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QUASI-PURIFIABLE SUBGROUPS
AND HEIGHT-MATRICES

TAKASHI OKUYAMA

ABSTRACT. Let G be an arbitrary abelian group. A
subgroup A of G is said to be quasi-purifiable in G if a pure
subgroup H of G exists containing A such that A is almost-
dense in H and H/A is torsion. Such a subgroup H is called
a quasi-pure hull of A in G. First we prove that a torsion-free
rank-one subgroup A of G is quasi-purifiable in G if and only

if, for every prime p and every a ∈ A, hp(a) � ω implies
hp(a) = ∞. Next we use the result to compute the height-
matrix of the torsion-free element a of an abelian group whose
torsion part T (G) is torsion-complete, then all torsion-free
rank-one subgroups of G are quasi-purifiable in G and hence
the height-matrices of the torsion-free elements of the group
G can be computed.

1. Introduction. Let p be a prime. A subgroup A of an arbitrary
abelian group G is said to be p-purifiable (purifiable) in G if a p-pure
(pure) subgroup H of G containing A which is minimal among the p-
pure (pure) subgroups of G that contain A. Such a subgroup H is said
to be a p-pure hull (pure hull) of A in G.

Hill and Megibben [7] established properties of pure hulls of p-groups
and characterized the p-groups for which all subgroups are purifiable.

Later, Benabdallah and Irwin [2] introduced the concept of almost-
dense subgroups of p-groups and used it to determine the structure of
pure hulls of purifiable subgroups of p-groups.

Furthermore, Benabdallah and Okuyama [3] introduce new invari-
ants, the so-called nth overhangs of a subgroup of a p-group, which
are related to the nth relative Ulm-Kaplansky invariants. Using them,
they obtained a necessary condition for subgroups of p-groups to be
purifiable.
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Benabdallah, Charles and Mader [1] introduced the concept of maxi-
mal vertical subgroups supported by a given subsocle of a p-group and
characterized the p-groups for which the necessary condition given in
[3] is also sufficient.

Several results on isomorphy of pure hulls in p-groups are contained
in [12] and [13]. Other results about purifiable subgroups of p-groups
are contained in [4], [5], [8], [11], [12] and [13].

Recently, in [14], we extended the concept of almost-dense subgroups
from p-groups to arbitrary abelian groups (see Definition 2.1) and
began to study purifiable subgroups of arbitrary abelian groups. We
characterized the groups for which all subgroups are purifiable in [14]
and characterized in [15] the purifiable torsion-free rank-one subgroups
in arbitrary abelian groups. However, the characterization of purifiable
subgroups in arbitrary abelian groups is an open problem even if the
subgroup is torsion-free.

In [14, Theorem 1.11], we characterized a p-pure (pure) hull H of a
purifiable subgroup A in an arbitrary abelian group as follows:

1. A is p-almost-dense (almost-dense) in H;

2. H/A is a p-group (torsion);

3. (for every prime p), a nonnegative integer mp exists such that

pmpH[p] ⊆ A.

Quasi-p-purifiable (quasi-purifiable) in arbitrary abelian groups is de-
fined as follows.

Definition 1.1. Let p be a prime. A subgroup A of an arbitrary
abelian group G is said to be quasi-p-purifiable (quasi-purifiable) in G
if a p-pure (pure) subgroups H of G exists containing A such that

1. A is p-almost-dense (almost-dense) in H and

2. H/A is a p-group (torsion).

Such a subgroup H is called a quasi-p-pure hull (quasi-pure hull) of A
in G.

In [12], we studied quasi-purifiable subgroups of p-groups. In this
note we consider quasi-purifiable subgroups in arbitrary abelian groups.
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In the rest of this introduction, let G be an arbitrary abelian group and
A a subgroup of G.

In Section 2 we recall basic definitions and properties and prove
that A is quasi-purifiable in G if and only if, for every prime p, A
is quasi-p-purifiable in G. This plays an important role in studying
quasi-purifiable subgroups of G.

In Section 3 we present an example of a torsion-free rank-one sub-
group that has a quasi-pure hull but no pure hull.

In Section 4 we establish a necessary and sufficient condition for a
torsion-free rank-one subgroup to be quasi-purifiable. In fact, if A is
torsion-free rank-one, then A is quasi-purifiable in G if and only if, for
every a ∈ A and every prime p,

(1.2) hp(a) � ω implies hp(a) = ∞
where, by definition, hp(a) = ∞ if and only if a is in the maximal
p-divisible subgroup of G.

