∗).

Although they will actually not be needed in the sequel, let us
nevertheless consider some properties of the “closures” cl and clu.

Proposition 3.7. Let (X, η) ∈ saug. Then

(1) for all Θ ⊂ Sq(X) : Θ ⊂ cl(u)
X (Θ).

(2) For all Θ, Ψ ⊂ Sq(X) : Θ ⊂ Ψ⇒ cl(u)
X (Θ) ⊂ cl(u)

X (Ψ).

(3) For all Θ ⊂ Sq(X) : cl
(u)
X (cl(u)

X (Θ)) = cl(u)
X (Θ).

(4) For all Θ, Ψ ⊂ Sq(X) : clX(Θ ∪Ψ) = clX(Θ) ∪ clX(Ψ).

Proof. (1) and (2) are easily verified.

As for (3), the inclusion, ⊃, clearly holds. Conversely, let H ∈
clX(clX(Θ)) and let E ∈ U(η). Then there exists G ∈ clX(Θ) such
that E(G) ⊂ H, which in turn provides us with G′ ∈ Θ such that
E(G′) ⊂ G. Consequently, E2(G′) = E(E(G′)) ⊂ H, which shows the
required (as {E2 | E ∈ U(η)} is a basis for the uniformity U(η)).
Now let H ∈ cluX(cluX(Θ)) and let E ∈ U(η) and W ∈ U(H). Then

there exists G ∈ cluX(Θ) such that E(G) ⊂ W . It follows that there
exists V ∈ U(G) such that E(V) ⊂ W . Indeed, assume otherwise; then
for any V ∈ U(G), there exists GV ∈ V such that E(GV) /∈ W . Letting
Ψ := U(G) and F := G, then (1) of the foregoing lemma is satisfied (by
construction), consequently (2) of that lemma implies that there exist
V1, . . . ,Vn such that GV1 ∪· · ·∪GVn

∈ G. Hence, E(GV1 ∪· · ·∪GVn
) ∈
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W . As W is an ultrafilter, it must be that E(GVi
) ∈ W for some

1 ≤ i ≤ n, which is a contradiction. Let V ∈ U(G) now be such
that E(V) ⊂ W . Then it follows from G ∈ cluX(Θ) that there exists
G′ ∈ Θ such that E(G′) ⊂ V . Consequently, E2(G′) = E(E(G′)) ⊂ W ,
which again shows the required (as {E2 | E ∈ U(η)} is a basis for the
uniformity U(η)).

(4) Again, the inclusion, ⊃, is clear. Conversely, assume that H /∈
clX(Θ) ∪ clX(Ψ). Then there exist EΘ, EΨ ∈ U(η) such that for
all G ∈ Θ : EΘ(G) �⊂ H and for all G ∈ Ψ : EΨ(G) �⊂ H. Let
E := EΘ ∩ EΨ ∈ U(η). Then for all G ∈ Θ : EΘ(G) ⊂ E(G) and for all
G ∈ Ψ: EΨ(G) ⊂ E(G). Consequently, for all G ∈ Θ ∪ Ψ : E(G) �⊂ H,
which shows that H /∈ clX(Θ ∪Ψ).

Proposition 3.8. Let (X, η) ∈ saug. For any Θ ⊂ Sq(X), let

Θ∆ := {stack∆H1∪···∪Hn
| ∃H1, . . . ,Hn∈ Θ : Hi∈ S(X,Hi), Hi ⊂X};

then the following hold:

(1) H∈cluX(Θ)∩Sq(X,H), H⊂X, implies that stack∆H ∈clX(Θ∆).

(2) H∈clX(Θ)∩Sq(X,H), H⊂X, implies that stack∆H ∈clX(Θ∆).

(3) For any 0 ≤ K <∞:

H ∈ clu,aX ({η ≤ K} ∩ S(q)(X)})⇐⇒ H ∈ cluX({η ≤ K} ∩ S(q)(X)}).

Proof. (1) To show that stack∆H ∈ clX(Θ∆), let E ∈ U(η), and it
can be assumed that E is symmetric (without loss of generality in this
situation). Since H ∈ cluX(Θ), it holds for any W ∈ U(H) that there
exists GW ∈ Θ ∩ Sq(X,GW) such that E(GW) ⊂ W . In particular,
it follows from Proposition 3.3 that E(GW) × E(GW) ∈ W . Letting
F := H and Ψ := U(H) satisfies (by definition) (1) of Lemma 3.6; hence
application of (2) of this lemma to the family (E(GW)×E(GW))W∈Ψ

leads to
n ∈ N0

and

GW1 , . . . ,GWn
∈Θ : (E(GW1)×E(GW1))∪· · ·∪(E(GWn

)×E(GWn
))∈H.
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Clearly, this implies that

H ⊂ E(GW1) ∪ · · · ∪E(GWn
) = E(GW1 ∪ · · ·GWn

),

hence, by Proposition 3.3,

E(stack∆GW1∪···∪GWn
) ⊂ stack∆E(GW1∪···∪GWn ) ⊂ stack∆H .

Since GW1 , . . . ,GWn
∈ Θ, this shows that stack∆H ∈ clX(Θ∆).

(2) This follows immediately from (1) and the fact that clX(Θ) ⊂
cluX(Θ). The implication 3,⇒ is clear.

3,⇐. Let Θ := {η ≤ K} ∩ S(q)(X). Then it follows from K < ∞
and (saug∆) that Θ∆ ⊂ {stack∆G | η(stack∆G) = 0}. Hence, by
(1), H ∈ cluX(Θ) implies that stack∆H ∈ clX(Θ∆) ⊂ clX({stack∆G |
η(stack∆G) = 0}) (where H ∈ Sq(X,H), H ⊂ X), which combined
with H ∈ cluX({η ≤ K} ∩ S(q)(X)) leads to H ∈ clu,aX ({η ≤ K} ∩
S(q)(X)).

