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AN IMPROVEMENT ON A THEOREM
OF THE GOLDBACH-WARING TYPE

CLAUS BAUER

ABSTRACT. Let pi, 2 ≤ i ≤ 5 be prime numbers. It is
proved that all but � x19193/19200+ε positive even integers
N smaller than x can be represented as

N = p2
1 + p3

2 + p4
3 + p5

4.

1. Introduction and statement of results. I.M. Vinogradov
[14] proved the ternary Goldbach-conjecture in 1937. Its method was
successfully applied to different problems in additive prime number
theory by various mathematicians. Among them Prachar established in
1952, [11] the following result: There exists a constant c > 0 such that
all but � x(log x)−c even integers N smaller than x are representable
as

(1.1) N = p21 + p
3
2 + p

4
3 + p

5
4

for prime numbers pi.

The author could improve upon this result in [1] by giving the
following estimate: There exists a positive number δ such that all but

� x1−δ

positive even integers N ≤ x are representable as in (1.1).

Here the constant δ is very small and its value depends on the
existence of the possible Siegel-zero (see [3]) of the Dirichlet series
L(s, χ). Using a method first developed in [2] we will improve on this
estimate by showing the following theorem:

Theorem. All but � x19193/19200+ε positive even integers smaller
than x can be represented as in (1.1).
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1152 C. BAUER

Using the circle method the main difficulties arise on the major arcs,
where we apply mean value estimates for Dirichlet polynomials and
power moments of L-functions. Compared to [1] no special attention is
paid to the possible Siegel zero and the Deuring-Heilbronn phenomena
is not used.

2. Notation and structure of the proof. We will choose our
notation similar to the one in [8]. By k we will always denote an integer
k ∈ {2, 3, 4, 5}, by p we denote a prime number and L denotes log x. c
is an effective positive constant and ε will denote an arbitrarily small
positive number; both of them may take different values at different
occasions. For example, we may write

LcLc � Lc, xεLc � xε.

d2(n) denotes the number of divisors of n and [a1, . . . , an] denotes the
least common multiple of the integers a1, . . . , an. Be further

r ∼ R⇐⇒ R/2 < r ≤ R,
∑∗

χmodq

=
∑

xmodq
xprimitive

,
∑∗

1≤a≤q

=
q∑

1≤a≤q
(a,q)=1

.

P = N (7/150−ε), Q = NP−1L−E , (E > 0 will be defined later),

and
µ =

1
2
+
1
3
+
1
4
+
1
5
− 1.

We define for any characters χ, χj (mod q), q ≤ P , and a fixed integer
N :

Ck(a, χ) =
q∑

l=1

χ(l)e
(
alk

q

)
, Ck(a, χ0) = Ck(a, q)

Z(q, χ2, χ3, χ4, χ5) =
q∑

h=1

∗e
(−hN

q

) 5∏
k=2

Ck(h, χk),

Y (q) = Z(q, χ0, χ0, χ0, χ0), A(q) =
Y (q)
φ4(q)

,

Sk(λ, χ) =
∑

k
√
x/2k+1≤n≤ k

√
x

Λ(n)χ(n)e(nkλ),
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Tk(λ) =
∑

k
√
x/2k+1≤n≤ k

√
x

e(nkλ),

Wk(λ, χ) = Sk(λ, χ)− E0Tk(λ),

E0 =
{
1 if χ = χ0,

0 otherwise.

Using the circle method we define the major arcs M and minor arcs m
as follows:

M =
∑
q≤P

q∑
a=1

∗I(a, q), I(a, q) =
[
a

q
− 1
Qq
,
a

q
+
1
Qq

]
,

m =
[
1
Q
, 1 +

1
Q

]
\M.

Let
R(N) =

∑
k
√
x/2k+1≤nk≤ k

√
x

k∈{2,... ,5}
n2

2+···+n5
5=N

Λ(n2) · · ·Λ(n5).

Then we find

(2.1)

R(N) =
∫ 1+1/Q

1/Q

e(−Nα)
5∏

k=2

Sk(α) dα

=
( ∫

M

+
∫
m

)
e(−Nα)

5∏
k=2

Sk(α) dα

=: R1(N) +R2(N).

