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ORTHOGONAL POLYNOMIALS WITH RESPECT TO
A DIFFERENTIAL OPERATOR. EXISTENCE

AND UNIQUENESS

A.I. APTEKAREV, G.T. LÓPEZ LAGOMASINO AND F. MARCELLÁN

ABSTRACT. A new type of orthogonal polynomial con-
nected with linear differential operators, intimately related
with Sobolev orthogonal polynomials and Hermite-Padé poly-
nomials, is introduced. We study the question of uniqueness
of the sequence of orthogonal polynomials arising from this
construction. As we show, this problem is related to the an-
alytic properties of the fundamental system of solutions of
the operator. The notion of T -system of Tchebyshev plays a
key role in the analysis. Some examples of general classes of
operators which produce a unique system of polynomials are
given.

1. Introduction.

1.1 Definition of the main object. In the last two decades there has
been a growing interest in different generalizations of the notion of
orthogonal polynomials. To name a few, we have Hermite-Padé poly-
nomials, [2, 10], and the matrix orthogonal polynomials, [1, 3]. They
arise in a natural way in problems of approximation theory, mathemat-
ical physics and number theory. From the theoretical point of view,
the study of these constructions pose questions whose solution requires
new methods and interrelations of classical techniques of analysis.

In this paper we introduce sequences of polynomials orthogonal with
respect to a linear homogeneous differential operator.

Definition. Let σ(x) be a positive Borel measure on the real line and
{ρk(x)}m

k=0, ρm ≡ 1, be a set of functions such that ρk(x) dσ(x) has
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finite moments, k = 0, 1, . . . ,m. Denote

(1) L(m) =
m∑

k=0

ρk(x)
dk

dxk
.

We say that {Qn}, n ∈ N , is a sequence of orthogonal polynomials with
respect to the differential operator (OPDO) L(m) if degQn ≤ n and

(2)
∫

L(m)[Qn(x)]P (x) dσ(x) = 0

for any polynomial P (x) such that degP ≤ n− 1.

We note that the coefficients of the differential operator can be taken
as Borel measures on R with finite moments; then the orthogonality
relations take the form

(3)
m∑

k=0

∫
Q(k)

n (x)P (x) dµk(x) = 0, degP ≤ n− 1.

When m = 0, we obtain the classical construction of orthogonal
polynomials:

∫
Qn(x)P (x) dµ(x) = 0, degP ≤ n− 1.

1.2 Relation with Sobolev orthogonal polynomials and Hermite-Padé
linear forms. We recall that Sobolev orthogonal polynomials are defined
as the sequence of polynomials {Qn(x)} such that degQn ≤ n and

(4)
m∑

k=0

∫ b

a

Q(k)
n (x)P (k)(x) dλk(x) = 0, degP ≤ n− 1.

Let us see how such polynomials may be reduced to OPDO. For
simplicity, we consider the case m = 1 with dλ1(x) = ω(x) dx and
ω ∈ C1[a, b]. Then (4) reduces to

0 =
∫ b

a

Qn(x)P (x) dλ0(x) +
∫ b

a

Q′
n(x)P ′(x)ω(x) dx.
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Integrating by parts the second term in the righthand side, one obtains

(5)

0 =
∫ b

a

Qn(x)P (x) dλ0(x)

−
∫ b

a

Q′
n(x)P (x)ω′(x) dx + Q′

n(b)P (b)ω(b)

−Q′
n(a)P (a)ω(a)−

∫ b

a

Q′′
n(x)P (x)ω(x) dx

=
∫ b

a

Qn(x)P (x) dµ0(x)

+
∫

Q′
n(x)P (x) dµ1(x) +

∫
Q′′

n(x)P (x) dµ2(x),

where

dµ0(x) = dλ0(x)
dµ1(x) = ω(b)δ(x− b) − ω(a)δ(x− a) − ω′(x) dx,

and
dµ2(x) = −ω(x) dx.

As we can see, (5) has a form as in (3). For general m, an analogous
reduction can be carried out.

Hermite-Padé polynomials are also intimately connected with OPDO.
They are defined as follows:

Let {nk}m
k=0 be a set of indices in Zm+1

0 ,
∑m

k=0 nk = n. Then
{Qn,k}m

k=0 are the Hermite-Padé polynomials (type I) if degQn,k ≤ nk

and

(6)
m∑

k=0

∫
Qn,k(x)P (x) dµk(x) = 0, degP ≤

m∑
k=0

nk − 1.