We use the result to prove that, if G is an abelian group whose torsion
part T (G) is torsion-complete, then all torsion-free rank-one subgroups
of G are quasi-purifiable in G and, hence, for every a ∈ G \ T (G) and
every prime p, a satisfies the condition (1.2) as Corollary 4.14.

In Section 5 we show how to compute the height-matrix of a ∈
G \ T (G) if a satisfies (1.2) for every prime p. If G is an abelian group
whose torsion part T (G) is torsion-complete, then the height-matrices
of all torsion-free elements of the group G can be computed in this way.
Finally, we compute the height-matrices of some torsion-free elements
of the group G in Section 3. Example 3.1 shows that the converse
of Corollary 4.14 is not true, namely, even if all torsion-free rank-one
subgroups of an abelian group G are quasi-purifiable G, the torsion
part of G is not necessarily torsion-complete.

Height-matrices are important. For example, combining results in
Rotman [16], Megibben [9] and Myshkin [10], countable mixed groups
of torsion-free rank-one are classified in [6, Theorem 104.3]. In fact,
the countable mixed groups H and K of torsion-free rank-one are
isomorphic if and only if T (H) ∼= T (K) and the height-matrices H(H)
and H(K) are equivalent.

All groups considered are arbitrary abelian groups. The terminologies
and notations not expressly introduced here follow the usage of [6].
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Throughout this note, P denotes the set of all prime integers, p an
element of P, Gp the p-primary subgroup and T the maximal torsion
subgroup of the arbitrary abelian group G.

2. Notation and basics. We recall definitions and properties
mentioned in [14]. We frequently use them in this note. Throughout
this section let G be an arbitrary abelian group and A a subgroup
of G.

Definition 2.1. A is said to be p-almost-dense in G if, for every
p-pure subgroup K of G containing A, the torsion part of G/K is p-
divisible. Moreover, A is said to be almost-dense in G if A is p-almost-
dense in G for every p ∈ P.

Proposition 2.2 [14, Proposition 1.3, Proposition 1.4]. The follow-
ing properties are equivalent:

1. A is p-almost dense (almost-dense) in G;

2. for all integers n � 0 (and all p ∈ P), pnG[p] ⊆ A + pn+1G.

Definition 2.3. A is said to be p-purifiable (purifiable) in G if,
among the p-pure (pure) subgroups of G containing A, a minimal one
exists. Such a minimal p-pure (pure) subgroup is called a p-pure (pure)
hull of A.

Proposition 2.4 [14, Theorem 1.8, Theorem 1.11]. Suppose that A
is p-purifiable (purifiable) in G. Then a p-pure (pure) subgroup H of
G containing A is a p-pure (pure) hull of A in G if and only if the
following three conditions are satisfied:

1. A is p-almost-dense (almost-dense) in H;

2. H/A is a p-primary (torsion);

3. (for every p ∈ P), a nonnegative integer mp exists such that

pmpH[p] ⊆ A.

Comparing the definition (see Definition 1.1) of quasi-purifiable sub-
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groups of abelian groups G with Proposition 2.4, we can see easily that
the condition for a subgroup of G to be quasi-purifiable is weaker than
the condition for it to be purifiable.

Definition 2.5. For every nonnegative integer n, we define the nth
p-overhang of A in G to be the vector space

Vp,n(G,A) =
(A + pn+1G) ∩ pnG[p]

(A ∩ pnG)[p] + pn+1G[p]
.

Moreover, a set {ti} of nonnegative integers is a p-overhang set of A
in G if Vp,ti

(G,A) 	= 0 for all i � 1 and Vp,t(G,A) = 0 otherwise. A
is said to be eventually p-vertical in G if the set {ti} is finite and A is
said to be p-vertical in G if the set {ti} is empty.

It is convenient to use the following notations for the numerator and
the denominator of Vp,n(G,A):

An
G(p) = (A + pn+1G) ∩ pnG[p] = ((A ∩ pnG) + pn+1G)[p]

and
AG

n (p) = (A ∩ pnG)[p] + pn+1G[p].