Using Theorem 1 in [5] and Lemma 3 in [11], we obtain

∑
x/2≤N<x

|I2(N)|2 ≤ max
α∈m |S5(α)|2

∫
m

|S2(α)S3(α)S4(α)|2

� x2µ+1+εP−1/128,

from which we derive that

(2.2) I2(N)� NµL−1000
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for all but � x1+2εP−1/128 < x19193/19200+3ε even integers x/2 ≤ N <
x. In Sections 3 5 we will show that, for any given G > 0,

(2.3) R1(N) =
1
120

P0

∑
q≤P

A(q) +O(xµL−G),

where
(2.4)

xµ � P0 :=
∑

m1+m2+m3+m4=N
x/2k+1<mk≤x

1
m1−(1/k)

� xµ for N ∈ (x/2, x].

In Section 6 we will derive from (2.3) that for all but � x443/450+ε

positive even integers x/2 < N ≤ x, the following holds

(2.5) R1(N) =
1
120

P0

∏
p≤P

s(p) +O(xµL−G).

Using that ∏
p≤P

s(p) (logP )−960

(see [1, Lemma 4.5]) the theorem follows from (2.1), (2.2), (2.4) and
(2.5).

3. The major arcs. We will make use of the following lemmas:

Lemma 3.1. If (a, q) = 1, then

Ck(a, χq)� q1/2+ε.

Proof. This is contained in Lemmas 5.1 and 5.2 in [9].

Lemma 3.2. Let f(x), g(x) and f ′(x) be three real differentiable and
monotonic functions in the interval [a, b] and |g(x)| �M .

(i) If |f ′(x)|  m > 0, then
∫ b

a

g(x)e(f(x)) dx�M/m.
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(ii) If |f ′′(x)|  r > 0, then

∫ b

a

g(x)e(f(x)) dx�M/r1/2.

(iii) If |f ′(x)| ≤ θ < 1, g(x), g′(x)� 1, then

∑
a<n≤b

g(n)e(f(n)) =
∫ b

a

g(x)e(f(x)) dx+O
(

1
1− θ

)
.

Proof. See Lemma 4.8 in [13].

Lemma 3.3. For primitive characters χ1 mod ri, i = 1, 2, 3, 4, and
the principal character χ0 mod q, we have

∑
q≤P
r|q

|Z(q, χ0χ1, χ0χ2, χ0χ3, χ0χ4)|
φ4(q)

� r−1+ε(logP )c,

where r = [r1, r2, r3, r4].

Proof. Let J denote the lefthand side in Lemma 3.3, and write
Z(q) = Z(q, χ0χ1, χ0χ2, χ0χ4, χ0χ4). Using Lemmas 4.1 and 4.3 a)
in [1], we argue as in the proof of Lemma 6.7 in [7] and obtain

J �
∑
u|a

|Z(ur)|
φ4(ur)

∑
q≤P/ur
(q,r)=1

|A(q)|,

where a� 1. From Lemma 3.1, we derive

∑
u|a

|Z(ur)|
φ4(ur)

� r−1+ε.

Lemma 3.3 follows therefore from



1156 C. BAUER

Lemma 3.4. ∑
q≤P

|A(q)| � (logP )c.

Proof. Using Lemmas 4.1, 4.4a) and (4.6) in [1], we find

∑
q≤P

|A(q)| �
∏
p≤P

(
1 +

c

p

)
� (logP )c.

Splitting the summation over n in residue classes modulo q we obtain

Sk

(
a

q
+ λ

)
=
Ck(a, q)
φ(q)

Tk(λ) +
1
φ(q)

∑
χmodq

Ck(a, χ)Wk(λ, χ) +O(L2).

Thus we obtain from (2.1),

(3.1) R1(N) = Rm
1 (N) +R

e
1(N) +O(x

µL−G) for any G > 0,

where

Rm
1 (N) =

∑
q≤P

1
φ4(q)

·
∑∗

1≤a≤q

∫ 1/Qq

−1/Qq

5∏
k=2

Ck(a, q)e
(
− a

q
N

)
Tk(λ)e(−λN) dλ,

Re
1(N) =

5∑
k,l=2
k<l

∑
q≤P

1
φ4(q)

∑∗

1≤a≤q

∫ 1/Qq

−1/Qq

∏
m∈{k,l}

Cm(a, q)Tm(λ)