It is obvious that (6) and (3) have similar expressions. Although it is
not possible to reduce one case to the other, as was done with SOP,
the methods of investigation of Hermite-Padé polynomials turn out to
be effective in the study of OPDO. For this reason, OPDO serve as an
intermediate link when trying to apply to SOP the widely developed
analytical methods of the theory of Hermite-Padé approximants.



470 APTEKAREV, LOPEZ LAGOMASINO AND MARCELLÁN

1.3 Formal properties of OPDO. The determination of the OPDO
sequence {Qn} defined by (2) or (3) can be reduced to the solution
of a system of n algebraic linear homogeneous equations on the n + 1
coefficients of Qn, thus the existence is guaranteed. Unlike SOP, it is
not possible to affirm uniqueness up to a constant factor. This situation
also occurs in Hermite-Padé polynomials.

We say that n is a normal index if, for a given n, the solution is
uniquely determined up to a constant factor.

A sufficient condition for uniqueness is that any polynomial satisfying
(2) or (3) has exact degree n. In fact, because of the linearity in the
construction, the difference of two solutions is also a solution; therefore,
two different solutions of equal degree not multiples of each other
generate another one of smaller degree contradicting our assumption.

1.4 Description of results. In this paper we study the problem of
normality of OPDO. Normality for index n reduces to the fact that the
fundamental system of solutions of operator L(m) and its derivatives
up to n form Tchebyshev T -systems of functions, (see Theorem 2). For
each n, this fact can be expressed recurrently in terms of the coefficients
in L(m) (see Theorem 3). As for Hermite-Padé polynomials, normality
turns out to be a complicated problem. Nevertheless, when m = 1, we
give a simple sufficient condition on the coefficients of L(1) for normality
of all indices (see Theorem 4). In particular, from Theorem 4, it follows:

Let (Qn) be defined by

∫ b

a

L(1)[Qn(x)]P (x) dσ(x) = 0, degP ≤ n− 1,

where

L(1) =
d

dx
+

∫ d

c

dτ (t)
x− t

,

and [a, b] ∩ [c, d] = ∅. Then, for all n, degQn = n, and therefore all
indices are normal.

This result is analogous to the corresponding one for the Nikishin
systems of Hermite-Padé polynomials, (see [9, Theorem 3]).
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2. Uniqueness of orthogonal polynomials with respect to a
differential operator.

2.1 Normality, general case. As mentioned in the introduction,
normality for OPDO is connected with the notion of T -system on the
interval ∆ = [a, b]. We recall the definition, (see [6]).

Definition. A set {uv(x)}n
ν=0 of continuous functions on ∆ is called

a Tchebyshev system (T -system) on ∆ if any linear combination of it

n∑
ν=0

ανuν(x)

has at most n zeros on this interval. If for each n′ = 0, . . . , n, the set
of functions {uν}n′

ν=0 forms a T -system it is called a Markov system
(M -system).

Theorem 1. Given L(m) as in (1), let us assume that {L(m)(xν)}n
ν=0

is an M -system on ∆. Then degQn = n.

Proof. Assume that degQn = n′ < n, then

(7) L(m)[Qn(x)] =
n′∑

ν=0

ανL
(m)(xν).

Because of the orthogonality relations (2), L(m)[Qn(x)] has at least n
zeros on ∆, but, by assumption and (7), it follows that L(m)[Qn(x)]
cannot have more than n′ < n zeros on ∆, bringing us to a contradic-
tion. Therefore, degQn = n.

Markov proved, (see [6]), that a system {uk(x)}m−1
k=0 of n times

continuously differentiable functions on [a, b] is a T -system if
(8)

W (u0, . . . , um−1) =

∣∣∣∣∣∣∣∣∣

u0(x) u1(x) · · · um−1(x)
u′

0(x) u′
1(x) · · · u′

m−1x
...

...
u

(m−1)
0 (x) u

(m−1)
1 (x) · · · u

(m−1)
m−1 (x)

∣∣∣∣∣∣∣∣∣
	= 0.
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This result allows us to establish a correspondence between T -systems
and fundamental systems of solutions of linear differential equations be-
cause any fundamental solution (u0, . . . , um−1) of L(m)[u] = 0 satisfies
(8). Therefore, any such solution is a T -system.

Theorem 2. Let {u0, . . . , um−1} be a fundamental system of solu-
tions of L(m)(u) = 0. Let us assume that n ∈ N is given and that

{(u(ν)
0 (x), . . . , u(ν)

m−1(x))}

is a T -system for ν = 1, 2, . . . , n + 1. Then degQn = n where Qn is
the nth orthogonal polynomial with respect to L(m).

