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COMPARISON THEOREMS AND STRONG
OSCILLATION IN THE HALF-LINEAR
DISCRETE OSCILLATION THEORY

PAVEL ŘEHÁK

ABSTRACT. Consider the second order half-linear differ-
ence equation

(HL) �(rk|�yk|α−1sgn�yk) + pk|yk+1|α−1sgn yk+1 = 0,

α > 1.

In the first part we give various types of comparison theorems
for this equation, including the so-called telescoping princi-
ple, and also for the associated generalized Riccati difference
equation. In the second part, we present criteria for strong
(non)-oscillation of (HL) and related results. The paper is
finished by an example where oscillatory properties of a gen-
eralized discrete Euler equation are investigated.

1. Introduction. This paper is a further demonstration of the fact
that one can extend (in a sense of the “half-linear generalization” and
of the discretization) the most results of the oscillation theory of the
Sturm-Liouville linear differential equation

(r(t)y′)′ + p(t)y = 0

to the half-linear difference equation

(1) �(rkΦ(�yk)) + pkΦ(yk+1) = 0,

where rk, pk are real-valued sequences defined on N with rk �= 0 and
Φ(y) := |y|α−1sgn y = |y|α−2y with α > 1. Since the Sturm type
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separation theorem extends to (1), this equation can be classified as
oscillatory or nonoscillatory. The Sturm comparison theorem can be
extended to (1) as well. Recall that those results follow from the half-
linear discrete version of the so-called Roundabout theorem, see [12],
which also provides tools for the investigation of oscillatory properties
of (1), namely, the Riccati and the variational techniques that we will
use later.

The aim of this contribution is, among others, to present comparison
theorems for equation (1) of other types than that classical of the Sturm
type. The paper is organized as follows. In the next section, we recall
basic concepts of the oscillation theory of (1) established in [12]. The
main results can be itemized in the following way. In Section 3, we
will examine a preservation of (non)oscillation of equation (1) if the
sequence pk in (1) is multiplied by a certain real number. In Section 4,
we will see that under certain assumptions, the inequality pk ≤ Pk in
the classical Sturm type comparison result, see Proposition 2 below,
can be replaced by the weaker condition

∑∞
j=k pj ≤

∑∞
j=k Pj and,

moreover, a suitable change of the number α also preserves a desired
property of equation (1). A generalization of the so-called telescoping
principle introduced in [6] for the linear difference equation

(2) �(rk�yk) + pkyk+1 = 0

to the half-linear equation (1) is contained in Section 5. Note that
equation (2) is the special case of equation (1) for α = 2. A com-
parison theorem for the generalized Riccati difference equation that is
associated to equation (1) is proved in Section 6. Section 7 contains
results concerning a strong (non)oscillation and a conditional oscilla-
tion of equation (1). The paper is concluded by Section 8, where some
oscillatory properties of a generalized discrete Euler equation are in-
vestigated.

2. Basic concepts of oscillation theory of equation (1). In
this section, we give the basic concepts of oscillation theory of equation
(1) that were established in [12].

First we recall some definitions.

Definition 1. An interval (m,m+1] is said to contain the generalized
zero of a solution y of (1) if ym �= 0 and rmymym+1 ≤ 0. Equation (1)
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is said to be disconjugate on the discrete interval [m,n] provided any
solution of this equation has at most one generalized zero on (m,n+1]
and the solution ỹ satisfying ỹm = 0 has no generalized zeros on
(m,n + 1]. Equation (1) is said to be nonoscillatory if there exists
m ∈ N such that this equation is disconjugate on [m,n] for every
n > m. In the opposite case (1) is said to be oscillatory. Oscillation
of (1) may be equivalently defined as follows. A nontrivial solution of
(1) is called oscillatory if it has infinitely many generalized zeros. As
we have mentioned in the introductory section, due to the separation
theorem for (1), we have the following equivalence: One solution of (1)
is oscillatory if and only if every solution of (1) is oscillatory. Hence we
can speak about oscillation or nonoscillation of equation (1).

Define a class U of the so-called admissible sequences by

U = {ξ | ξ : [m,n+ 2] −→ R such that ξm = ξn+1 = 0}.

Define an “α-degree” functional F on U by

F(ξ;m,n) =
n∑

k=m

[rk|�ξk|α − pk|ξk+1|α].