·
5∏

o=2
o �=k
o �=l

∑
χmodq

C0(a, χ)W0(λ, χ)e
(
− a

q
N − λN

)
dλ

+
5∑

k=2

∑
q≤P

1
φ4(q)

∑∗

1≤a≤q

∫ 1/Qq

−1/Qq

Ck(a, q)Tk(λ)

·
5∏

l=2
l �=k

∑
χmodq

Cl(a, q)Wl(λ, χ)e
(
− a

q
N − λN

)
dλ
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+
∑
q≤P

1
φ4(q)

∑∗

1≤a≤q

∫ 1/Qq

−1/Qq

t∏
k=2

∑
χmodq

· Ck(a, χ)Wk(χ, λ)e
(
− a

q
N − λN

)
dλ,

=: S1 + S2 + S3 + S4.

We first calculate Rm
1 (N). Applying Lemma 3.2 yields

Tk(λ) =
∫ k

√
x

k
√
x/2k+1

e(λuk) du+O(1)

=
1
k

∫ x

x/2k+1
v1/k−1e(λv) dv +O(1)

=
1
k

∑
x/2k+1<m≤x

e(λm)
m1−(1/k)

+O(1).

Substituting this in Rm
1 (N), we see

Rm
1 (N) =

1
120

∑
q≤P

A(q)
∫ 1/Qq

−1/Qq

5∏
k=2

( ∑
x/2k+1<m≤x

e(λm)
m1−(1/k)

)
e(−Nλ) dλ

+O
(∣∣∣∣ max2≤l≤5

∑
q≤P

A(q)
∫ −1/Qq

1/Qq

5∏
k=2
k �=l

∑
2/2k+1<m≤x

e(λm)
m1−(1/k)

dλ

∣∣∣∣
)
.

Using Lemma 3.3 and the trivial bound

(3.2)
∑

x/2k+1<m≤x

e(λm)
m1−(1/k)

� min
(

k
√
x,

1
x1−(1/k)|λ|

)
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we derive
(3.3)

Rm
1 (N) =

1
120

∑
q≤P

A(q)
∫ 1/2

−1/2

5∏
k=2

( ∑
x/2k+1<m≤x

e(λm)
m1−(1/k)

)
e(−Nλ) dλ

+O
( ∑

q≤P

|A(q)|
∫ 1/2

1/Qq

1
x3−µ|λ|4 dλ

)
+O(xµL−G)

=
1
120

P0

∑
q≤P

A(q) +O((PQ)3xµ−3Lc) +O(xµL−G)

=
1
120

P0

∑
q≤P

A(q) +O(xµL−G),

where P0 is defined as in (2.4) and E is chosen sufficiently large in
Q = NP−1L−E . In the sequel E = E(G) is fixed. Now we estimate
the terms Si, i = 1, 2, 3, 4. Using Lemma 3.3 we can estimate S4 in the
following way:

|S4| ≤
∑
q≤P

1
φ4(q)

∑
χ2modq

∑
χ3modq

∑
χ4modq

∑
χ5modq

· |Z(q, χ2, χ3, χ4, χ5)|
∫ 1/Qq

−1/Qq

5∏
k=2

|Wk(λ, χj)| dλ

≤
∑
r2≤P

∑
r3≤P

∑
r4≤P

∑
r5≤P

[r2,r3,r4,r5]≤P

∑∗

χ2modr3

∑∗

χ3modr3

∑∗

χ4modr4

∑∗

χ5modr5

·
∫ 1/Q[r2,r3,r4,r5]

−1/Q[r2,r3,r4,r5]

5∏
k=2

|Wk(λ, χk)| dλ

·
∑
q≤P

[r2,r3,r4,r5]|q

|Z(q, χ2χ0, χ3χ0, χ4χ0, χ5χ0)|
φ4(q)

,

� Lc
∑
r2≤P

∑
r3≤P

∑
r4≤P

∑
r5≤P

[r2, r3, r4, r5]−1+ε

·
∑∗

χ2modr2

∑∗

χ3modr3

∑∗

χ4modr4

∑∗

χ5modr5
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·
∫
−1/Q[r2,r3,r4,r5]

5∏
k=2

|Wk(λ, χk)| dλ.