Note. The foregoing result does not hold in a quasi setting (as might
be expected); however, the following one does, albeit with a different
argumentation.

Proposition 3.9. Let (X, η) ∈ saug and H ⊂ X. Then the
following are equivalent:

(1) stack∆H ∈ clX({stack∆G | η(stack∆G) = 0}).
(2) stack∆H ∈ clX({H ∈ Sq(X) | η(H) = 0}).
(3) stack∆H ∈ ∩K>0clX({H ∈ Sq(X) | η(H) ≤ K}).
(4) stack∆H ∈ cluX({stack∆G | η(stack∆G) = 0}).
(5) stack∆H ∈ cluX({H ∈ Sq(X) | η(H) = 0}).
(6) stack∆H ∈ ∩K>0cluX({H ∈ Sq(X) | η(H) ≤ K}).
(7) For all E ∈ U(η), there exist G ⊂ X : η(stack∆G) = 0 and

H ⊂ (E ∩E−1)(G).

Proof. Clearly, 1 ⇒ 2, 2 ⇒ 3, 4 ⇒ 5 and 5 ⇒ 6. Since also 1 ⇒ 4
and 3⇒ 6, it suffices to show that 6⇒ 1, 7⇒ 1 and 1⇒ 7.
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6 ⇒ 1. Letting Θ := {H ∈ Sq(X) | η(H) ≤ K} (where
∞ > K > 0), it follows from (saug∆) that Θ∆ ⊂ {stack∆G |
η(stack∆G) = 0}. Hence, the foregoing proposition implies that
stack∆H ∈ clX({stack∆G | η(stack∆G) = 0}).

7 ⇒ 1. Let E ∈ U(η). Then it follows from (7) that there exists
G ⊂ X such that η(stack∆G) = 0 and H ⊂ (E ∩ E−1(G), hence

E(stack∆G) ⊂ (E ∩ E−1)(stack∆G) (as E ∩ E−1 ⊂ E),
⊂ stack∆(E∩E−1)(G) (by Proposition 3.3),

⊂ stack∆H (as H ⊂ (E ∩E−1)(G)),

which shows that stack∆H ∈ clX({stack∆G | η(stack∆G) = 0}).

1⇒ 7. Let E ∈ U(η). Then there exists a symmetric E′ ∈ U(η) such
that E′ ⊂ E and for which it follows from (1) that there exists G ⊂ X
such that η(stack∆G) = 0 and E′(stack∆G) ⊂ stack∆H . Hence, by
Proposition 3.3, H ⊂ E′(G) ⊂ (E ∩E−1)(G).

Proposition 3.10. Let (X, η) ∈ SAULim and H ∈ Sq(X). Then
the following hold for any 0 ≤ K ≤ ∞.

(1) H ∈ cluX({η ≤ K} ∩ Sq(X))⇔ H∩H−1 ∈ cluX({η ≤ K} ∩ S(X)).

(2) H ∈ clX({η ≤ K} ∩ Sq(X))⇔ H∩H−1 ∈ clX({η ≤ K} ∩ S(X)).

Proof. The implications 1,⇐ and 2,⇐ are easily verified.

1,⇒. Let E ∈ U(η). Hence, as before, it can be assumed that
E is symmetric. Also let W ∈ U(H ∩ H−1). Hence, either W ∈
U(H) or W ∈ U(H−1), and in the latter case, W−1 ∈ U(H). As
H ∈ cluX({η ≤ K} ∩ Sq(X)), there exists G ∈ Sq(X) such that
η(G) ≤ K and E(G ∩ G−1) ⊂ E(G) ⊂ W (in the first case) or
E(G ∩ G−1) ⊂ E(G) ⊂ W−1 (in the latter case). In either case, it also
holds that η(G ∩ G−1) ≤ K (as (X, η) ∈ SAULim), G ∩ G−1 ∈ S(X)
and E(G ∩G−1)−1 = E(G ∩G−1) (since E and G ∩G−1 are symmetric).
Consequently, in either case, E(G ∩ G−1) ⊂ W , which shows that
H ∩H−1 ∈ cluX({η ≤ K} ∩ S(X)).

2,⇒. Let E ∈ U(η) (and again assume that E is symmetric).
As H ∈ clX({η ≤ K} ∩ Sq(X)), there exists G ∈ Sq(X) such that
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η(G) ≤ K and E(G ∩ G−1) ⊂ E(G) ⊂ H. Since it again holds that
η(G ∩ G−1) ≤ K (as (X, η) ∈ SAULim), G ∩ G−1 ∈ S(X) and
E(G ∩ G−1)−1 = E(G ∩ G−1), it follows that E(G ∩ G−1) ⊂ H ∩ H−1,
which shows that H∩H−1 ∈ clX({η ≤ K} ∩ S(X)).

Proposition 3.11. Let (X, η) ∈ saug. Then the following are
equivalent:

(1) η : (Sq(X), cl
u,a
X )→ ([0,∞], Tr) is continuous.

(2) η : (S(X), clu,aX )→ ([0,∞], Tr) is continuous.

(3) η : (Sq(X), cluX)→ ([0,∞], Tr) is continuous.

(4) η : (S(X), cluX)→ ([0,∞], Tr) is continuous.

Proof. 1⇔ 3 and 2⇔ 4 follow immediately from Proposition 3.8 (3).
Clearly 3⇒ 4 holds.

As for 4⇒ 3, let H ∈ cluX({η ≤ K}∩Sq(X)). Hence, by the previous
proposition, H∩H−1 ∈ cluX({η ≤ K}∩S(X)). It then follows from (3)
that η(H∩H−1) ≤ K; consequently, η(H) ≤ η(H ∩H−1) ≤ K.