We say that F is positive definite on U provided F(ξ) ≥ 0 for all
ξ ∈ U and F(ξ) = 0 if and only if ξ = 0.

The basic oscillatory properties of solutions of (1) are described by
the so-called Roundabout theorem.

Proposition 1 [12, Theorem 1]. The following statements are
equivalent:

(i) Equation (1) is disconjugate on [m,n].

(ii) Equation (1) has a solution y without generalized zeros on
[m,n+ 1].

(iii) The generalized Riccati difference equation

(3) �wk + pk + S(wk, rk) = 0,

where

S(wk, rk) = wk

(
1− rk

Φ(Φ−1(rk) + Φ−1(wk))

)
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and the function Φ−1 is the inverse of Φ, i.e., Φ−1(x) = |x|β−1sgnx,
β being the conjugate number of α, has a solution wk on [m,n] with
rk + wk > 0.

(iv) F is positive definite on U .

Along with equation (1) consider the equation

(4) �(RkΦ(�xk)) + PkΦ(xk+1) = 0,

where Pk and Rk are defined on N with Rk �= 0. In addition to the
Sturm type separation theorem, which follows from the implication
(ii) ⇒ (i) of Proposition 1, the Roundabout theorem shows that the
classical Sturm type comparison result extends to (1). Indeed, we have

F(ξ) =
n∑

k=m

[rk|�ξk|α − pk|ξk+1|α]

≤
n∑

k=m

[Rk|�kξk|α − Pk|ξk+1|α],

provided the inequalities from the next proposition hold. From this
and Proposition 1 one can easily get the following result.

Proposition 2 [12, Theorem 2]. Suppose that Rk ≥ rk and Pk ≤ pk

for large k. If equation (1) is nonoscillatory, then so is equation (4).

The Riccati and the variational techniques mentioned in the intro-
ductory section are essentially based on the use of the equivalences (i)
⇔ (iii) and (i)⇔ (iv) of Proposition 1, respectively, to investigate some
properties of solutions of (1) such as, e.g., oscillation and nonoscillation.

At the end of this section, we give a list of the properties of the
function

(5) S(x, y) = S(x, y, α) = x

(
1− y

Φ(Φ−1(x) + Φ−1(y))

)
,

appearing in (3) that we will need later.
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Lemma 1 (Properties of the function S). Suppose that α > 1. The
function S(x, y, α) has the following properties:

(i) Let y > 0. Then xSx(x, y, α) ≥ 0 for x + y > 0 where
Sx(x, y, α) = 0 if and only if x = 0.

(ii) S(x, y, α) ≥ 0 for x+ y > 0 where the equality holds if and only
if x = 0.

(iii) Let S(x, y, α) = x − S(x, y, α). Then S(x, y, α) = S(y, x, α) for
x+ y �= 0 and Sx(x, y, α) ≥ 0 for x+ y > 0 where the equality holds if
and only if y = 0.

(iv) Let x, y > 0. Then Sα(x, y, α) ≥ 0.

Proof. The parts (i), (ii) and (iii) are proved in [13, Lemma 1]. To
prove (iv) note that if x, y > 0 then the function S can be rewritten as

S(x, y, α) = x
[
1− (1 + (x/y)β−1)1−α

]
.

Now it is easy to see that

Sα(x, y, α) =
x

[
(1+(x/y)β−1) ln(1+(x/y)β−1)−(x/y)β−1 ln(x/y)β−1

]
(1 + (x/y)β−1)α

≥ 0.

From here we have the statement.

3. λpk-type comparison theorems. We start this section with
the auxiliary statement

Lemma 2 [3, Lemma 2]. If there exists a sequence uk such that
rkukuk+1 > 0 and

uk+1[�(rkΦ(�uk)) + pkΦ(uk+1)] ≤ 0

for large k, then (1) is nonoscillatory.

Along with equation (1), consider the equation

(6) �(RkΦ(�xk)) + λpkΦ(xk+1) = 0,
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where Rk > 0 and λ ∈ R.

Theorem 1. Suppose that 0 < rk ≤ Rk and λ ∈ [0, 1]. If (1) is
nonoscillatory, then so is equation (6).