Using [r2, r3, r4, r5] ≥ (r2r3)1/7(r4r5)5/14, we obtain

(3.4)

S4 � Lc max
2≤k<l<m<n≤5

max
|λ|≤1/Q

∑
rk≤P

r
−5/14+ε
k

∑∗

χkmodrk

· |Wk(λ, χk | max
|λ|≤1/Q

∑
rl≤P

r
−5/14+ε
l

·
∑∗

χlmodrl

|Wl(λ, χl |
∑

rm≤P

r−1/7+ε
m

∑∗

χmmodrm

·
( ∫ 1/Qrm

−1/Qrm

|Wm(λ, χm|2 dλ
)1/2

·
∑
rn≤P

r−1/7+ε
n

∑∗

χnmodrn

( ∫ 1/Qrn

−1/Qrn

|Wn(λ, χn|2 dλ
)1/2

� Lc max
2≤k<l<m<n≤5

max
|λ|≤1/Q

Ik(λ) max|λ|≤1/Q
Il(λ)WmWn,

where

Ik(λ) =
∑
r≤P

r−5/14+ε
∑∗

χ

|Wk(λ, χ|,

Wk =
∑
r≤P

r−1/7+ε
∑∗

χ

(∫ 1/Qr

−1/Qr

|Wk(λ, χ|2 dλ
)1/2

.

Arguing similarly we obtain

S1 + S2 + S3 � Lc max
2≤k<l<m<n≤5

max
|λ|≤1/Q

|Tk(λ)|

· max
|λ|≤1/Q

|Tl(λ)|
(∫ 1/Q

−1/Q

|Tm(λ)|2 dλ
)1/2

Wn

+ Lc max
2≤k<l<m<n≤5

max
|λ|≤1/Q

|Tk(λ)| max|λ|≤1/Q
|Tl(λ)|WmWn(3.5)

+ Lc max
2≤k<l<m<n≤5

max
|λ|≤1/Q

|Tk(λ)| max|λ|≤1/Q
Il(λ)WmWn.
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We have trivially
max

|λ|≤1/Q
|Tk(λ)| � x1/k.

Using (3.2) we obtain

( ∫ 1/Q

−1/Q

|T (λ)|2 dλ
)1/2

� x(1/k)−(1/2).

Thus we see from (3.1) and (3.3) (3.5) that the proof of (2.3) reduces
to the proof of the following two lemmas:

Lemma 3.5. If P ≤ x(7/150)−ε and 2 ≤ k ≤ 5,

Wk �B x
1/k−1/2L−B

for any B > 0.

Lemma 3.6. If P ≤ x(7/150)−ε and 2 ≤ k ≤ 5,

max
|λ|≤1/Q

I(λ)� x1/kLA

for a certain A > 0.

For the proof of these lemmas we will appeal to the following lemmas:

Lemma 3.7. For any P ≥ 1, T ≥ 1 and k = 0, 1,

∑
q≤P

∑∗

χ

∫ T

−T

∣∣∣∣L(k)

(
1
2
+ it, χ

)∣∣∣∣
4

dt� P 2T (logPT )4(k+1).

Lemma 3.8. For any P ≥ 1, T ≥ 1 and any complex numbers an

∑
q≤P

∑∗

χ

∫ T

−T

∣∣∣∣
M∑

n=M+N

anχ(n)n−it

∣∣∣∣
2

dt�
M∑

n=M+N

(P 2T + n)|an|2.
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Lemma 3.9. Let N∗(α, T, q) denote the number of zeros σ+ it of all
L-functions to primitive characters modulo q within the region σ ≥ α,
|t| ≤ T . Then

∑
q≤Q

N∗(α, T, q)� T 12(1−α)/5(logQT )c.

The lemmas 3.7 3.9 may be found in [10, Chapters 2, 3 and 5].

4. Proof of Lemma 3.5. In order to prove the lemma, it is enough
to show that

(4.1) Wk,R � x(1/k)−(1/2)R1/7−εL−B,

where

Wk,R =
∑
r∼R

∑∗

χ

( ∫ 1/Qr

−1/Qr

|Wk(λ, χ|2 dλ
)1/2

for R ≤ P/2. Applying Lemma 1 [4], we see
(4.2)∫ 1/Qr

−1/Qr

|Wk(λ, χ)|2 dλ

� (QR)−2

∫ x

x/2k+2

∣∣∣∣
∑

t<mk≤t+Qr

x/2k+1<mk≤x

Λ(m)χ(m)− E0

∑
t<mk≤t+Qr

x/2k+1<mk≤x

1
∣∣∣∣
2

dt.