Note that, for any x ∈ An
G(p)\AG

n (p), we have hp(x) = n. If x ∈ AG
n (p),

then h
G/A
p (x+A) > n. If x /∈ AG

n (p), then a ∈ A and g ∈ G exist such
that x = a+ pn+1g. Hence h

G/A
p (x+A) > n. If A is p-almost-dense in

G, then A + pn+1G ⊇ pnG[p], so An
G(p) = pnG[p]. If A is torsion-free,

then AG
n (p) = pn+1G[p]. Thus, if A is torsion-free and p-almost-dense

in G, then

Vp,n(G,A) =
pnG[p]

pn+1G[p]
,

the nth Ulm-Kaplansky invariant of Gp.

Proposition 2.6 [14, Proposition 2.2]. For every p-pure subgroup
K of G containing A,

Vp,n(G,A) ∼= Vp,n(K,A)

for all n � 0.
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Next we can characterize quasi-pure hulls of a quasi-purifiable sub-
group in arbitrary abelian groups as follows:

Proposition 2.7. If A is quasi-purifiable in G, then the following
hold.

1. If H is a quasi-pure hull of A in G then, for every p ∈ P, H(p) is a
quasi-p-pure hull of A in G where H(p) is defined by H(p)/A = (H/A)p.

2. If, for every p ∈ P, K(p) is a quasi-p-pure hull of A in G, then∑
p K(p) is a quasi-pure hull of A in G.

Proof. (1) By hypothesis, H/A is torsion. Let H(p)/A = (H/A)p. We
prove that H(p) is p-pure in G. Suppose that png ∈ H(p) ⊆ H with
g ∈ G and n ∈ Z. Then png = pnh for some h ∈ H, so pn(g − h) = 0.
Hence g = x+y+z such that x ∈ H(p), y ∈ ∑

q �=p H(q) and z ∈ G[pn].
png = pnx + pny so pny ∈ H(p) ∩ ∑

q �=p K(q) = A and it follows that
y ∈ A and png = pN (x + y) ∈ pnH(p). Hence H(p) is p-pure in G.
Since A is almost-dense in H, A is p-almost-dense in H(p) and so A is
quasi-p-purifiable in G.

(2) For every p ∈ P, let K(p) be a quasi-p-pure hull of A in G.
Let K =

∑
p K(p). We show that K is pure in G. Let pmg ∈ K

with g ∈ G and m ∈ Z. Then we can write pmg = u + v for some
u ∈ K(p) and v ∈ ∑

q �=p K(q). Since (
∑

q �=p Kq)/A is p-divisible,
v′ ∈ ∑

q �=p K(q) and a ∈ A exist such that v = pmv′ + a. Since
pm(g − v′) = u + a ∈ K(p) ∩ pmG = pmK(p), K is ppure in G. Hence
K is pure in G. It is immediate that A is almost-dense in K and K/A
is torsion. Hence A is quasi-purifiable in G.

In view of Proposition 2.7 we can show a relationship between quasi-
p-purifiability and quasi-purifiability.

Corollary 2.8. A subgroup A is quasi-purifiable in G if and only if,
for every p ∈ P, A is quasi-p-purifiable in G.

3. An example. In this section we present an example of a quasi-
purifiable subgroup of an abelian group that is not purifiable.
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Example 3.1. For every p ∈ P, let

Tp =
∞⊕

i=1

〈ypi
〉

where o(ypi) = p2i and, for every p ∈ P and i = 1, 2, . . . , define

bpi = (0, . . . , 0, ypi, pypi+1, p
2ypi+2, . . . ) ∈

∞∏
i=1

〈ypi〉.

Moreover, define

a = (b21,b31, . . . ,bp1, . . . ) ∈
∏
p

( ∞∏
i=1

〈ypi〉
)

and

gpj = (bj−1
21 ,bj−1

31 , . . . ,bj−1
q1 , . . . ,bpj , . . . ,b

j−1
r1 , . . . ) ∈

∏
p

( ∞∏
i=1

〈ypi〉
)

where q, r ∈ P with q 	= p 	= r, b0
q1 = bq1 and pbj−1

q1 = bj−2
q1 for

every q 	= p and j = 2, 3, 4, . . . . Note that a = gp1 for all p ∈ P. Let
T = ⊕pTp and

G = 〈T, gpj | p ∈ P, j = 1, 2, . . . 〉.

For convenience, we write ypi instead of (0, . . . , 0, ypi, 0, . . . ). Then
we have the following properties.