Proof. Suppose that (1) is nonoscillatory. Let y be its solution such
that yk > 0, k ≥ m for some m ∈ N. Set xk = yν

k where ν = Φ−1(λ).
Then �xk ≤ νyν−1

k �yk and �xk ≥ νyν−1
k+1�yk by the Lagrange mean

value theorem since �yk ≥ 0 if and only if yν−1
k+1 ≤ yν−1

k and �yk ≤ 0
if and only if yν−1

k+1 ≥ yν−1
k . Further,

�(rkΦ(�xk)) = rk+1Φ(�xk+1)− rkΦ(�xk)
≤ rk+1Φ(νyν−1

k+1�yk+1)− rkΦ(νyν−1
k+1�yk)

= Φ(νyν−1
k+1)�(rkΦ(�yk))

= −Φ(νyν−1
k+1)pkΦ(yk+1)

= −Φ(ν)pkΦ(yν
k+1)

= −λpkΦ(xk+1).

From here, equation (6) is nonoscillatory by Lemma 2 and Proposi-
tion 2.

Remark 1. The “oscillatory counterpart” to Theorem 1 is immediate.
Suppose that rk > 0. Let rk ≥ Rk and λ ∈ R be such that λ ≥ 1. If
(1) is oscillatory, then so is equation (6).

4.
∑

pj ≤
∑

Pj-type comparison theorem. Before we present
the main result of this section, let us give two auxiliary statements.

Lemma 3 [4, Lemma 2.1]. Suppose that there exists an integer n0

such that,

(7) lim inf
s→∞

s∑
j=k

pj ≥ 0 and �≡ 0

for all k ≥ n0. Then there exists m ≥ n0 such that
∑k

j=m pj ≥ 0 for
all k ≥ m.
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Lemma 4 [15, Lemma 3]. Assume that (7) holds. Further, suppose
that rk > 0 for k ≥ m,

∑∞
j=m r1−β

j = ∞ and
∑∞

j=m pj is convergent.
Let y be a nonoscillatory solution of (1) such that yk > 0 for all k ≥ m.
Then there exists n ≥ m such that

(8) wk ≥
∞∑

j=k

pj +
∞∑

j=k

S(wj, rj)

for k ≥ n, where wk = rkΦ(�yk)/Φ(yk) > 0 and the function S is
defined by (5).

In what follows, we partially use an idea from [10], where equation (1)
is considered under stronger assumptions. A similar result (however,
without the change of the constant α) for the continuous case, i.e., for
the case of the equation

(9) (Φ(y′))′ + p(t)Φ(y) = 0,

can be found [7], where also somewhat stronger additional conditions
are required by comparison with our result.

Along with equation (1) consider the equation

(10) �(RkΦᾱ(�xk)) + PkΦᾱ(xk+1) = 0,

where Φᾱ(x) = |x|ᾱ−1sgnx, ᾱ > 1.

Theorem 2. Assume that the sequences pk and Pk satisfy (7). Let∑∞
j=m pj and

∑∞
j=m Pj be convergent and

(11)
∞∑

j=k

pj ≤
∞∑

j=k

Pj for all large k.

Further, suppose that 0 < Rk ≤ rk,
∑∞

j=1 R1−β
j = ∞ and 1 < α ≤ ᾱ.

If equation (10) is nonoscillatory, then so is equation (1).

Proof. By Lemma 4, the nonoscillation of (10) implies the existence
of m1 ∈ N such that

(12) zk ≥
∞∑

j=k

Pj +
∞∑

j=k

S(zj , Rj , ᾱ) =: Zk
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for k ≥ m1 (clearly, with zk +Rk > 0). Let m2 ∈ N be such that (11)
holds and

∑∞
j=k pj ≥ 0 for k ≥ m2. Set m = max{m1,m2} and define

the set Ω and the mapping T by

Ω = {w ∈ l∞, 0 ≤ wk ≤ Zk for k ≥ m}

and

(T w)k =
∞∑

j=k

pj +
∞∑

j=k

S(wj , Rj , α), k ≥ m, w ∈ Ω.

We show that T has a fixed point in Ω. We must verify that

1) Ω is a bounded, closed and convex subset of l∞,

2) T maps Ω into itself,

3) T Ω is relatively compact,
4) T is continuous in Ω.