We set X = max(x/2k+1, t) and X + Y = min(x, t + Qr). In the
sequel we will treat the case R > LD and R ≤ LD for a sufficiently
large constant D > 0 separately. In the first case we apply a slight
modification of Heath-Brown’s identity [6],

−ζ
ι

ζ
(s) =

K∑
j=1

(
K

j

)
(−1)j−1ζι(s)ζj−1(s)M j(s)

− ζι

ζ
(s)(1− ζ(s)M(s))K ,
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with K = 5 and
M(s) =

∑
n≤x1/5k

µ(n)

to the sum ∑
X<mk≤X+Y

.

Arguing exactly as in part III, [15], we find by applying Heath Brown’s
identity and Perron’s summation formula (see [13, Lemma 3.12]) that
the inner sum of (4.2) where always E0 = 0 because of R > LD

and the primitivity of the characters is a linear combination of O(Lc)
terms of the form

Sk =
1
2πi

∫ T

−T

Fk

(
1
2
+ iu, χ

)
(X + Y )(1/2+iu)/k −X(1/2+iu)/k

(1/2) + iu
du

+O(T−1x(1/k)+ε),

where 2 ≤ T ≤ x,

(4.3)

Fk(x, χ) =
10∏
j=1

fk,j(s, χ),

fk,j(s, χ) =
∑

n∈Ik,j

ak,j(n)χ(n)n−s,

ak,j(n) =




log n or 1 j = 1,

1 1 < j ≤ 5,
µ(n) 6 ≤ 10

,

Ij = (Nk,j , 2Nk,j ], 1 ≤ j ≤ 10,
k
√
x�

10∏
j=1

Nk,j � k
√
x, Nk,j ≤ x1/5k, 6 ≤ j ≤ 10.

Since

(X + Y )(1/k)[(1/2)+iu] −X(1/k)[(1/2)+iu]

(1/2) + iu

� min(QRx(1/2k)−1, x1/2k(|u|+ 1)−1)
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by taking T = x2εP 2(1 + |λ|x) and T0 = x(QR)−1, we conclude that
Sk is bounded by

� QRx(1/2k)−1

∫ T0

−T0

∣∣∣∣Fk
(
1
2
+ it, χ

)∣∣∣∣ du
+ x1/2k

∫
T0≤|u|≤T

∣∣∣∣Fk
(
1
2
+ it, χ

)∣∣∣∣du|u| + x1/kP−2,

Thus we derive from (4.2) that in order to prove (4.1) it is enough to
show that

(4.4)
∑
r∼R

∑∗

χ

∫ T0

0

∣∣∣∣Fk
(
1
2
+ it, χ

)
g

∣∣∣∣ dt� x1/2kR1/7−εL−B,

(4.5)
∑
r∼R

∑∗

χ

∫ 2T1

T1

∣∣∣∣Fk
(
1
2
+ it, χ

)∣∣∣∣ dt
� x1/2k−1QR8/7−εT1L

−B, T0 < |T1| ≤ T.

For the proof of (4.4) and (4.5) we will prove two propositions. We will
need the estimate

(4.6)
∑
n≤x

dk2(n)�k xL
c(k).

We now establish

Proposition 1. If there exist Nk,j1 and Nk,j2 , 1 ≤ j1, j2 ≤ 5, such
that Nk,j1Nk,j2 ≥ P 12/7+3ε, then (4.4) is true.