Property 3.2. For every p ∈ P and all integers i � 1,

ypi = gpi − pgpi1.

Hence
G = 〈gpj | p ∈ P, j = 1, 2, . . . 〉.

Proof. This follows from the definition.
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Property 3.3. For every prime p and all integers i � 1, we have

(3.4) p2i−1ypi = pia− p2igpi+1

and

(3.5) (G/〈a〉) =
⊕

p

( ∞⊕
j=1

〈gpj + 〈a〉〉
)

and o(gpj + 〈a〉) = p2j−1

for j � 2.

Proof. By an easy induction we have for i � 1, p2i−1gpi = pia. Hence,
by Property 3.2 we have (3.4). For every p ∈ P, let G(p) = 〈gpj | j =
1, 2, . . . 〉. By (3.4), we have o(gpj + 〈a〉〉) = p2j−1 for j � 2 and, hence,

G(p)/〈a〉 =
∞∑

j=1

〈gpj + 〈a〉〉.

By [6, Theorem 33.1], we have

G(p)/〈a〉 =
∞⊕

j=1

〈gpj + 〈a〉〉.

By Property 3.2 we have (3.5).

Property 3.6. T = T (G).

Proof. By [6, Theorem 33.1], Tp is pure in Gp. It suffices to prove
that G[p] ⊆ T [p]. Let g ∈ G[p]. By (3.5), we can write

g + 〈a〉 =
n∑

i=2

αip
2i−2gpi + 〈a〉,

where every αi is an integer for 1 � i � n. By (3.4), we have

g +
n∑

i=2

αip
2i−3ypi−1 ∈ T ∩ 〈a〉 = 0.
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Hence T = T (G).

Property 3.7. 〈a〉 is quasi-purifiable in G and G is a quasi-pure
hull of 〈a〉.

Proof. By (3.4) and Property 3.6, 〈a〉 is almost-dense in G. Since
G/〈a〉 is torsion, G is a quasi-pure hull of 〈a〉.

Property 3.8. 〈a〉 is not purifiable in G.

Proof. For every p ∈ P, the p-indicator of a is

(0, 1, 3, 5, . . . , 2n− 1, . . . ).

By [15, Theorem 3.2], 〈a〉 is not purifiable in G.

4. Quasi-purifiable torsion-free rank-one subgroups. The
goal of this section is to provide a necessary and sufficient condition
for a torsion-free rank-one subgroup of an arbitrary abelian group to
be quasi-purifiable. First we give an important lemma.

Lemma 4.1. Let G be an abelian group and A a torsion-free rank-
one subgroup of G. Let x, y ∈ G[p] such that hp(y) < h

G/A
p (y +A) and

hp(x) < hp(y). Then h
G/A
p (x+ A) < hp(y).

Proof. Suppose that h
G/A
p (x + A) � hp(y). Let s = hp(x) and

t = hp(y). By hypothesis, x = a + ptg and y = b + pt+1h for some
a, b ∈ A and g, h ∈ G. Since r(A) = 1, integers α, β exist such that
(α, β) = 1 and αa + βb = 0. Hence,

αx + βy = αptg + βpt+1h.

Then p divides α, (β, p) = 1 and βy ∈ pt+1G. This contradicts the
choice of y. Hence h

G/A
p (x+ A) < hp(y).

Lemma 4.2. Let G be an abelian group and A a torsion-free rank-
one subgroup of G. If Vp,s(G,A) 	= 0 and Vp,t(G,A) 	= 0 for some
integers s < t, then s < h

G/A
p (x+A) < t for every x ∈ As

G(p) \AG
s (p).
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Proof. Let x ∈ As
G(p) \ AG

s (p) and y ∈ At
G(p) \ AG

t (p). By the
comment after Definition 2.5, hp(x) = s, h

G/A
p (x + A) > s, hp(y) = t

and h
G/A
p (y + A) > t. By Lemma 4.1 s < h

G/A
p (x + A) < t.

Definition 4.3. Let G be an abelian group, A a torsion-free rank-one
subgroup of G and {ti} the p-overhang set of A in G. Define

ci = max{hG/A
p (y + A) | y ∈ Ati

G(p) \AG
ti
(p)}

if this exists.