(i) Clearly, Ω is bounded and convex. Let xt = {xt
k}, t = 1, 2, . . . ,

be any sequence in Ω such that xt approaches x (in the sup norm).
From our assumptions, for any ε > 0, there exists n ∈ N such that
supk≥m |xt

k − xk| < ε for all t ≥ n. Thus, for any fixed k, we have
limt→∞ xt

k = xk. Since 0 ≤ xt
k ≤ Zk for all t, then 0 ≤ xk ≤ Zk. We

have k ≥ m arbitrary and hence x belongs to Ω.

(ii) Suppose that w ∈ Ω and define xk = (T w)k, k ≥ m. Obviously,
xk ≥ 0 for k ≥ m. We must show that xk ≤ Zk, k ≤ m. We have

xk =
∞∑

j=k

pj +
∞∑

j=k

S(wj , Rj , α) ≤
∞∑

j=k

Pj +
∞∑

j=k

S(wj, Rj , α)

≤
∞∑

j=k

Pj +
∞∑

j=k

S(wj , Rj , ᾱ) ≤
∞∑

j=k

Pj +
∞∑

j=k

S(zj , Rj , ᾱ)

by the assumptions of the theorem and by Lemma 1 (i), (iv). Hence,
T Ω ⊂ Ω.
(iii) According to [1, Theorem 3.3] it suffices to show that T Ω is

uniformly Cauchy since T Ω is bounded. Let ε > 0 be given. We
show that there exists N ∈ N such that for any k, l > N we have
|(T x)k − (T x)l| < ε for any x ∈ Ω. Without loss of generality, suppose
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k < l. Then we have

|(T x)k − (T x)l| =
∣∣∣∣

l−1∑
j=k

pj +
l−1∑
j=k

S(xj , Rj , α)
∣∣∣∣(13)

=
l−1∑
j=k

pj +
l−1∑
j=k

S(xj , Rj , α)(14)

for large k by Lemma 3. Taking into account the properties of pk and
S(xk, Rk, α) for any ε > 0, one can find N ∈ N such that

l−1∑
j=k

pj <
ε

2

and
l−1∑
j=k

S(xj , Rj , α) <
ε

2
for l > k > N.

From this and (13), |(T x)k − (T x)l| < ε, hence T Ω is relatively
compact.

(iv) Let xt = {xt
k}, k ≥ m, be a sequence in Ω converging to x. We

must show that T xt converges to T x. Clearly, T xt ∈ T Ω ⊂ Ω for any
t and also T x ∈ T Ω ⊂ Ω. For any ε > 0 one can choose M ≥ m such
that (T xt)k < ε/2 and (T x)k < ε/2 for k > M and for each t ∈ N.
Define

(T̃ x)k,l =
l∑

j=k

pj +
l∑

j=k

S(xj , Rj , α) for l ≥ k ≥ m

and (T̃ x)k,l = 0 for l < k. Mapping T̃ is obviously continuous.
Therefore, for given ε/2 > 0, there exists N ∈ N such that

|(T̃ xt)k,l − (T̃ x)k,l| <
ε

2
for t ≥ N and k ≥ m.

Now, having chosen such M,N as above, the following estimates hold
for any k ≥ m:

|(T xt)k − (T x)k| = |(T̃ xt)k,M + (T xt)M+1 − (T̃ x)k,M − (T x)M+1|
≤ |(T̃ xt)k,M − (T̃ x)k,M |+ |(T xt)M+1 − (T x)M+1|

<
ε

2
+

ε

2
= ε.
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Since k ≥ m is arbitrary, we have T xt converges to T x.

Therefore, it follows from the Schauder fixed point theorem that there
exists an element w ∈ Ω such that w = T w. In view of the definition
of T , this (positive) sequence w satisfies the equation

wk =
∞∑

j=k

pj +
∞∑

j=k

S(wj , Rj , α), k ≥ m,

and hence also the equation (3). Consequently, the sequence y given
by

ym = m0 �= 0
and

yk+1 = (1 + (wk/Rk)β−1)yk, k ≥ m,

is a nonoscillatory solution of

�(RkΦ(�yk)) + pkΦ(yk+1) = 0

and hence this equation is nonoscillatory. The statement now follows
from Proposition 2.