In the proof of Theorem 2, we use a well known, (see [4]), integral
representation of a fundamental system of the operator L(m). If
{u0, . . . , um−1} is a fundamental system, then m functions
{v0, . . . , vm−1} exist that can be determined recurrently by means of
relations.

v0 = u0,

vr =
d

dx

[
1

vr−1

d

dx

[
1

vr−2

d

dx

[
· · · d

dx

[
1
v1

d

dx

(
ur

v0

)]
· · ·

]]]
,

r = 1, · · · ,m− 1.

Therefore,

(9)
u0 = v0, u1 = v0

∫
v1 dx,

ur = v0

∫
v1

∫
· · ·

∫
vr(dx)r, r = 2, 3, · · · ,m− 1,

and the operator L(m) can be expressed as
(10)

L(m)[u] = D

[
1

vm−1
D

[
1

vm−2

[
· · ·

[
1
v1

D

[
u

v0

]]
· · ·

]]]
, D =

d

dx
.
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Proof of Theorem 2. By use of Theorem 1, it is sufficient to prove
that under the present assumptions, {L(m)[xν ]}n

ν=0 forms an M -system.
Suppose this is not so. Let us fix n′ = 1, . . . , n. Then, due to a result
of Markov, (see [5]), constants {α0, . . . , αn′} exist such that

n′∑
ν=0

ανL
(m)(xν) = L(m)

[ n′∑
ν=0

ανx
ν

]

has at some point x0 ∈ ∆ a zero of order n′+1. Using the representation
of the operator L(m) in form (10), we have

L(m)

[ n′∑
ν=0

ανx
ν

]
= D

[
1

vm−1
D

[
1

vm−2

[
· · ·D

[∑n′

ν=0 ανx
ν

v0

]
· · ·

]]]
.

From this it follows that a constant cm−1 exists such that

1
vm−1

D

[
1

vm−2

[
· · ·D

[∑n′

ν=0 ανx
ν

v0

]
· · ·

]]
+ cm−1,

and therefore

D

[
1

vm−2

[
· · ·D

[∑n′

ν=0 ανx
ν

v0

]
· · ·

]]
+ cm−1vm−1

has, at the point x0, a zero of order n′ + 2. Repeating this process m
times, we obtain that constants c0, c1, . . . , cm−1 exist for which

n′∑
ν=0

ανx
ν+c0v0+c1v0

∫
v1 dx+· · ·+cm+1v0

∫
v1

∫
· · ·

∫
vm−1(dx)m−1

has, at the point x0, a zero of order n′ + m + 1. Taking into account
(9), one obtains that

n′∑
ν=0

ανx
ν + c0u0(x) + c1u1(x) + · · · + cm−1um−1(x)

has, at the point x0, a zero of order n′ + m + 1. Differentiating this
expression (n′ + 1) times, one has that

c0u
(n′+1)
0 (x) + c1u

(n′+1)
1 (x) + · · · + cm−1u

(n′+1)
m−1 (x)
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has, at the point x0, a zero of order m which contradicts our assumption
that {u(n′+1)

k (x)}m−1
k=0 is a T -system and it cannot have more than m−1

zeros. This concludes the proof.

Theorem 2 gives us a condition of normality in terms of a fundamental
system of solutions. In order to reformulate this condition in terms
of the coefficients of the differential operator, we state the following
theorem:

Theorem 3. Assume that L(m) has infinitely differentiable coef-
ficients {ρk}m

k=0 on ∆. Define recurrently the system of functions
{ρk,n′}m

k=0, n
′ = 1, 2, . . . , as follows

{ρk,0 := ρk}m
k=0

and

ρk,n′+1 = ρk,n′ + ρ0,n′

(
ρk+1,n′

ρ0,n′

)′
,

k = 0, . . . ,m− 1, n′ ∈ N,

ρm,n′ ≡ 1, n′ ∈ N.

Then degQn = n if, for all n′ = 0, . . . , n, ρ0,n′(x) 	= 0, x ∈ ∆.

Proof of Theorem 3. The last coefficient ρ0 of the differential operator

(11)
L(m)[u] = u(m)(x) + ρm−1(x)u(m−1)(x) + · · ·

+ ρ1(x)u′(x) + ρ0(x)u(x)

and the Wronskian of a fundamental system of solutions {u0, . . . , um−1}
are connected by the following formula, (see [4]),

ρ0(x) = (−1)mW (u′
0, . . . , u

′
m−1)

W (u0, . . . , um−1)
.

Therefore, in order that {u′
k}m−1

k=0 be a T -system, it is sufficient that

ρ0(x) 	= 0, x ∈ ∆.
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We wish to derive an analogous condition for the system {u(n′)
k }m−1

k=0 ,
0 ≤ n′ ≤ n + 1. We must find a differential operator for which
{u(n′)

k }m−1
k=0 is a fundamental solution and look at its last coefficient.