Lemma 4.4. Let G be an abelian group, A a torsion-free rank-one
subgroup of G and {ti} the p-overhang set of A in G. Suppose that
A is not eventually p-vertical in G. Then, for every i � 1, ci (see
Definition 4.3) exists and ti < ci < ti+1. Setting

fk =
k∑

j=1

(tj+1 − cj)

for all k � 1, a ∈ A exists such that

hp(pna) =




t1 for n = 0,
c1 + n for 1 � n � f1,

c1 + n +
∑k+1

i=2 (ci − ti) for fk < n � fk+1, k � 1.

Proof. By Lemma 4.2, {hG/A
p (y+A) | y ∈ Ati

G(p)\AG
ti
(p)} is bounded

and hence ci exists. Then, for every i � 1, ti < ci < ti+1.

For every i � 1, xi ∈ Ati

G(p) \ AG
ti
(p), ai ∈ A and gi ∈ G exist such

that

(4.5) xi = ai + pcigi.

Then hp(xi) = hp(ai) = ti < ci = h
G/A
p (xi + A) = h

G/A
p (pcigi + A)

and hp(pjgi) = j for 0 � j � ci. If hp(pci+1gi) > ci + 1, then
pai = pci+2g for some g ∈ G. Let y = ai − pci+1g. Then hp(y) = ti
and 0 	= y ∈ Ati

G(p) \ AG
ti
(p). This contradicts the maximality of
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h
G/A
p (xi + A). Hence hp(pci+1gi) = ci + 1. Suppose by induction that

hp(pci+kgi) = ci +k for 1 � k < ti=1− ci. If hp(pci+k+1gi) > ci +k+1,
then g′ ∈ G exists such that −pk+1ai = pci+k+1gi = pci+k+2g′. Since
−pkai = pci+kgi, by induction hypothesis, we have hp(pkai) = ci + k.
Then pkai + pci+k+1g′ ∈ Aci+k

G (p) = AG
ci+k(p) = pci+k+1G[p]. This is

a contradiction. Therefore,

(4.6) hp(pjgi) = j

for 0 � j � ti+1.

By (4.5) and (4.6) for all i � 1, hp(ai) = ti and hp(pnai) =
hp(pn+cigi) = ci +n for 1 � n � ti+1−ci. Set a = a1. Then hp(a) = t1
and hp(pna) = c1+n for 1 � n � f1. Since hp(pf1a) = t2 = hp(a2), it is
easily seen that hp(pna) = c1 +n+ c2 − t2 for f1 < n � f2. Suppose by
induction that hp(pna) = c1 +n+

∑k+1
i=2 (ci − ti) for fk < n � fk+1. As

in the previous paragraph, we obtain hp(pna) = c1 +n+
∑k+2

i=2 (ci − ti)
for fk=1 < n � fk+2.

We give a useful lemma and use it to prove Lemma 4.8.

Lemma 4.7. Let G be an abelian group and A a subgroup of G.
Suppose that A ∩ pmG is quasi-p-purifiable in pmG for some m � 0.
Then A is quasi-p-purifiable in G.

Proof. Let H be a quasi-p-pure hull of A ∩ pmG in pmG. Since
(A+H)∩ pmG = H, by [14, Lemma 4.4], A+H can be extended to a
p-pure subgroup K of G such that K∩pmG = H. Therefore, pmK = H.
Since A ∩ pmG is almost-dense in H, we have pm+iK[p] = piH[p] ⊆
(A∩pmG)+pi+1H = (A+pi+1H)∩pmG ⊆ A+pi+1H = A+pm+i+1K
for all i � 0.

For every p-pure subgroup R of K containing A, define

E(R) = {t � 1 | A + ptR 	⊇ pt−1R[p]}

and set

m(R) = 0 if E(R) 	= 0, and m(R) = max{x ∈ E(R)} if E(R) 	= ∅.
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Note that m(R) � m+1 and hence a p-pure subgroup L of G containing
A exists such that m(L) is minimal. By [14, Lemma 1.2], we see that
m(L) = 0. hence a p-pure subgroup L of G containing A exists such
that A is p-almost-dense in L. Since pm(K/A) ∼= pmK/(A ∩ pmG) =
H/(A∩ pmG) is a p-group, K/A is a p-group. Hence, L/A is a p-group
and L is a quasi-p-pure hull of A in G.