Remark 2. A closer examination of the above proof shows that the
necessary condition for nonoscillation of equation (1) in Lemma 4 is
also sufficient.

5. Telescoping principle. The result presented in this section
is a half-linear extension of the so-called telescoping principle which
was introduced in [6] for the second order linear difference equation
(2). In fact, it was introduced firstly for second order linear differential
equations in [8]. Note that in [6] the authors consider equation (2) only
under the assumption rk > 0 and hereby our result with rk �= 0 is new
even in the linear case (in spite of the fact that an idea of the proof
remains quite the same).

Before we present the main result, let us introduce some concepts and
assumptions. Denote by S the set of all real sequences y = {yk, k ∈ N}.
Assume

(15) I =
j⋃

i=1

Ii, Ii = (mi, ni], i = 1, . . . , j, j ≤ ∞,
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where mi, ni ∈ N, i = 1, . . . , j, are such that mi < ni < mi+1 and
card (N \ I) = ∞. Based on the set I, we define an interval shrinking
transformation τ = τI : N → N as follows:

K = τ (k) = card
(
[1, k] ∩ IC

)
,

where IC = N \ I. Let Mi = τ (mi). Then Mi = τ (k) for k ∈
[mi, ni], i = 1, . . . , j. This transformation τ induces a transformation
T = TI : S → S defined as follows:
For y ∈ S

Ty = Y = {YK ,K ∈ N} with YK = yk when τ (k) = K.

Theorem 3. Let rk �= 0, k ∈ N, and assume that (15) holds. Let
R = Tr and P = Tp for T = TI . Assume

(16)
ni∑

k=mi+1

pk ≥ 0, i = 1, . . . , j.

Suppose X = {XK ,K ∈ N} is a solution of the equation

(17) �(RKΦ(�XK)) + PKΦ(XK+1) = 0,

such that RKXKXK+1 > 0 for K < N and RNXNXN+1 ≤ 0. If
the sequence y is a solution of equation (1) such that y1 �= 0 and
r1Φ(�y1)/Φ(y1) ≤ R1Φ(�X1)/Φ(X1), then there exists l ≤ n such
that rlylyl+1 ≤ 0 where N = τ (n). More precisely, if N ≤ Mi, then
there exists l ≤ mi such that rlylyl+1 ≤ 0, i = 1, 2, . . . , j.

Proof. In this proof, by y �< X we mean either y ≥ X or y does not
exist. The proof is by induction. Assume that the conclusion is not
true. Then wk = −rkΦ(�yk)/Φ(yk) satisfies

(18) �wk = pk + wk

(
rk

(Φ−1(rk)− Φ−1(wk))α−1
− 1

)

or, equivalently,

(19) wk+1 = pk + S̃(wk, rk), k = 1, . . . , n,
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and wk < rk, k = 1, . . . , n, where

S̃(wk, rk) =
wkrk

(Φ−1(rk)− Φ−1(wk))α−1
.

Observe that the behavior of the function S̃ is similar to the be-
havior of the function S from Lemma 1. In particular, S̃(wk, rk) is
nondecreasing with respect to the first variable for rk > wk. Let
VK = −RKΦ(�XK)/Φ(XK). Then

(20) VK+1 = PK + S̃(VK , RK), K = 1, . . . , N − 1,

VK < RK , K = 1, . . . , N − 1 and VN �< RN .

If N ≤ M1 = m1 then, for k = 1, . . . , N , K = k and hence RK = rk,
PK = pk and equation (20) is the same as (19). By the hypothesis
w1 ≥ V1, comparing (19) and (20) step by step (using the above
property of S̃), we find that wk+1 ≥ Vk+1, k = 1, . . . , N − 1. In
particular,

wn = wN ≥ VN �< RN = rn.

This implies that wn �< rn, contradicting the assumption.

If M1 < N ≤ M2, then arguing as above we can state that wm1+1 =
wM1+1 ≥ VM1+1. Adding (18) for k from m1 + 1 to n1 and using (16),
we obtain

wn1+1 − wm1+1 =
n1∑

k=m1+1

pk +
n1∑

k=m1+1

S̃(wk, rk) ≥ 0,

hence wn1+1 ≥ wm1+1 ≥ Vm1+1. Noting that τ (n1 + 1) = N1,
we see that wk, VK satisfy the same generalized Riccati equation for
n1+ ≤ k ≤ n and M1 + 1 ≤ K ≤ N , respectively. As before, we see
that wn ≥ VN �< RN = rn and, again, this implies that wn �< rn,
contradicting the assumption. The proof of inductive step from i to
i+ 1 is similar and hence is omitted.