Note. As might again be expected, the foregoing equivalences do not
hold in a quasi setting, in which only the first property is of importance,
which is in fact the one that will be primarily used in the sequel.

Definition 3.12. Let EpiAUnif be the full subconstruct of saug
whose objects satisfy one of the foregoing equivalent conditions.

Now we are in a position to state the following claim.

Theorem 3.13. EpiAUnif is the cartesian closed topological hull
of AUnif.

Before proceeding to show this in several steps, let it be noted that
the (perhaps not so apparent) relation and position with respect to the
topological universe (TU) hull of AUnif shall be considered in the next
section.
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Step 1. It needs to be shown that AUnif ⊂ EpiAUnif .

Proposition 3.14. AUnif is a subconstruct of EpiAUnif .

Proof. Let (X, η) = (X, (Uε)ε∈R+) ∈ AUnif , and let H ∈ clu,aX (Θ) ⊂
cluX(Θ), where Θ := {η ≤ K} ∩ Sq(X), 0 ≤ K < ∞. To show
that η(H) ≤ K, i.e., UK ⊂ H (by Proposition 2.1), let E ∈ UK
and W ∈ U(H). By property (UT3) of a uniform tower, there exist
E0 ∈ U0 and EK ∈ UK such that E0 ◦ EK ◦ E0 ⊂ E. It then follows
from H ∈ cluX(Θ) that there exists G ∈ Θ such that E0(G) ⊂ W .
As η(G) ≤ K, it holds that UK ⊂ G, hence EK ∈ G; consequently,
E0(EK) ⊂ E ∈ W . Since this is the case for any W ∈ U(H), it follows
that E ∈ H which shows that UK ⊂ H.

Step 2. Next we show thatEpiAUnif is a cartesian closed topological
construct.

The following general observation about ultrafilters will be useful.

Lemma 3.15. Let X,Y and Z be sets.

(1) Let f : X → Y be a map. If F ∈ F(X) and W ∈ U(f(F)), then
there exists a V ∈ U(F) such that f(V) =W.

(2) Let g : X × Y → Z be a map. If F ∈ F(X ×X), G ∈ F(Y × Y )
and W ∈ U((g × g), F ⊗ G)), then there exists a Z ∈ U(G) such that
(g × g)(F ⊗ Z) ⊂ W.

Proof. (1) Let F ∈ F and W ∈ W . Since ∅ �= (f(F ) ∩ W ) ⊂
f(F ∩ f−1(W )), it follows that ∅ �= (F ∩ f−1(W )). Hence, there exists
V ∈ U(F) ∩ U(f−1(W)) which also implies that W ⊂ f(f−1(W)) ⊂
f(V) and even (since W is ultra) f(V) =W .

(2) By (1) we find an ultrafilter V on (X × Y )2 such that F ⊗G ⊂ V
and (g×g)(V) =W . By F⊗G ⊂ V , we have G ⊂ Z := (prY ×prY )(V).
Furthermore, (g × g)(F ⊗ Z) ⊂ (g × g)((prX × prX)(V) ⊗ (prY ×
prY )(V)) ⊂ (g × g)(V) =W .

Proposition 3.16. Let f : (X, ηX) → (Y, ηY ) be a uniform
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contraction between semi-approach uniform limit spaces. Then it holds
that

(1) f̄ : (Sq(X), cluX)→ (Sq(Y ), cluY ) : H �→ (f × f)(H) is continuous.

(2) f̄ : (Sq(X), clX)→ (Sq(Y ), clY ) : H �→ (f × f)(H) is continuous.

(3) f̄ : (Sq(X), cl
u,a
X ) → (Sq(Y ), cl

u,a
Y ) : H �→ (f × f)(H) is continu-

ous.

Proof. (1) Let Θ ⊂ Sq(X) and H ∈ cluX(Θ). To show that
(f × f)(H) ∈ cluX(f̄(Θ)), let E ∈ U(ηY ) and W ∈ U((f × f)(H)).
It follows from the foregoing lemma that there exists V ∈ U(H)
such that (f × f)(V) = W , and since (f × f)−1(E) ∈ U(ηX) (by
the uniform continuity of f : (X,U(ηX)) → (Y, U(ηY ))), there exists
G ∈ Θ such that (f × f)−1(E)(G) ⊂ V . Now observe that E((f ×
f)(G)) ⊂ (f × f)((f × f)−1(E)(G)) (indeed, for any G ∈ G we
have: (f × f)((f × f)−1(E)(G)) ⊂ E((f × f)(G))), consequently,
E((f × f)(G)) ⊂ (f × f)((f × f)−1(E)(G)) ⊂ (f × f)(V) = W , which
shows that (f × f)(H) ∈ cluY (f̄(Θ)).
(2) Analogous to the previous (but now just without ultrafilters).

(3) Let Θ ⊂ Sq(X) andH ∈ clu,aX (Θ) (whereH ∈ Sq(X,H)(H ⊂ X)),
hence H ∈ cluX(Θ) and stack∆H ∈ clX({stack∆G | ηX(stack∆G) =
0}). It then follows from the previous items and the uniform contrac-
tivity of f that

(f × f)(H) ∈ cluY (f̄(Θ))
and

stack∆f(H) = (f × f)(stack∆H)
∈ clY ({(f × f)(stack∆G) | ηX(stack∆G) = 0})
⊂ clY ({stack∆G | ηY (stack∆G) = 0}),

consequently (f × f)(H) ∈ clu,aY (f̄(Θ)).

Proposition 3.17. EpiAUnif is bireflective in saug, in particular,
EpiAUnif is a topological construct.