To this end, we divide (11) by ρ0, differentiate once, and multiply by
ρ0. As a result, one has

L
(m)
1 [u(1)] =

dm

dxm
u(1)(x)

+
{
ρm−1(x) + ρ0(x)

(
1

ρ0(x)

)′}
dm−1

dxm−1
u(1)(x)

+
{
ρm−2(x) + ρ0(x)

(
ρm−1(x)
ρ0(x)

)′}

× dm−2

dxm−2
u(1)(x) + · · ·

+
{
ρ0(x) + ρ0(x)

(
ρ1(x)
ρ0(x)

)′}
u(1)(x).

We obtain, using the same arguments as above, that {u′′
k}m−1

k=0 is a
T -system if

ρ0,1 = ρ0 + ρ0

(
ρ1

ρ0

)′
= (−1)mW (u′′

0 , . . . , u
′′
m−1)

W (u′
0, . . . , u

′
m−1)

	= 0, x ∈ ∆.

Continuing this process for n′ = 2, . . . , n − 1, one arrives at the
statement of the theorem.

Remark. The process of the proof leads to the following expression
for the ratio of the last coefficients of two consecutive operators L

(m)
n ,

ρ0,n+1

ρ0,n
= 1

+
p=min(m,n+1)∑′

k=1

∑
{νk

j }n
j=0∈∨

F

({
ρ0,j

ρ0,j+1

}n−1

j=0

,

{
ρk,0

ρ0,0

}
, {νk

j }n
j=0

)
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where

F

({
ρ0,j

ρ0,j+1

}n−1

j=0

,

(
ρk,0

ρ0,0

)
, {νk

j }n
j=0

)

=
(
ρ0,n−1

ρ0,n

(
ρ0,n−2

ρ0,n−1
· · ·

(
ρ0,0

ρ0,1

(
ρk,0

ρ0,0

)(νk
0 ))(νk

1 )

· · ·
)(νk

n−1)
)(νk

n)

and ∨ is the set of numbers {νk
j }n

j=0, k = 1, 2, . . . , p, such that



νk
n = 1,
νk

j ∈ {0, 1} j = 0, . . . , n− 1,∑n
j=0 ν

k
j = k

.

This formula for n = 1, 2, 3, . . . , gives us

ρ0,1

ρ0,0
= 1 +

(
ρ1,0

ρ0,0

)′
,

ρ0,2

ρ0,1
= 1 +

(
ρ0,0

ρ0,1

(
ρ2,0

ρ0,0

)′)′
+

(
ρ0,0

ρ0,1

ρ1,0

ρ0,0

)′
,

ρ0,3

ρ0,2
= 1 +

(
ρ0,1

ρ0,2

(
ρ0,0

ρ0,1

(
ρ3,0

ρ0,0

)′)′)′

+
(
ρ0,1

ρ0,2

(
ρ0,0

ρ0,1

ρ2,0

ρ0,0

)′)′

+
(
ρ0,1

ρ0,2

ρ0,0

ρ0,1

(
ρ2,0

ρ0,0

)′)′
+

(
ρ0,1

ρ0,2

ρ0,0

ρ0,1

ρ1,0

ρ0,0

)′
.

Let us consider the system of functions

Uj(x) = L(m)

[
xj

j!

]
, j = 0, . . . , n− 1,

and the corresponding system of functions, (see (9)),

V0(x) = U0(x)

Vj(x) =
d

dx

[
1

Vj−1

d

dx

[
1

Vj−2
· · · d

dx

[
1
V1

d

dx

[
Uj(x)
V0(x)

]]]
· · ·

]
,

j = 1, . . . , n− 1.
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For j = 0, 1, 2, 3, . . . , as a consequence we get

V1 =
(
L(m)[x]
ρ0,0

)′
=

(
xρ0,0 + ρ1,0

ρ0,0

)′

= 1 +
(
ρ1,0

ρ0,0

)′
=

ρ0,1

ρ0,0
,

V2 =
(

1
V1

(
L(m)[x2/2]

V0

)′)′

=
(
ρ0,0

ρ0,1

[
(x2/2)ρ0,0 + xρ1,0 + ρ2,0

ρ0,0

]′)′

=
(
ρ0,0

ρ0,1

(
ρ2,0

ρ0,0

)′)′
+

(
ρ0,0

ρ0,1

ρ1,0

ρ0,0

)′

+
(
ρ0,0

ρ0,1
x

(
1 +

(
ρ0,0

ρ0,0

)′))′
=

ρ0,2

ρ0,1
.