Theorem 4 (Telescoping principle). Under the conditions and with
the notation of Theorem 3, if equation (17) is oscillatory, then equation
(1) is oscillatory.
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Proof. Let Xk be a solution of (17) with X1 �= 0. Let yk be a solution
of (1) satisfying y1 �= 0, r1Φ(�y1)/Φ(y1) ≤ R1Φ(�X1)/Φ(X1). By
Theorem 3, there exists l1 > 0 such that rl1yl1yl1+1 ≤ 0. Now, working
on the solution for k ≥ l1 + 1 instead of k ≥ 1 and proceeding as
before, we show that there exists l2 ≥ l1 + 1 such that rl2yl2yl2+1 ≥ 0.
Continuing this process leads to the conclusion that y is oscillatory,
hence (1) is oscillatory.

Via this principle, one can get many new examples of oscillatory half-
linear difference equations. We use a process that is the reverse of the
construction in Theorem 3. Start with any known oscillatory equation
(17). Choose a sequence of integers Mi → ∞. Cut the plane at each
vertical line k = Mi and pull the two half-planes apart to form a gap
of arbitrary finite length. Now fill the gap with an arbitrary nonzero ri

and any pi whose sum over the length of the gap is nonnegative. Do this
at each Mi and denote the new coefficient sequences thus constructed
by r, p. Then equation (1) is oscillatory.

6. Comparison theorem for generalized Riccati difference
equations. Along with equation (1) consider equation (4). Associated
generalized Riccati difference equations for (1) and (4) are equations
(3) and

(21) �vk + Pk + S(vk, Rk) = 0,

respectively.

Theorem 5. Suppose that Rk ≥ rk, Pk ≤ pk for k ∈ [m,n], and
let wk, vk be solutions of equations (3) and (21), respectively, defined
on [m,n]. If rk + wk ≥ 0 on [m,n] and vm ≥ wm, then vk ≥ wk and
Rk + vk > 0 for k ∈ [m,n].

Proof. Let wk and vk be solutions of equations (3) and (21), respec-
tively, such that vm ≥ wm (then Rm + vm > 0) and wk + rk > 0 for
k ∈ [m,n]. One can rewrite these equations as

wk+1 = − pk + S(wk, rk)
and

vk+1 = −Pk + S(vk, Rk),
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respectively, where the function S is defined in Lemma 1. According
to this lemma, S(x, y) ≤ S(X,Y ) for x ≤ X and y ≤ Y with x+y > 0.
Hence,

wm+1 = − pm + S(wm, rm) ≤ −Pm + S(vm, Rm) = vm+1

and Rm+1 + vm+1 > 0. Continuing this process step by step we find
that vk ≥ wk and Rk + vk > 0 for k ∈ [m,n]. The theorem is proved.

Remark 3. Note that the other possibility (that is more difficult)
to prove the above theorem is to use the generalized Picone identity
established in [12].

7. Strong oscillation and nonoscillation. This section is
concerned with an extension of the so-called strong oscillation to
equation (1) and some further related concepts introduced in [11] for
the equation

y′′ + p(t)y = 0.

The class of equations (1) can be divided according to the following
definition.

Definition 2. (i) Equation (1) is said to be strongly oscillatory if
the equation

(22) �(rkΦ(�yk)) + λpkΦ(yk+1) = 0

is oscillatory for all λ > 0.

(ii) Equation (1) is said to be strongly nonoscillatory if equation (22)
is nonoscillatory for all λ > 0.

(iii) Equation (1) is said to be conditionally oscillatory if (22) is
oscillatory for some λ > 0 and nonoscillatory for some other λ > 0.
By Proposition 2 it follows that in this case there must exist a positive
number γ(p) such that (1) is oscillatory for λ > γ(p) and nonoscillatory
for λ < γ(p) provided pk is nonnegative. This number γ(p) is called
the oscillation constant of the sequence pk.
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Now we can present strongly oscillation and nonoscillation criteria.
Note that here we consider only the case when

∑∞ pj is convergent
since if

∑∞
pj = ∞ (and

∑∞
r1−β
j = ∞ with rk > 0), then (1) is

oscillatory by [12, Theorem 4] and obviously also strong oscillatory.