Proof. It suffices to show that EpiAUnif is initially closed in saug.
To this end, let (fi : (X, ηX) → (Xi, ηi))i∈I be initial in saug and
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all (Xi, ηi) ∈ EpiAUnif . To show that (X, ηX) ∈ EpiAUnif , let
H ∈ clu,aX ({ηX ≤ K} ∩ Sq(X)). Then it follows from the previous
proposition and the fact that all fi, i ∈ I, are uniform contractions
that

(fi × fi)(H) ∈ clu,aXi
(f̄i({ηX ≤ K} ∩ Sq(X)))

⊂ clu,aXi
({ηi ≤ K} ∩ Sq(Xi)).

As (Xi, ηi) ∈ EpiAUnif , it follows from ηi((fi × fi)(H)) ≤ K, i ∈ I,
and the description of initial lifts (in saug) given in Proposition 2.5
that ηX(H) ≤ K.

Proposition 3.18. Let (X, ηX) and (Y, ηY ) be semi-approach uni-
form limit spaces and let (Z, η) := [(X, ηX), (Y, ηY )]SAULim. Let
H ⊂ X and ∆Y ⊂ E ⊂ Y 2 and denote F (H,E) := {(f, g) ∈ Z2 | ∀x ∈
H : (f(x), g(x)) ∈ E}. Then, letting UHε := 〈{F (H,E) | E ∈ UYε }〉
(where (Y, (UYε )ε∈R+) is the AUnif-bireflection of (Y, ηY )), we define
a uniform tower (UHε )ε∈R+ such that ηX(stack∆H) = 0 implies that
UHε ⊂ UZε , ε ∈ R+ (where (Z, (UZε )ε∈R+) is the AUnif-bireflection of
(Z, η)).

Proof. It is easily verified that (UHε )ε∈R+ is a uniform tower (on Z)
(observe for instance that F (H,E) ◦ F (H,E′) ⊂ F (H,E ◦ E′)).

To prove the latter claim, let ηX(stack∆H) = 0. Then it needs
to be shown that 1Z : (Z,AUnif(η)) → (Z, (UHε )ε∈R+) is a uni-
form contraction. By bireflection-properties, it then suffices to show
that 1Z : (Z, η) → (Z, (UHε )ε∈R+) is a uniform contraction (since
(Z, (UHε )ε∈R+) ∈ AUnif).

To this end, let Ψ ∈ F(Z2) and α := η(Ψ), and let E ∈ UYα . Since
ηX(stack∆H) = 0, it follows from the description of η in Proposition 2.3
that ηY (Ψ(stack∆H)) ≤ α; hence E ∈ UYα ⊂ Ψ(stack∆H) (by uniform
contractivity of 1Y : (Y, ηY ) → (Y,AUnif(ηY )) and by Proposition
2.1). Consequently, there exists ψ ∈ Ψ such that (ev×ev)(∆H⊗ψ) ⊂ E,
implying that ψ ⊂ F (H,E) and therefore F (H,E) ∈ Ψ. Thus, it
has been shown that F (H,E) ∈ Ψ for all E ∈ UYα ; hence UHα ⊂ Ψ
and therefore, by Proposition 2.1, ηH(Ψ) ≤ α = η(Ψ) (where ηH

corresponds to the tower (UHε )ε∈R+).
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Proposition 3.19. Let (X, ηX), (Y, ηY ) ∈ saug and let (Z, η) :=
[(X, ηX), (Y, ηY )] (in saug). If H ∈ Sq(X,H) (H ⊂ X) such that
ηX(H) <∞, then it holds that:

(1) H : (Sq(Z), cluZ)→ (Sq(Y ), cluY ) : Ψ �→ Ψ(H) is continuous.

(2) H : (Sq(Z), clZ)→ (Sq(Y ), clY ) : Ψ �→ Ψ(H) is continuous.

(3) H : (Sq(Z), cl
u,a
Z )→ (Sq(Y ), cl

u,a
Y ) : Ψ �→ Ψ(H) is continuous.

Proof. (1) Let Θ ⊂ Sq(Z) and Ψ ∈ cluZ(Θ). To show that Ψ(H) ∈
cluY (H(Θ)), let E ∈ U(ηY ) and W ∈ U(Ψ(H)). It follows from
Lemma 3.15 that there exists Z ∈ U(Ψ) such that Z(H) = (ev ×
ev)(H ⊗ Z) ⊂ W . Since ηX(H) < ∞ (and H ∈ Sq(X,H)), it follows
from (saug∆) that ηX(stack∆H) = 0; hence, using notations as in
the previous proposition, F (H,E) ∈ UH0 ⊂ UZ0 ⊂ U(η) (where the
latter inclusion follows from Proposition 2.5; the latter function space
involved is a bicoreflection of the first one involved). As Ψ ∈ cluX(Θ),
there exists Φ ∈ Θ such that F (H,E)(Φ) ⊂ Z. Now observe that
E(Φ(H)) ⊂ (F (H,E)(Φ))(H) (indeed, for any φ ∈ Φ and H×H ⊃ G ∈
H we have: (F (H,E)(φ))(G) ⊂ E(φ(G))). Consequently, E(Φ(H)) ⊂
(F (H,E)(Φ))(H) ⊂ Z(H) ⊂ W , which shows that Ψ(H) ∈ cluY (H(Θ)).
(2) Analogous to the previous (but just without ultrafilters).