Proof. We suppose without loss of generality that j1 = 1, a1(n) =
log n and j2 = 2, a2(n) = 1. Arguing exactly as in the proof of
Proposition 1 in [15], we find

fk,1

(
1
2
+ it, χ

)
� L

( ∫ x1/k

−x1/k

∣∣∣∣L′
(
1
2
+ it+ iv, χ

)∣∣∣∣
4
dv

1 + |v|
)1/4

+ L,
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and so we find by using Lemma 3.7,

∑
r∼R

∑∗

χ

∫ T0

0

∣∣∣∣f1
(
1
2
+ it, χ

)∣∣∣∣
4

dt

� L4

∫ x1/k

−x1/k

dv

1 + |v|
∑
r∼R

∑∗

χ

∫ T0+v

v

∣∣∣∣L′
(
1
2
+ it, χ

)∣∣∣∣
4

dt+ T0R
2L4

� L5 max
|N|≤x1/k

∫ N

N/2

dv

1 + |v|
∑
r∼R

∑∗

χ

∫ T0+v

v

∣∣∣∣L′
(
1
2
+ it, χ

)∣∣∣∣
4

dt

+ T0R
2L4

+ L5 max
|N|≤x1/k

N−1

∫ T0

0

dt
∑
r∼R

∑∗

χmodr

∫ N+t

(N/2)+t

∣∣∣∣L′
(
1
2
+ iv, χ

)∣∣∣∣
4

dv

+ T0R
2L4

� R2T0L
c.

Using Lemma 3.8, (4.6) and Holder’s inequality, we obtain

∑
r∼R

∑∗

χ

∫ T0

0

∣∣∣∣Fk
(
1
2
+ it, χ

)∣∣∣∣ dt

�
( ∑

r∼R

∑∗

χ

∫ T0

0

∣∣∣∣fk,1
(
1
2
+ it, χ

)∣∣∣∣ dt
)1/4

·
( ∑

r∼R

∑∗

χ

∫ T0

0

∣∣∣∣fk,2
(
1
2
+ it, χ

)∣∣∣∣ dt
)1/4

·
( ∑

r∼R

∑∗

χ

∫ T0

0

∣∣∣∣
10∏
j=3

fk,j

(
1
2
+ it, χ

)∣∣∣∣ dt
)1/2

� (R2T0)1/2
(
R2T0 +

x1/k

Nk,1Nk,2

)1/2

Lc

� x1/2kR1/7−εL−B,

by the definition of T0 and the condition of the proposition.
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Proposition 2. Let J = {1, . . . , 10}. If J can be divided into two
nonoverlapping subsets J1 and J2 such that

max
( ∏

j∈J1

Nk,j ,
∏
j∈J2

Nk,j

)
� x1/kP−(12/7)−3ε

then (4.4) is true.

Proof. let

Fk,i(s, χ) =
∏
j∈Ji

fk,j(s, χ)

=
∑

nMi

bi(n)χ(n)n−s,

bi(n)� dc2(n), i = 1, 2,

where Mi =
∏

j∈JiNk,j
, i = 1, 2. Applying Lemma 3.8, (4.3) and (4.6)

we see

∑
r∼R

∑∗

χ

∫ T0

0

∣∣∣∣Fk
(
1
2
+ it, χ

)∣∣∣∣ dt

�
( ∑

r∼R

∑∗

χ

∫ T0

0

∣∣∣∣Fk,1
(
1
2
+ it, χ

)∣∣∣∣ dt
)1/2

·
( ∑

r∼R

∑∗

χ

∫ T0

0

∣∣∣∣Fk,2
(
1
2
+ it, χ

)∣∣∣∣ dt
)1/2

� (R2T0 +M1)1/2(R2T0 +M2)1/2

� R2T0 + x1/2kRP−(6/7)−(3/2)εT
1/2
0 + x1/2kLc.

This proves the proposition because of R > LD. Whereas for the proof
of the proposition an estimate P � x(7/130)−ε would have been enough,
we need the estimate P ≤ x(7/150)−ε in the following. Now we can prove
(4.4). In view of Proposition 1 we assume

Nk,iNk,j ≤ P 12/7+3ε ≤ x2/5k, 1 ≤ i, j ≤ 5, i �= j.
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Therefore, we see from (4.3) that there exists at most one Nk,j ,
1 ≤ j ≤ 10, with Nk,j ≥ x1/5k. Suppose such a Nk,j is Nk,j0 if it
exists (otherwise Nk,j0 = 1). Reorder the other Nk,j as follows:

Nk,j1 ≥ Nk,j2 ≥ · · · ≥ Nk,jK
, K = 9 or 10.