Theorem 6. Assume that rk > 0,
∑∞ pj is convergent and∑∞

r1−β
j =∞. Then the following statements hold:

(i) Suppose in addition that

(23) lim
k→∞

r1−β
k∑k−1

j=m r1−β
j

= 0

and
∑∞ pj ≥ 0. If (1) is strongly oscillatory, then

(24) lim sup
k→∞

( k−1∑
j=m

r1−β
j

)α−1 ∞∑
j=k

pj =∞.

(ii) Suppose in addition that pk ≥ 0 (eventually nontrivial). If (24)
is fulfilled, then (1) is strongly oscillatory.

(iii) Suppose in addition that pk ≥ 0 (eventually nontrivial). If (1) is
strongly nonoscillatory, then

(25) lim
k→∞

( k−1∑
j=m

r1−β
j

)α−1 ∞∑
j=k

pj = 0.

(iv) Suppose in addition that (23) holds. If (25) is fulfilled, then (1)
is strongly nonoscillatory.

The proof of this theorem (and also of the next theorem) is essentially
the same as in the half-linear continuous case, see [7], and hence is
omitted, in spite of the fact that in some cases we do not require the
sequence pk to be nonnegative. We refer also to the paper [9], where a
result similar to the above theorem is presented for a somewhat more
special form of equation (1). Note that, to prove our statements, we
use the following criteria.
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Proposition 3. Assume that rk > 0.

(i) If

(26) lim inf
k→∞

kα−1
∞∑

j=k

pj >
1
α

(
α − 1

α

)α−1

,

then (28) is oscillatory.

(ii) Suppose that pk ≥ 0 (eventually nontrivial),
∑∞

pj < ∞ and∑∞ r1−β
j =∞. If

lim sup
k→∞

( k−1∑
j=m

r1−β
j

)α−1 ∞∑
j=k

pj > 1,

then (1) is oscillatory.

(iii) Suppose that
∑∞

r1−β
j =∞ and (23) holds. If

(27) lim sup
k→∞

( k−1∑
r1−β
j

)α−1( ∞∑
j=k

pj

)
<
1
α

(
α − 1

α

)α−1

and

lim inf
k→∞

( k−1∑
r1−β
j

)α−1( ∞∑
j=k

pj

)
> − 2α − 1

α

(
α − 1

α

)α−1

,

then (1) is nonoscillatory.

Proof. The proof of criterion (i) can be found in [14, Corollary 3] or
in [15, Corollary 1]. Criterion (ii) is proved in [15, Theorem 2], while
the proof of (iii) is given in [3, Theorem 3].

The following theorem provides information about the oscillation
constant of conditionally oscillatory equation of the form

(28) �(Φ(�yk)) + pkΦ(yk+1) = 0.
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Denote

Q∗ = lim inf
k→∞

kα−1
∞∑

j=k

pj and Q∗ = lim sup
k→∞

kα−1
∞∑

j=k

pj .

Theorem 7. Suppose that 0 < Q∗ ≤ Q∗ < ∞ and pk ≥ 0 (eventually
nontrivial). Then the oscillation constant γ(p) of equation (28) satisfies

1
α

(
α − 1

α

)α−1 1
Q∗ ≤ γ(p) ≤ min

{
1
Q∗ ,

1
α

(
α − 1

α

)α−1 1
Q∗

}
.

In particular, if Q∗ = Q∗, then

γ(p) =
1
α

(
α − 1

α

)α−1 1
Q∗ .

The proofs of the following two theorems are also omitted since they
are similar to the linear discrete case, see [2]. To prove our statements
we again use Proposition 3.

Theorem 8. Let pk and p̃k, k ∈ N, be two nonnegative and
eventually nontrivial sequences. Further, let γ(p̃), 0 < γ(p̃) < ∞,
be the oscillation constant of p̃k. If

(29) Ψ := lim inf
k→∞

∑∞
j=k pj∑∞
j=k p̃j

> γ(p̃),

then (28) is oscillatory.