Continuing this process we obtain that

Vj =
ρ0,j

ρ0,j−1
, j = 1, 2, . . . , n− 1.

Thus, we see that Theorem 3 establishes the formal correspondence
between results of Theorems 1 and 2.

Example 1. Let

(12) L(m) =
m∑

k=0

Pk(x)
dk

dxk
,

where Pk is a polynomial such that degPk ≤ k, Pk 	= 0, k =
0, . . . ,m − 1. The corresponding homogeneous differential equation
for (12) is named after Euler, (see [4]). It is easy to check that, for all
n ∈ N ,

ρ0,n = const 	= 0

which yields that all indices are normal.

2.2 Normality for m = 1. When m = 1, the conditions above
naturally take a simplified form. In this case, our operator, (see (1)),
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reduces to

(13) L(1) =
d

dx
+ ρ0(x).

A (fundamental) solution of equation L(1)[u] = 0 is

(14) u(x) = exp
{
−

∫
ρ0(t) dt

}

and our system {Qn} of OPDO satisfies
∫

∆

[Qn(x)ρ0(x) + Q′
n(x)]P (x) dσ(x), degP ≤ n− 1,

or what is the same, (see (10)),

(15)
∫

∆

[
Qn(x)
u(x)

]′
P (x)u(x) dσ(x) = 0, degP ≤ n− 1.

The condition of normality for index n in Theorem 2 transforms into

(16) u(n′)(x) 	= 0, x ∈ ∆, n′ = 1, 2, . . . , n + 1.

Example 2. For the system {Qn} of OPDO obtained from

0 =
∫ π/2

0

[Qn(x) sinx + Q′
n(x) cosx]P (x) dσ(x), degP ≤ n− 1,

it is possible to verify (16) for all n, (see [6]). Therefore, all indices are
normal, degQn = n.

Let us give another condition for this case

Theorem 4. Let ρ0(x) in (13) be infinitely differentiable in ∆ and
satisfy either

a)
dn′

dxn′ ρ0(x) ≤ 0, n′ = 0, . . . , n,(17)
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or

b) (−1)n′ dn′

dxn′ ρ0(x) ≥ 0, n′ = 0, . . . , n.(18)

Then n is a normal index.

Proof. Let us first consider case a). We proceed by induction in order
to prove that (16) takes place. For n′ = 1, we have

u′(x) = −ρ0(x), u(x) > 0.

Assume that, for all ν = 2, . . . , n′, n′ ≤ n,

u(ν) > 0.

Then, using Leibniz’s formula, for n′ one obtains

u(n′)(x) = (−ρ0u)(n
′−1)

= −
n′−1∑
ν=0

(
n′ − 1

ν

)
ρ
(ν)
0 u(n′−1−ν) > 0.

Case b) is treated analogously.

From this theorem we can derive several examples of classes of first
degree linear operators L(1) for which all indices are normal (and
degQn = n).

Example 3. The function ρ0(x) = xα, 0 ≤ α ≤ 1, or

ρ0(x) =
∫ 1

0

xα dτ (α)

satisfies condition (18) on any segment ∆ = [a, b], 0 < a < b.

Example 4. The function ρ0(x) = −eαx, α ≥ 0, or more generally

ρ0(x) = −
∫ ∞

0

eαx dτ (α)
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satisfies (17) on any segment ∆.

The following example was stated in the introduction as a conse-
quence of Theorem 4.

Example 5. Let

ρ0(x) =
∫ d

c

dτ (t)
x− t

, x ∈ [a, b], [a, b] ∩ [c, d] = ∅,

then
dnρ0(x)
dxn

= (−1)nn!
∫ d

c

dτ (t)
(x− t)n+1

.

It is easy to see that, if ∆ = [a, b] is to the right of [c, d], then (18)
takes place, while if it is to the left, (17) is satisfied.

2.3 Concluding remarks. It would be desirable to obtain, for arbitrary
fixed m, simple expressions in order that the conditions of Theorem 3
be fulfilled as we have for m = 1.

An important question for the further development of the theory is
to study the localization of the zeros for the polynomials Qn, n ∈ N .
For example, if we know that the zeros are in a compact set of the
complex plane, then advanced techniques of potential theory allow to
describe the weak asymptotic behavior of {Qn}, as n → ∞. In such a
way, due to the existing connection between SOP and OPDO indicated
in the introduction, we could obtain similar results for general classes
of Sobolev orthogonal polynomials.

Acknowledgments. The authors are grateful to A. Ambraladze
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