We find an integer 1 ≤ l ≤ K − 1 such that

Nk,j0Nk,j1 . . . Nk,jl−1 ≤ x2/5k and Nk,j0Nk,j1 . . . Nk,jl
≥ x2/5k.

Taking M1 = Nk,j0Nk,j1 . . .Nk,jl
and M2 = Nk,jl+1 . . . Nk,jK

, we have

M1 � x2/5kNk,jl
≤ x3/5k and M2 � x1/5kM−1

1 � x3/5k.

The sets M1 and M2 satisfy the conditions of Proposition 2 and
therefore (4.4) is proved. The proof of (4.5) goes along the same lines.
(4.1) is now proved in the case R > LD. If R ≤ LD we can estimate
the sum on the righthand side of (4.2) by using the zero expansion of
the von Mangoldt function:

∑
t<mk≤t+Qr

x/2k<mk≤x

Λ(m)χ(m)− E0

∑
t<mk≤t+Qr

x/2k<mk≤x

1

=
∑

X<mk≤X+Y

Λ(m)χ(m)− E0

∑
X<mk≤X+Y

1

�
∑

|Im ρ|≤x1/3k

∣∣∣∣ (X + Y )
ρ/k

ρ
− Xρ/k

ρ

∣∣∣∣+O(x2/3kL2)

� QRx(1/k)−1
∑

|Im ρ|≤x1/3k

xβ−1/k +O(x2/3kL2),

where ρ runs over the nontrivial zeros of the L-function corresponding
to χ mod r with |Im ρ| ≤ x1/3k and β = Re ρ. Applying Lemma 3.9
and the fact that L(σ + it, χ) with χ mod r ≤ LD has no zeros in the
region (see [12], VIII Satz 6.2)

σ ≥ 1− δ(T ) := 1− c0
log r + (log(T + 2))4/5

, |t| ≤ T,
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where c0 is an absolute constant and taking T = x1/3k we obtain
from (4.2)

∫ 1/Qr

−1/Qr

|Wk(λ, χ)|2 dλ

� x(2/k)−1

( ∑
|Im ρ|≤x1/3k

x(β−1)/k

)2

+ (QR)−2x1+(4/3k)L4

� x(2/k)−1Lc
(

max
(1/2)≤β≤1−δ(T )

x(4/5k)(1−β)x(1/k)(β−1)
)2

+ P 2x(4/3k)−1L2E+4

� x(2/k)−1 exp(−cL1/5).

This gives (4.1) for R ≤ LD.

5. Proof of Lemma 3.6. To prove the lemma it is enough to show
that

max
R≤P/2

∑
r∼R

∑∗

χ

|Wk(λ, χr)| � x1/kR(5/14)−εLA,

uniformly for |λ| ≤ Q−1. Arguing as in the section before we do not
have to apply Gallagher’s lemma here we find

Wk(λ, χ)� Lc max
Ia1,... ,Ia2k+1

∣∣∣∣
∫ T

−T

F

(
1
2
+ it, χ

)
dt

·
∫ x

x/2k+1
u(1/2k)−1e

(
t

2kπ
log u+ λu

)
du

∣∣∣∣+ x1/kP−1,

for T = P 3. Estimating the inner integral by Lemma 3.2, we obtain
∫ x

x/2k+1
u(1/2k)−1e

(
t

2kπ
log u+ λu

)
du

� x(1/2k)−1min
(

x√|t|+ 1 ,
x

minx/2k+1<u≤x

|t+ 2kπλu|
)
.

Taking T0 = 4kπxQ−1, we conclude that in order to prove this lemma
it is enough to prove that for P ≤ x(7/150)−ε and 2 ≤ k ≤ 5, the
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following holds

∑
r∼R

∑∗

χ

∫ T0

0

∣∣∣∣Fk
(
1
2
+ it, χ

)∣∣∣∣ dt� x1/2kT
1/2
0 R5/14−εLc,

(5.1)

∑
r∼R

∑∗

χ

∫ 2T1

T1

∣∣∣∣Fk
(
1
2
+ it, χ

)∣∣∣∣ dt� x1/2kR5/14−εT1L
c,

(5.2)

T0 < |T1| ≤ T.
These estimates are shown in the same way as (4.4) and (4.5). here
the condition P ≤ x(7/150)−ε is needed. Two propositions analogous to
Propositions 1 and 2 are proved:

Proposition 3. If there exist Nk,j1 and Nk,j2 , 1 ≤ j1, j2 ≤ 5, such
that Nk,j1 , Nk,j2 ≥ P 9/7+3ε, then (5.1) is true.