(3) Let Θ ⊂ Sq(Z) and Ψ ∈ clu,aZ (Θ) (where Ψ ∈ Sq(X,ψ)(ψ ⊂ Z));
hence Ψ ∈ cluZ(Θ) and stack∆ψ ∈ clZ({stack∆φ | η(stack∆φ) =
0}). It then follows from the previous items, the description of η in
Proposition 2.5 and ηX(stack∆H) = 0 that

Ψ(H) ∈ cluY (H(Θ))

and

stack∆ψ(H) = (stack∆ψ)(stack∆H)
∈ clY ({(stack∆φ)(stack∆H) | ηZ(stack∆φ) = 0})
⊂ clY ({stack∆G | ηY (stack∆G) = 0});

consequently, Ψ(H) ∈ clu,aY (H(Θ)).

Proposition 3.20. EpiAUnif is closed under formation of func-
tion spaces in saug. Moreover, if (X, ηX) ∈ saug and (Y, ηY ) ∈
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EpiAUnif , then [(X, ηX), (Y, ηY )] ∈ EpiAUnif . In particular,
EpiAUnif is a cartesian closed category.

Proof. Let (Z, η) := [(X, ηX), (Y, ηY )] (in saug). To show that
(Z, η) ∈ EpiAUnif , let Ψ ∈ clu,aZ ({η ≤ K} ∩ Sq(X)) (where Ψ ∈
Sq(X,ψ), ψ ⊂ Z). To prove that η(Ψ) ≤ K, let H ∈ Sq(X) be
such that ηX(H) < ∞ (which is an acceptable restriction in view
of the description of η in Proposition 2.5). Since it also holds that
stack∆ψ ∈ clZ({stack∆φ | η(stack∆φ) = 0}), it follows from the
previous proposition (and ηX(H) < ∞) and the description of η in
Proposition 2.5 that

(stack∆ψ)(H) ∈ clY (H({stack∆φ | η(stack∆φ) = 0}))
⊂ clY ({G ∈ Sq(X) | ηY (G)) ≤ ηX(H)})

and

Ψ(H) ∈ clu,aY (H({η ≤ K} ∩ Sq(X)))
⊂ clu,aY ({ηY ≤ K ∨ ηX(H)} ∩ Sq(X)).

As (Y, ηY ) ∈ EpiAUnif , it follows that ηY ((stack∆ψ)(H)) ≤ ηX(H)
and ηY (Ψ(H)) ≤ K ∨ ηX(H); hence, by description of function spaces
(in saug) given in Proposition 2.5, we can conclude that η(Ψ) ≤ K.

Step 3. The next goal is to show that proper “density” conditions
are satisfied.

Definition 3.21. Recall that dE : R ×R → R+ : (x, y) �→ |x − y|
is an extended pseudo-metric on R+. In particular, {{(x, y) ∈ R2 |
dE(x, y) < α} | α > ε} is a filterbasis that generates a semi-uniformity
UE
ε such that (UE

ε )ε∈R+ is a uniform tower, hence (R, (UE
ε )ε∈R+) =

(R, ηE) is an approach uniform space.

Assume without restriction in the following that X �= ∅.

Proposition 3.22. Let (X, η) ∈ EpiAUnif . Then the map

j : (X, η) −→ [[(X, η), (R, ηE)], (R, ηE)] : x �−→ (f �→ f(x))
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is an initial, uniform contraction (considered in saug).

Proof. First observe that j := ev∗(X,η),(R,ηE) is the map which makes
the following diagram commute:

[[(X, η), (R, ηE)], (R, ηE)]× [(X, η), (R, ηE)] w
ev (R, ηE)

(X, η)× [(X, η), (R, ηE)]

u

j×1

'
'
'
'
'
'
'
'')

ev

Hence, by properties of function spaces, j is a uniform contraction. In
the following, also let

(hom ((X, η), (R, ηE)), ηH) := [(X, η), (R, ηE)],

and

(hom ([X, η), (R, ηE)], (R, ηE)), ηHH) := [[(X, η), (R, ηE)], (R, ηE)].

By Proposition 2.5, proving that j is initial can be done by showing
that

∀H ∈ Sq(X), ∀K > 0 : (η(H) > K =⇒ ηHH(j(H)) ≥ K).

To this end, let H ∈ Sq(X) be such that η(H) > K, 0 < K < ∞.
It will be shown that ηHH(j(H)) ≥ K by defining an appropriate
Ψ ∈ Sq(hom ((X, η), (R, ηE))) such that ηE(Ψ(H)) = ηE((j(H))(Ψ)) ≥
K > ηE(Ψ), hence, by Proposition 2.5, ηHH(j(H)) ≥ K.

Definition of Ψ ∈ Sq(hom ((X, η), (R, ηE))). As (X, η) ∈ EpiAUnif
and η(H) > K, it follows from Proposition 3.11 that H /∈ cluX({η ≤
K} ∩ Sq(X)); hence there exist E ∈ U(η) and W ∈ U(H) such that

(∗) ∀G ∈ Sq(X) : (E(G) ⊂ W =⇒ η(G) > K).

Since E ∈ U(η), it follows from Proposition 2.2 that there exist
a symmetric d′ ∈ D(AUnif(η)) and 0 < δ < (K/2) such that
{d′ < δ} ⊂ E. If we let d := d′ ∧ K ≤ d′, then it also holds
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that d ∈ D(AUnif(η)) (by saturatedness of a uniform gauge) and
{d < δ} ⊂ E. Now let

Φ1 := {f : (X, η) −→ (R, ηE) | ∃K1,K2 ∈ R,

∃x ∈ X : f = K1 + (d(−, x) ∧K2)},
Φ2 := {f : (X, η) −→ (R, ηE) | ∃K1,K2 ∈ R,

∃x ∈ X : f = K1 − (d(x,−) ∧K2)},
and

Φ : = {f ∈ Φ1 ∪ Φ2 | 0 ≤ f ≤ K}.