Lemma 4.8. Let G be an abelian group and A a torsion-free rank-
one subgroup of G. Suppose that A is not eventually p-vertical in G.
Then A is quasi-p-purifiable in G.

Proof. For all i � 1, let ti, xi, ai and gi be as in the proof of
Lemma 4.4, and let ci be as in Definition 4.3. Specifically, by (4.5)
and (4.6),

xi ∈ Ati

G(p) \AG
ti
(p), pxi = 0, xi = ai + pcigi, ai ∈ A, gi ∈ G,(4.9)

hp(xi) = hp(ai) = ti < ci = hG/A
p (xi + A) = hG/A

p (pcigi + A),
(4.10)

hp(pjgi) = j for 0 � j � ti+1.(4.11)

Let H = 〈pt1gi, A ∩ pt1G | i � 1〉. By (4.9), o(pt1gi + (A ∩ pt1G)) =
pci−t1+1. We show that H is p-pure in pt1G. By [6, Theorem 33.1],
H/(A ∩ pt1G) is p-pure in pt1G/(A ∩ pt1G).

Let png ∈ H with g ∈ pt1G and n ∈ Z. Since png + (A ∩ pt1G) ∈
H/(A∩pt1G)∩pn(pt1G/(A∩pt1G)) = pn(H/(A∩pt1G)), b ∈ A∩pt1G
and h ∈ H exist such that png = b + pnh.

Suppose that 0 < n � t2 − t1. Since r(A) = 1, α1 and β1 exist
such that (α1, β1) = 1 and α1a1 = β1b. Since hp(a1) = t1 and
hp(b) � n + t1 > t1, p divides α1 and (β1, p) = 1. Let α1 = pα′

1 where
α′

1 is an integer. By (4.9), we have α1a1 = α′
1pa1 = −α′

1p
c1+1g1 =

−α′
1p

c1−t1+1pt1g1. Since hp(b) � t1 + n, by (4.11) we have α1a1 =
α′′

1p
npt1g1 for some integer α′′

1 . Hence β1p
ng = α′′

1p
npt1g1 + β1p

nh ∈
pnH.

Suppose that ti − t1 < n � ti+1 − t1 for i � 2. Since r(A) =
1, αi and βi exist such that (αi, βi) = 1 and αiai = βib. Since
hp(ai) = ti and hp(b) � n + t1 > ti − t1 + t1 = ti, p divides αi

and (βi, p) = 1. Let αi = pα′
i where α′

i is an integer. By (4.9) we have
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αiai = α′
ipai = −α′

ip
ci+1gi = −α′

ip
ci−t1+1pt1gi. Since hp(b) � t1 + n,

by (4.11) we have αiai = α′′
i p

npt1gi for some integer α′′
i . Hence

βip
ng = α′′

i p
npt1gi + βip

nh ∈ pnH. Hence H is p-pure in pt1G.

For every i � 1 let zi ∈ G such that xi = ptizi and hp(zi) = 0. Since

xi = ptizi = pti−t1pt1zi ∈ H ∩ pti−t1(pt1G) = pti−t1H,

for every i � 1, yi ∈ H exists such that xi = pti−t1yi, hp(yi) = t1,
hH

p (yi) = 0. Let U = ⊕∞
i=1〈yi〉.

We prove that U = Hp. By [6, Theorem 33.1], U is pure in Hp. It
suffices to prove that U [p] ⊃ H[p]. Note that

H/(A ∩ pt1G) =
∞⊕

i=1

(pt1gi + (A ∩ pt1G)).

Let y ∈ H[p]. Then, by (4.9), we can write

y + (A ∩ pt1G) =
n∑

i=1

γip
cigi + (A ∩ pt1G) =

n∑
i=1

γixi + (A ∩ pt1G)

where n and every γi is an integer for 1 � i � n. Thus

y −
n∑

i=1

γixi ∈ Hp ∩ (A ∩ pt1G) = 0.

Hence U = Hp. By (4.9), A ∩ pt1G is p-almost-dense in H. By
Lemma 4.7, A is quasi-p-purifiable in G.

Theorem 4.12. Let G be an abelian group and A a torsion-free
rank-one subgroup of G. Then A is quasi-p-purifiable in G if and only
if, for every a ∈ A,

hp(a) � ω implies hp(a) = ∞.