Proposition 4. Let J = {1, . . . , 10}. If J can be divided into two
nonoverlapping subsets J1 and J2 such that

max
( ∏

j∈J1

Nk,j ,
∏
j∈J2

Nk,j

)
� x1/kP−(9/7)−3ε,

then (5.1) is true.

Remark. Here we do not need to treat the case R > LD separately
because we do not have to save a factor L−B.

6. The singular series. We now derive (2.5) from (2.3). In the
sequel we write A(q,N) instead of A(q) and s(p,N) instead of s(p)
because we will argue for variable N .

Lemma 6.1. For P ≤ x(7/150)−ε, we have

(6.1)
∑
N≤x

∣∣∣∣
∏
p≤P

s(p,N)−
∑
q≤P

A(q,N)
∣∣∣∣ � xP−(1/3)+ε,
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which implies that for all but � x1+2εP−1/3 even integers N with
1 ≤ N ≤ x, the following holds

(6.2)
∏
p≤P

s(p,N) =
∑
q≤P

A(q,N) +O(x−ε).

From here, (2.5) follows.

Proof. Equation (6.1) was proved in Lemma 5.1 in [1] for a sufficiently
small ε for P as large as xε. We show that it also holds for xε < P ≤
x(7/150)−ε. We argue exactly as in the proof of Lemma 5.1 in [1], but
here we set: V := exp(log x logP/ log log x) and v = 3 log log x/4 logP .
Denoting the lefthand side in (6.1) by J , we follow the proof of
Lemma 5.1 in [1]:

(6.3)

J � xV −vLcL
1/2
+ x1+εP−1/3 + x7/8+ε + x(31/40)+ε

·
∑

10≤m≤(2+ε) logP/ log log x

(m log(xe))m

� x7/8+ε + x1+εP−1/3 + x(31/40)+ε

·
∑

10≤m≤(2+ε) logP/ log log x

(m(log(xe))m.

For the calculation of the last sum, we have used x(m−1)/2 ≤ V and
therefore m ≤ (2 + ε) logP (log log x)−1 for a sufficiently large x. We
obtain as an upper bound:

(6.4)

� P 2+ε
∑

10≤m≤(2+ε) logP/ log log x

(log(xe))m

� P 2+ε exp((2 + ε) logP log log(xe)/ log log x) logP/ log log x
� P 2+ε exp((2 + 2ε) logP ) logP � P 4+3ε.

We derive from (6.3) and (6.4)

J � x7/8+ε + x1+εP−1/3 + x(31/40)+εP 4+3εLc

� x1+εP−1/3.
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This completes the proof of Lemma 6.1.

REFERENCES

1. C. Bauer, On a problem of the Goldbach-Waring type, Acta Math. Sinica New
Ser. 14 (1998), 223 234.

2. C. Bauer, M.C. Liu and T. Zhan, On sums of three primes, J. Number Theory,
to appear.

3. H. Davenport, Multiplicative number theory, 2nd ed., Springer-Verlag, Chicago,
1980.

4. P.X. Gallagher, A large sieve density estimate near σ = 1, Invent. Math. 11
(1970), 329 339.

5. G. Harman, Trigonometric sums over primes, Mathematika 28 (1981),
249 254.

6. D.R. Heath Brown, Prime numbers in sort intervals and a generalized
Vaughan’s identity, Canadian J. Math. 34 (1982), 1365 1377.

7. M.C. Leung and M.C. Liu, On generalized quadratic equations in three prime
variables, Monatsh. Math. 115 (1993), 133 169.

8. M.C. Liu and K.M. Tsang, Small prime solutions of linear equations, in
Number theory (J.-M. De Konick and C. Levesque, eds.), W. de Gruyter, Berlin,
1989.

9. H.L. Montgomery and R.C. Vaughan, On the exceptional set in Goldbach’s
problem, Acta Arith. 27 (1975), 353 370.

10. Chengdong Pan and Chengbiao Pan, Goldbach’s conjecture, Science Press,
Beijing, 1992.
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