Observe that for all f ∈ Φ : f : (X, η) → (R, ηE) is a uniform
contraction. Indeed, let f = K1 + (d(−, x) ∧K2) ∈ Φ1, then it follows
from the symmetry of d that

|f(u)− f(v)| = |K1 + (d(u, x) ∧K2)−K1 − (d(v, x) ∧K2)|
≤ |d(u, x)− d(v, x)| ≤ d(u, v).

In case f = K1− (d(x,−)∧K2) ∈ Φ2, the symmetry of d again implies

|f(u)− f(v)| = |K1 − (d(x, u) ∧K2)−K1 + (d(x, v) ∧K2)|
≤ |d(x, v)− d(x, u)| ≤ d(u, v).

In any case, given f ∈ Φ, it holds that

(∗∗) ∀ ε > 0 : {d < ε} ⊂ (f × f)−1({dE < ε})

It then follows from the characterization of uniform contractivity in
terms of uniform towers and Proposition 2.2 that f : (X,AUnif(η))→
(R, ηE) is a uniform contraction and therefore, by uniform contractivity
of 1X : (X, η) → (X,AUnif(η)), f : (X, η) → (R, ηE) is a uniform
contraction.

For any G ⊂ X ×X, let

Fδ(G) := {(f, g) ∈ Φ× Φ | ∀ (x, y) ∈ G : dE(f(x), g(y)) ≤ K − δ},

and let
Ψ̂ := {Fδ(G) | G ⊂ X ×X,E(G) /∈ W}.
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Note that Ψ̂ is a filterbasis on hom ((X, η), (R, ηE)). Indeed, Ψ̂ �= ∅,
since for any x ∈ X, E(ẋ × ẋ) �⊂ W , otherwise, by (∗), η(ẋ × ẋ) > 0,
a contradiction. Furthermore, such an Fδ(G) is never a void set,
as it always contains pairs of constant (positive) functions. Also, it
holds that Fδ(G1) ∩ Fδ(G2) = Fδ(G1 ∪ G2), E(G1 ∪ G2) = E(G1) ∪
E(G2) and W is an ultrafilter, hence Ψ̂ is a filterbasis. Now let Ψ′

denote the filter generated by Ψ̂ and define Ψ := Ψ′ ∩ stack∆Φ ∈
Sq(hom ((X, η), (R, ηE)),Φ).

Proof of ηH(Ψ) ≤ K − δ < K. By Proposition 2.5, it needs to be
shown that

∀G ∈ Sq(X) : ηE((stack∆Φ)(G)) ≤ η(G)

and
ηE(Ψ(G)) ≤ (K − δ) ∨ η(G),

or equivalently,

∀G ∈ Sq(X) : ηE((stack∆Φ(G)) ≤ η(G)

and
ηE(Ψ′(G)) ≤ (K − δ) ∨ η(G).

To this end, let G ∈ Sq(X). Since 1X : (X, η) → (X,AUnif(η)) is a
uniform contraction, it follows from Proposition 2.1 that AUnif(η)η(G)

⊂ G. In particular, by Proposition 2.2, for all α > η(G) : {d <
α} ∈ G. As (∗∗) actually states that for all α > 0: (ev × ev)({d <
α} ⊗ ∆Φ) ⊂ {dE < α}, it follows that UE

η(G) ⊂ (stack∆Φ)(G), hence
ηE((stack∆Φ)(G)) ≤ η(G).
Regarding the latter, let G ∈ Sq(X) and assume that ηE(Ψ′(G)) >

K − δ; hence UE
K−δ �⊂ Ψ′(G)(I). This implies that E(G) ⊂ W . Indeed,

if this were not the case, then there would exist G ∈ G such that
E(G) /∈ W . Hence, Fδ(G) ∈ Ψ′; consequently, (ev× ev)(G⊗ Fδ(G)) ⊂
{dE ≤ K−δ} ∈ Ψ′(G). In particular, UE

K−δ ⊂ Ψ′(G), which contradicts
(I). Thus, it must indeed be that E(G) ⊂ W , hence by (∗), η(G) > K.
On the other hand, it also holds that for all f ∈ Φ : 0 ≤ f ≤ K, which
implies that {dE ≤ K} ∈ Ψ′(G), hence ηE(Ψ′(G)) ≤ K < η(G). Thus,
it must be that ηE(Ψ′(G)) ≤ (K − δ) ∨ η(G).
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Proof of ηE(Ψ(H)) ≥ K. As Ψ(H) ⊂ Ψ′(W), it will suffice to
show that ηE(Ψ′(W)) ≥ K. Assume the contrary of the latter, i.e.,
UE
K′ ⊂ Ψ′(W) (where K ′ < K). In particular, this implies the existence
of G ⊂ X ×X and U ∈ W such that

(II) E(G) /∈ W and (ev× ev)(U ⊗ Fδ(G)) ⊂ {dE < K}.

It then follows that U ⊂ E(G). Indeed, let (x, y) /∈ E(G) and define

0 ≤ f2 := d(−, y) ∧ δ ≤ K

2
≤ f1 := K − (d(x,−) ∧ δ) ≤ K

(since 0 < δ < (K/2)), then f1, f2 ∈ Φ (by definition). Moreover,
(f1, f2) ∈ Fδ(G). For, if this were not the case, then there would exist
(x′, y′) ∈ G such that

|f1(x′)− f2(y′)| = K − (d(x, x′) ∧ δ)− (d(y′, y) ∧ δ) > K − δ,

hence d(x, x′) < δ and d(y′, y) < δ. As {d < δ} ⊂ E, it follows that
(x, x′), (y′, y) ∈ E; consequently, (x, y) ∈ E(G), which contradicts the
fact that (x, y) /∈ E(G). Hence, (f1, f2) ∈ Fδ(G) and (f1(x), f2(y)) =
(K, 0) /∈ {dE < K}; consequently, by (II), (x, y) /∈ U . Therefore,
U ⊂ E(G), hence E(G) ∈ W , which contradicts (II). Thus, it must be
that ηE(Ψ′(W)) ≥ K.

