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ON THE FORM OF CORRELATION FUNCTION
FOR A CLASS OF NONSTATIONARY
FIELD WITH A ZERO SPECTRUM

RAE’D HATAMLEH

ABSTRACT. The present paper is devoted to the derivation
of an explicit form of linearly representable random fields in
the form h(x1, x2) = exp {i(x1A1 + x2A2)}h , where h ∈ H,
H is a Hilbert space, operators A1, A2 are such that A1A2 =
A2A1 and C3 = 0 where C = A∗

1A2 − A2A∗
1.

The results obtained are the generalization of theorem
proved by Livshits and Yantsevitch [4] and Yantsevich and
Abbaui [6].

It is shown that a rank of nonstationary of field h(x1, x2)
depends not only on a degree of nonself conjugation of A1, A2

but on a degree of nilpotency of commutator C(C3 = 0).

In the present paper an explicit form of correlation function
when the spectrum of A1 and A2 lies in zero is derived.

1. Preliminary information.

1.1. Let us consider a vector field h(x) depending of two variables
x = (x1, x2) ∈ R2 with values in the Hilbert space H.

In this paper we will suppose that h(x) depends on x as h(x) = Zxh
where Zx = exp [i(x1A1 + x2A2)]. In this case A1 and A2 are such
operators in the Hilbert space H for which A1A2 = A2A1. We shall
call an operator function Zx to be an two-parameter commutative
semigroup. The main tool of correlation theory for vector fields in
a Hilbert space H is a correlation function [4]:

(1) K(x, y) = 〈h(x), h(y)〉,
where x, y ∈ R2. For twice permutational classes of linear operators
{A1, A2}, (A1A2 = A2A1, A

∗
1A2 = A2A

∗
1). Generalizing the results
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given by Livshits and Jantsevich [4], Yantsevich and Abbaui [6] have
introduced partial infinitesimal correlation functions (ICF) by relations
(under the assumption that K(x1, x2, y1, y2) is a twice differentiable
function):

(2)

W1(x1, x2, y1, y2) = − ∂K(x1 + τ1, x2, y1 + τ1, y2)
∂τ1

|τ1=0

W2(x1, x2, y1, y2) = − ∂K(x1, x2 + τ2, y1, y2 + τ2)
∂τ2

|τ2=0

W (x1, x2, y1, y2) = − ∂2K(x1 + τ1, x2 + τ2, y1 + τ1, y2 + τ2)
∂τ1∂τ2

|τ1τ2=0

W1,W2 and W are not independent.

Indeed:∫ −y1

o

W (x1 + τ1, x2 + τ2, y1 + τ1, y2 + τ2) dτ1

=
[

∂

∂τ2
K(x1−y1, x2+τ2, 0, y2+τ2)− ∂

∂τ2
K(x1, x2+τ2, y1, y2+τ2)

]
= −W2(x1 − y1, x2 + τ2, 0, y2 + τ2) +W2(x1, x2 + τ2, y1, y2 + τ2).

Similarly it is easy to get:

(3)

∫ −y2

o

W (x+τ1, x2 + τ2, y1 + τ1, y2 + τ2) dτ2

= −W1(x1 + τ1, x2 − y2, y+τ1, 0) +W1(x1 + τ1, x2, y1 + τ1, y2).∫ −y1

0

∫ −y2

0

W (x1 + τ1, x2 + τ2, y1 + τ1, y2 + τ2) dτ1 dτ2

= K(x1 − y1, x2, y2, 0, 0)−K(x1 − y1, x2, 0, y2)
−K(x1, x2 − y2, y1, 0)−K(x1, x2, y1, y2).

Let us remember that the field h(x) in H is called dissipative if
(A1)I ≥ 0. As in the one-dimension case it is easy to establish [4,
6] that:

(4)

lim
τ1→∞K(x1 + τ1, x2, y1 + τ1, y2) = K1

∞(x1 − y1, x2, y2);

lim
τ2→∞K(x1, x2 + τ1, y1, y2 + τ1) = K2

∞(x2 − y2, x1, y1);

lim
τ1,τ2→∞K(x+ τ, y + τ ) = K∞(x− y).
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If the correlation function depends only on a difference in arguments
then a field is called a stationary field [4] (in just this way a stationary
was defined by Kolmogorov).

Then the formula (3) may be presented in the form:

(5)

K(x, y) =
∫ ∞

0

∫ ∞

0

W (x+ τ, y + τ ) dτ1 dτ2

+K1
∞(x1 − y1, x2, y2) +K2

∞(x2 − y2, x1, y1)
+K∞(x− y).

K∞(x−y) is a Hermitian-positive function which may be considered as
a stationary field correlation function, K1

∞(x1 − y1, x2, y2) (as well as
K2

∞(x2−y2, x1, y1)) in variable x1−y1 is a Hermitian-positive function
for each x2, y2, and , as a function of x2, y2, is a dissipative curve of
one variable in H. Thus, essentially everything is determined by the
infinitesimal correlation function W (x, y).

1.2. Let us introduce as in [4, 6] a rank of nonstationarity.

We recall that the rank of nonstationary of function h(x) of twice
permutational system of linear operators A1, A2 is the greatest rank of
quadratic form

n∑
α,β=1

W (xα, xβ)ζαζ̄β, xα ∈ R2, ζα ∈ C, n < ∞.