Theorem 9. Let pk and p̃k, k ∈ N, be two nonnegative and
eventually nontrivial sequences. Further, let γ(p), 0 < γ(p) < ∞,
and γ(p̃), 0 < γ(p̃) < ∞, be the oscillation constants of pk and p̃k,
respectively. Then Ψ ≤ γ(p̃)/γ(p) where Ψ is defined by (29), and if

lim sup
k→∞

∑∞
j=k pj∑∞
j=k p̃j

< γ(p̃),
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then (28) is nonoscillatory.

8. Generalized Euler difference equation. In this last section,
we investigate some oscillatory properties of the discrete generalized
Euler equation

(30) �(Φ(�yk)) +
γ

(k + 1)α
Φ(yk+1) = 0,

where γ ∈ R. Among others, we will need the following auxiliary result,
which is a generalization of the well-known Hardy’s inequality.

Lemma 5 [5]. If α > 1 and ηk ≥ 0 for k ∈ N, then

n∑
k=1

k−α

( k∑
j=1

ηj

)α

<

(
α

α − 1

)α n∑
k=1

ηα
k ,

unless ηk = 0 for k = 1, 2, . . . , n.

To show that (30) is (non)oscillatory, we will distinguish the following
four cases:

1) If γ > ((α − 1)/α)α, then (30) is oscillatory by Proposition 3
(criterion (i)) since

kα−1
∞∑

j=k

γ

(j + 1)α
≥ kα−1γ

∫ ∞

k+1

1
xα

dx =
γkα−1

(α − 1)(k + 1)α−1

≥ 1
α

(
α − 1

α

)α−1

+ ε,

for suitable ε > 0.

2) If 0 ≤ γ < ((α−1)/α)α, then (30) is nonoscillatory by Proposition 3
(criterion (iii)) since

kα−1
∞∑

j=k

γ

(j + 1)α
≤ kα−1γ

∫ ∞

k

1
xα

dx =
γkα−1

(α − 1)kα−1

≤ 1
α

(
α − 1

α

)α−1

− ε,
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for suitable ε > 0.

3) If γ < 0, then (30) is nonoscillatory by the Sturm type comparison
theorem (Proposition 2) and the result in the case 2).

4) If γ = ((α− 1)/α)α, then (30) is nonoscillatory. Indeed, according
to the Roundabout theorem (Proposition 1) it is sufficient to find n ∈ N
such that for any nontrivial

ξ ∈
{
{ξk}∞k=1 : ξk = 0 for k ≤ n and ∃m > n s.t. ξk = 0 for k ≥ m

}
we have

F(ξ;n,∞) =
∞∑

k=n

[rk|�ξk|α − pk|ξk+1|α] > 0.

Put n = 1 and ξk+1 =
∑k

j=1 ηj , k ∈ N, where η is such that ξ is
admissible. Clearly, �ξk = ηk. Now there exists m ∈ N such that

F(ξ;n,∞) =
m∑

k=1

[
|ηk|α − γ

(k + 1)α

∣∣∣
k∑

j=1

ηj

∣∣∣α
]

≥
m∑

k=1

[
|ηk|α − γ

kα

( k∑
j=1

|ηj |
)α]

> 0

by Lemma 5, and hence (30) is nonoscillatory.

Altogether, equation (30) is oscillatory for γ > ((α − 1)/α)α and
nonoscillatory otherwise. Thus, if we consider (30) as an equation of
the form (22), more precisely, if λ = γ and pk = (k + 1)−α, then it is
easy to see that the oscillation constant of such sequence pk is equal to
((α − 1)/α)α.
On the other hand, the above oscillatory properties of (30) can be

used to establish criteria (26) and (27) (with rk ≡ 1) for equation (28)
by the comparison of (28) with (30) using Theorem 4 and the above
estimates. A similar method was used in [7] to prove these types of
criteria for (9), however, only under the assumption p(t) ≥ 0. One can
also show, either as a consequence of the more general criteria (26) and
(27) or by the comparison of (28) with (30) using Proposition 2, that
the condition (

α − 1
α

)α

< lim inf
k→∞

(k + 1)αpk ≤ ∞
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implies the oscillation of (28) and the condition

−∞ ≤ lim sup
k→∞

(k + 1)αpk <

(
α − 1

α

)α

implies the nonoscillation of (28).
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