Note. In a quasi setting, one proceeds by first considering the
extended pseudo-quasi-metric dP : R+ × R+ → R+ : (x, y) �→
(x − y) ∨ 0, which leads to {{(x, y) ∈ (R+)2 | dP(x, y) < α} | α > ε}
being a filterbasis that generates a quasi-semi-uniformity UP

ε such that
(UP
ε )ε∈R+ is a quasi-uniform tower, hence S := (R+, (UP

ε )ε∈R+) =
(R+, ηP) is a quasi-approach uniform space.

It is then shown (by also making use of Proposition 3.9) that j :
(X, η) → [[(X, η),S],S] : x �→ (f �→ f(x)) is an initial, uniform
contraction (all considered in qsaug).

Step 4. Now we combine all previous steps and prove the final result.

Theorem 3.23. EpiAUnif is the cartesian closed topological hull
of AUnif.
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Proof. Previous steps have already shown that EpiAUnif is a finally
dense cartesian closed topological extension of AUnif, hence (by the
preliminaries), it only remains to show that the class

H := {[(X, ηX), (Y, ηY )] | (X, ηX), (Y, ηY ) ∈ AUnif}

is initially dense in EpiAUnif. To this end, the previous proposition
implies that, for any (X, η) ∈ EpiAUnif , there is an initial map j :
(X, η)→ [[(X, η), (R, ηE)], (R, ηE)] and since the functor [−, (R, ηE)] :
EpiAUnif → EpiAUnif transforms final epi-sinks into initial sources
(see [8, Lemma 6]) (and by Proposition 2.5, [(X, η), (R, ηE)] can be
obtained as a final lift of an epi-sink involvingAUnif -objects by adding
constant maps if necessary), it follows that H is indeed initially dense
in EpiAUnif.

4. Relation to other hulls. First of all, it must be that the CCT
hull of AUnif is contained in the TU hull of AUnif, which is the full
subconstruct saug-PsAULim of saug whose objects (X, η) satisfy one
of the following equivalent conditions:

(1) For all H ∈ F(X) : η(H) = supW∈U(H) η(W).

(2) For all H ∈ Sq(X) : η(H) = supW∈U(H) η(W).

(3) For allH∈Sq(X,H) : (η(stack∆H)=0⇒η(H)=supW∈U(H) η(W)).

On the one hand, this may not be very apparent from its definition,
and on the other hand, would this allow us to simplify the description
of the CCT hull?

To obtain satisfactory answers, it is necessary to perform a kind of
“splitting up” of the closure clu,aX , to which end it needs to be adapted
first.

Definition 4.1. Let

claX : P(Sq(X)) −→ P(Sq(X)) : Θ �−→ claX(Θ)

where

claX := {H ∈ Sq(X,H) | H ∈ clX(Θ) and
stack∆H ∈ clX({stack∆G | η(stack∆G) = 0})}.
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Proposition 4.2. Let (X, η) ∈ saug; then the following are equiva-
lent:

(1) (X, η) ∈ EpiAUnif .

(2) (X, η) ∈ saug-PsAULim and (X, η) satisfies one of the equiva-
lent conditions:

• η : (Sq(X), cl aX)→ ([0,∞], Tr) is continuous.

• η : (S(X), cl aX)→ ([0,∞], Tr) is continuous.

• η : (Sq(X), clX)→ ([0,∞], Tr) is continuous.

• η : (S(X), clX)→ ([0,∞], Tr) is continuous.

Proof. The equivalence of the properties mentioned in (2) can be
shown as in Proposition 3.11, but the first one shall again be primarily
of importance.

1 ⇒ 2. Clearly it only needs to be shown that (X, η) ∈ saug −
PsAULim. To this end, let H ∈ Sq(X,H) such that η(stack∆H) = 0
and for all W ∈ U(H) : η(W) ≤ K. In particular, stack∆H ∈
clX({stack∆G | η(stack∆G) = 0}). Also, H ∈ cluX({η ≤ K} ∩ Sq(X)).
Indeed, let E ∈ U(η) and W ∈ U(H). As η(W) ≤ K, there exists
G ∈ Sq(X) such that η(G) ≤ K and G ⊂ W (by saug), hence
E(G) ⊂ G ⊂ W . Thus, H ∈ clu,aX ({η ≤ K} ∩ Sq(X)), and therefore
η(H) ≤ K, which shows that η(H) ≤ supW∈U(H) η(W) ≤ η(H) (where
the latter inequality follows from (SAUCS2)).

2 ⇒ 1. Let H ∈ Sq(X,H) be such that H ∈ clu,aX ({η ≤
K} ∩ Sq(X)) (where 0 ≤ K < ∞). In particular, stack∆H ∈
clX({stack∆G | η(stack∆G) = 0}), hence stack∆H ∈ claX({stack∆G |
η(stack∆G) = 0}); consequently, by continuity of η : (Sq(X), claX) →
([0,∞], Tr), η(stack∆H) = 0.