Proof. (⇒). If A is not eventually p-vertical in G, then, by
Lemma 4.4, a ∈ A exists such that hp(pna) < ω for all integers n � 0.
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Since r(A) = 1, hp(pnb) < ω for all integers n � 0 and every b ∈ A.
Hence, without loss of generality, we may assume that A is eventually
p-vertical in G. Let H be a quasi-p-pure hull of A in G. By Proposi-
tion 2.6, A is eventually p-vertical in H. Since A is p-almost-dense in
H, A is p-purifiable in H by [14, Theorem 4.7]. By [15, Theorem 3.2],
hp(a) � ω implies hp(a) = ∞.

(⇐). If A is not eventually p-vertical in G then, by Lemma 4.8, A
is quasi-p-purifiable in G. If A is eventually p-vertical in G, then by
hypothesis and [15, Theorem 3.2], A is p-purifiable in G and hence A
is quasi-p-purifiable in G.

Corollary 2.8 and Theorem 4.12 combined lead to the following result.

Corollary 4.13. Let G be an abelian group and A a torsion-free
rank-one subgroup of G. Then A is quasi-purifiable in G if and only if,
for every a ∈ A and every p ∈ P,

hp(a) � ω implies hp(a) = ∞.

Corollary 2.8, Corollary 4.13 and [14, Theorem 4.8] combined lead
to the following result.

Corollary 2.14. Let G be an abelian group whose torsion part T
is torsion-complete. Then all torsion-free rank-one subgroups of G are
quasi-purifiable in G.

Proof. Let A be a torsion-free rank-one subgroup of G. If A is not
eventually p-vertical in G then, by Lemma 4.8, A is quasi-p-purifiable
in G. If A is eventually p-vertical in G, then, by [14, Theorem 4.8], A
is p-purifiable and hence quasi-p-purifiable in G. Hence by Corollary
2.8, A is quasi-purifiable in G.

5. The height-matrices of torsion-free elements. In this
section we use the previous results to compute the height-matrix of
the torsion-free element a of an abelian group G which satisfies the
condition that, for every p ∈ P and every integer n � 0, hp(pna) � ω
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implies hp(pna) = ∞ which is equivalent to saying that, for every p ∈ P
and every integer n � 0, either hp(pna) < ω or hp(pna) = ∞. Before
doing that, we need the following lemma.

Lemma 5.1. Let G be an abelian group, A a torsion-free rank-one
subgroup of G and {ti} the p-overhang set of A in G. Suppose that A is
not p-vertical in G but eventually p-vertical in G and |{ti}| = r. Then,
for every 1 � i � r− 1, ci (see Definition 4.3) exists and ti < ci < ti+1

and one of the following conditions is satisfied:

1. sup{hG/A
p (y + A) | y ∈ Atr

G (p) \AG
tr
(p)} < ω;

2. there exists a ∈ A such that hp(a) = tr and hp(pa) � ω.

Proof. By Lemma 4.2 {hG/A
p (y+A) | y ∈ Ati

G(p) \AG
ti
(p)} is bounded

and hence ci exists and, for every 1 � i � r − 1, ti < ci < ti+1.

Suppose that the first condition is not satisfied. Then h
G/A
p (y +

A) � ω for some y ∈ Atr

G (p) \ AG
tr
(p) or h

G/A
p (y + A) < ω for all

y ∈ Atr

G (p) \AG
tr
(p). In the first case, since

pω(G/A)[p] ∩ (G[p] + A)/A ⊆ ((pωG + A)/A)[p]

by [15, Lemma 2.1], x ∈ Atr

G (p) \ AG
tr
(p) exists such that x + A ∈

((pωG + A)/A)[p]. Then a ∈ A and g ∈ pωG exist such that x = a + g
and thus hp(a) = tr and hp(pa) � ω. In the second case

sup{hG/A
p (y + A) | y ∈ Atr

G (p) \AG
tr
(p)} = ω

and yj ∈ Atr

G (p) \ AG
tr
(p) exist for j � 1 such that h

G/A
p (yj + A) < ω.

For every j � 1, let dj = h
G/A
p (yj + A). By the comment after

Definition 2.5, tr < d1. For every j � 1, bj ∈ A and hj ∈ G exist
such that yj = bj + pdjhj . Note that hp(bj) = tr for all j � 1.
Since r(A) = 1, βj , γj exist such that (βj , γj) = (βj , p) = (γj , p) = 1
and βjb1 = γjbj . Since βjpb1 = γjpbj = −γjp

cj+1hj for all j � 1,
βjpb1 ∈ pωG. Therefore, the assertion is clear.