To show that η(H) ≤ K, it suffices to show that η(W) ≤ K for all
W ∈ U(H). To this end, let W ∈ U(H) and let E ∈ U(η), then it
follows from H ∈ clu,aX ({η ≤ K}∩Sq(X)) that there exists GE ∈ Sq(X)
such that E(GE) ⊂ W and η(GE) ≤ K. Now let HE := GE ∩ stack∆H ,
then also η(HE) ≤ K andW ⊃ E(HE)|H2 ∈ Sq(X,H) (asH×H ∈ W).
In particular, letting G := ∨E∈U(η)E(HE)|H2 is well-defined and is
such that G ∈ Sq(X,H) and G ⊂ W . Also, by construction, G ∈
clX({η ≤ K}∩Sq(X)) and even G ∈ claX({η ≤ K}∩Sq(X)); hence the
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continuity of η : (Sq(X), claX)→ ([0,∞], Tr) implies that η(G) ≤ K and
consequently η(W) ≤ η(G) ≤ K.

Next, recall from [16] that CCTH(Unif) is the full subconstruct
of sug = saug ∩ SAULim consisting of objects (X,L) satisfying
(primarily) the property cluX(L∩Sq(X)) = L∩Sq(X) (or the property
cluX(L ∩ S(X)) = L ∩ S(X) ), where the uniformity involved in cluX is,
in this case, the Unif-bireflection Unif(L) of (X,L).

Proposition 4.3. Let A,B,C and D be constructs such that

A w
r

RA
B

C

u

c CC

w
RC

r D

u

CD c

(where RA, RC, CC and CD denote the appropriate concrete (co)reflec-
tors), then the following are equivalent:

(1) CC is the restriction of CD to A.

(2) RC is the restriction of RA to D.

Proof. 1⇒ 2. Let D ∈ D. Then it suffices to show that D′ := RC(D)
is also an A-reflection of D. To this end, let f : D → A be a morphism
(where A ∈ A), hence f : D → CD(A) is a morphism. It follows
from (1) that CD(A) ∈ C, hence f : D′ → CD(A) is a morphism (and
also (1): CD(A) → A is a morphism); consequently, f : D′ → A is a
morphism.

1⇒ 2. This is “dual” to the previous implication.

Proposition 4.4. CCTH(AUnif) ∩ SULim= CCTH(Unif).

Proof. Let (X, η) = (X,L) ∈ sug (where L = {η = 0}), then
(X, η) ∈ CCTH(AUnif) if and only if clu,aX ({η ≤ K} ∩ Sq(X)) =
{η ≤ K} ∩ Sq(X) for all K ∈ R+. As (X, η) ∈ SULim, this is clearly
equivalent to clu,aX ({η = 0}∩Sq(X)) = {η = 0}∩Sq(X). Since it follows
from Proposition 2.6 and the previous one that AUnif(η) = Unif(L),



qAUnif w

r CCTH(qAUnif) w

r qsaug w

c q SAULim

qUnif

u

r c

w

r CCTH(qUnif)

u

r c

w

r qsug

u

r c

w

c q SULim

u

r c

AUnif

'
'
'
'
'
'')

r c

w
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A
A
A
A
A
AAC

r c

w

r saug
















�

r c

w
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[
[
[
[
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r c

Unif

u

r c

�
�
�
�
�
���

r c

w
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u

r c
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'
'
'
'
'')
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w
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u
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�
�
�
�
�
�
���

r c

w

c SULim

u

r c

A
A
A
A
A
AAC

r c
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the latest statement is equivalent to cluX(L ∩ Sq(X)) = L ∩ Sq(X) (as
it also follows from Proposition 3.9 that clu,aX ({η = 0} ∩ Sq(X)) =
cluX({η = 0} ∩ Sq(X))).

Proposition 4.5. CCTH(Unif) is bireflective and bicoreflective in
CCTH(AUnif).

Proof. The bireflectiveness, i.e., initial closedness, follows from
the bireflectiveness of CCTH(AUnif)=EpiAUnif in saug(Proposition
3.17), Proposition 2.6 and the previous one.

As for the latter claim, it will suffice to show that the SULim-
bicoreflection (X, η0) of (X, η) ∈ EpiAUnif belongs to CCTH(Unif)
⊂ SULim. Hence, by the previous proposition, it only needs to be
shown that (X, η0) ∈ EpiAUnif (and note that Proposition 2.6 already
implies that (X, η0) ∈ sug ⊂ saug).

To this end, observe for any ∞ > K ≥ 0 that {η0 ≤ K} ∩
Sq(X) = {η ≤ 0} ∩ Sq(X), which is clu,a(X,η)-closed. Furthermore,
as 1X : (X, η0) → (X, η) is a uniform contraction, it follows from
Proposition 3.16 that {η0 ≤ K} ∩ Sq(X) is cl

u,a
(X,η0)

-closed. Since this
latter claim is also evident if K = ∞, the bicoreflectiveness has been
shown.

Note. Analogous results can be obtained in a quasi setting, albeit
restricted in that case to the “primary characterizations”. Addition-
ally, it can (easily) be shown that CCTH(AUnif) = CCTH(qAUnif)
∩SAULim and that CCTH(AUnif) is bireflectively and bicoreflec-
tively embedded in CCTH(qAUnif), which allows us to conclude by
summarizing some nice relations in the diagram.
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5. A. Behling, Einbettung uniformer Räume in topologische Universen, Ph.D.
Thesis, Free University, Berlin, 1991.

6. P. Fletcher and W.F. Lindgren, Quasi-uniform spaces, Lecture Notes in Pure
and Appl. Math., vol. 77, Marcel Dekker, New York, 1982.

7. H. Herrlich, Topological improvements of categories of structured sets, Topol-
ogy Appl. 27 (1987), 145 155.

8. H. Herrlich and L.D. Nel, Cartesian closed topological hulls, Proc. Amer. Math.
Soc. 62 (1977), 215 222.

9. H.P.A. Künzi, Quasi-uniform spaces eleven years later, Topology Proc. 18
(1993), 143 171.

10. , Nonsymmetric topology, Bolyai Society in Mathematical Studies 4,
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