Now we compute the height-matrix of the torsion-free element a of
an abelian group G which satisfies the condition that, for every prime
p and every integer n � 0, either hp(pna) < ω or hp(pna) = ∞.
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Corollary 5.2. Let G be an abelian group and a ∈ G \ T . Suppose
that, for every integer n � 0, either hp(pna) < ω or hp(pna) = ∞.
Let m = hp(a) and let {ti} be the p-overhang set of 〈a〉 in G. Define
ci = max{hG/〈a〉

p (y + 〈a〉) | y ∈ 〈a〉ti

G(p) \ 〈a〉Gti
(p)} if this exists. Then

there are three possibilities.

(1) |{ti}| = ℵ0. Then

hp(pna) =
{

m+n for 0 � n � e1−m,

m+n+
∑k

i=1(ci−ti) for ek−m<n � ek+1−m, k � 1,

and

(5.3) ek =
{

t1 for k = 1
t1 +

∑k
i=2(ti − ci−1) for k � 2.

(2) |{ti}| = r for some positive integer r. Then

hp(pna) =




m + n for 0 � n � e1 −m,

m + n +
∑k

i=1(ci − ti)
{

for ek −m < n � ek+1 −m

and 1 � k � r − 1,

and, for n > er −m,

hp(pna) =




m + n +
∑r

i=1(ci − ti) if hp(pna) < ω for all n � 1
∞ if hp(psa) � ω for some integer

s � 1

where ek is as in (5.3).

(3) |{ti}| = 0. Then
hp(pna) = m + n

for all n � 0.

Proof. (1) In this case 〈a〉 is not eventually p-vertical in G. By
Lemma 4.4 the assertion is clear.

(2) In this case 〈a〉 is not p-vertical in G, but eventually p-vertical in
G. For n � er −m, by Lemma 4.4 the claim holds. By Lemma 5.1 one
of the following conditions is satisfied:
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1. sup{hG/〈a〉(y + 〈a〉) | y ∈ 〈a〉tr

G (p) \ 〈a〉Gtr
(p)} < ω;

2. b ∈ 〈a〉 exists such that hp(b) = tr and hp(pb) � ω.

If the first case holds, then cr is defined and hp(per−m+1a) = cr. Since
Vp,n(G, 〈a〉) = 0 for all n > r, by [14, Lemma 4.2], 〈a〉 ∩ ptr+1G is
p-vertical in ptr+1G. By [14, Theorem 2.8] and a routine induction,

hp(pna) = m+ n +
r∑

i=1

(ci − ti)

for n > er −m.

Suppose that the second case holds. By hypothesis, we have hp(pb) =
∞. Note that hp(per−ma) = tr by the first case of (2) and hp(b) = tr.
Since r(A) = 1 we have hp(pna) = ∞ for n > er −m.

(3) In this case 〈a〉 is p-vertical in G. If m � ω then, by hypothesis,
= ∞. If m < ω, then, by [14, Theorem 2.8], the assertion is clear.

Remark 5.4. By Corollary 4.13 and Corollary 4.14, the height-
matrices of all torsion-free elements of an abelian group G whose torsion
part T is torsion-complete can be computed by Corollary 5.2.

Finally we reconsider the group G in Example 3.1. By Property 3.2
we can write

G = 〈gpj | p ∈ P, i = 1, 2, . . . 〉.
By Corollary 5.2, for every p ∈ P, the p-indicator of gpi is

(0, 1, 3, 5, . . . , 2n− 1, . . . ),

and hence

hp(pngpi) =
{

n for 0 � n � 2i− 1,
2n− 2i + 1 for n � 2i.

Since the group G is of torsion-free rank-one, all the torsion-free
elements of G are equivalent and, hence, for every prime p the p-heights
of all the torsion-free elements of G are less than ω. By Corollary 4.13
every torsion-free subgroup of G is quasi-purifiable in G. However, T is
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not torsion-complete. Therefore, Example 3.1 shows that the converse
of Corollary 4.14 is not true.
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primaries, Canad. Bull. Math. 32 (1989), 11 17.

5. B. Charles, Etudes sur les sous-groupes d’un groupe abélien, Bull. Soc. Math.
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