It is not difficult to show that the rank of nonstationarity for the
present case coincides with the dimension of space H0 where H0 =
(A1)IH

⋂
(A2)IH (here as usual (Ak)I = (Ak −A∗

k)/(2i) [4]) and in
addition

(6) W (x, y) = 4〈(A1)I(A2)I h(x), h(y)〉.
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The derivation of formula (6): From formula (2) it follows that

W1(x1, x2, y1, y2) = − ∂K(x+ τ1, x2, y1 + τ1, y2)
∂τ1

|τ1=0

= −
(

∂

∂x1
+

∂

∂y1

)
K(x1, x2, y1, y2)

= −
(

∂

∂x1
+

∂

∂y1

)
〈Zxh, Zyh〉

= −〈iA1Zxh, Zyh〉 − 〈Zxh, iA1Zyh〉
=

〈A1 −A∗
1

i
Zxh1Zyh

〉
= 2〈(A1)Ih(x), h(y)〉.

Similarly,
W2(x1, x2, y1, y2) = 2〈(A2)Ih(x), h(y)〉.

Therefore,

W (x1, x2, y1, y2) = −
(

∂

∂x2
+

∂

∂y2

)
W1(x1, x2, y1, y2).

Then we get that

W (x1, x2, y1, y2) = −
(

∂

∂x2
+

∂

∂y2

)
〈2(A1)Ih(x), h(y)〉

= −〈2(A1)I iA2h(x), h(y)〉 − 〈2(A1)Ih(x), iA2h(y)〉
= 2

〈 (A1)IA2 −A∗
2(A1)I

i
h(x), h(y)

〉
.

As A1 and A2 are twice permutable then,

W (x, y) = 2
〈
(A1)I

A2 −A∗
2

i
h(x), h(y)

〉
= 4〈(A1)I(A2)Ih(x), h(y)〉

For the case dimH0 = 1, i.e. when the rank of nonstationarity of vector
field h(x) is equal to one, we get

(7) W (x, y) = Φ(x)Φ(y),

where Φ(x) = 〈h(x), h0〉
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2. Correlation functions and spectral representation for the
twice premutational fields of rank 1.

2.1. Let us consider a vector field h(x1, x2) = exp (ix1A1 + ix2A2)h,
where h ∈ H,H0 = (A1)IH ∩ (A2)IH , dimH0 = 1 and operators A1

and A2 are twice permutable. As H0 = (A1)IH∩(A2)IH is univariable
and the operator 4(A1)I(A2)I is self-adjoint, then general theory gives

4(A1)I(A2)Ih = 〈h, h0〉h0

for any h ∈ H. Therefore from formula (6) it follows that

W (x1, x2, y1, y2) = 〈4(A1)I(A2)Ih(x), h(y)〉
=

〈〈h(x1, x2), h0〉h0, h(y1, y2)
〉

= 〈h(x1, x2), h0〉〈h0, h(y1, y2)〉
= Φ(x1, x2) · Φ(y1, y2)

where

Φ(x1, x2) = 〈h(x1, x2), h0〉 = 〈exp (ix1A1 + ix2A2)h, h0〉.
As it was shown in [6], then the ICF of vector field h(x1, x2) has the
form

W (x1, x2, y1, y2) = Φ(x1, x2)Φ(y1, y2),

where Φ(x1, x2) = 〈exp (ix1A1 + ix2A2)h, h0〉, h0 ∈ H0, ‖h0‖
= 1, 2 ImA12 ImA2h0 = λ0h0 and λ0 is a real number.

Applying the well-known Risse-Danford representation for functions
of operators [4,5],

Using relation [4]

exp (tA) = − 1
2πi

∫
Γ

exp (λt)(A− λI)−1 dλ

where Γ is a closed path that contains all the spectrum of operator A,
one can represent the function Φ(x1, x2) in the form

(8)
Φ(x1, x2) =

(
1
2πi

)2 ∮
Γ1

∮
Γ2

exp (iλ1x1 + iλ2x2)

〈(A1 − λ1I)−1(A2 − λ2I)−1h, h0〉 dλ1, dλ2.
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Closed path Γk includes the spectrum of operator Ak, k = 1, 2. When
calculating integrals in (8) one can pass to any system of operators
•
A1,

•
A2, acting in Hilbert space

•
H, which are unitary equivalent to the

original operators A1, A2:

((A1−λ1I)−1(A2−λ2I)−1h, h0)H = ((
•
A1−λ1I)−1(

•
A2−λ2I)−1g, g0) •

H
,

where
•
AkU = UAk, k = 1, 2, and U is a unitary operator acting from

H in L2(D),
D = [0× l1]× [0, l2], Uh0 = g0.

Then the function Φ(x1, x2) is presented in the form

Φ(x1, x2) =
(
− 1
2πi

)2 ∮
Γ1

∮
Γ2

exp (iλ1x1 + iλ2x2)

× 〈
(
•
A1 − λ1I)−1(

•
A2 − λ2I)−1)g, g0

〉
dλ1 dλ2.

2.2. Let us consider a case when the function h(x1, x2) belongs
to class K

(1)
11 , i.e., the spectrum of each operator Ak, k = 1, 2,

is contracted in zero. Then [7] the model space
•
H coincides with

L2(D), D = [0, l1]× [0, l2], l1, l2 < ∞.
The operators

•
A1 and

•
A2 are defined in L2(D) as follows:

•
A1f(x, y) = − i

∫ l1

x

f(t, y) dt;
•
A2f(x, y) = − i

∫ l2

y

f(x, τ) dτ,

where x and y are one dimensional. Due to the unitary equivalence

Ho is mapped by operator U on
•
H0 = 2Im

•
A1

•
H ∩ 2Im

•
A2

•
H which is a

subspace of constant functions from L2(D), therefore h0(x, y) ≡ 1, and
•
h0 = f(x, y).

It is not difficult to show that

(
•
A∗

1 − λ1I)−1(
•
A∗

2 − λ2I)−1h0(x, y) =
1

λ1λ2
exp

(
ix

λ1
+

iy

λ2

)
.
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Then

Φ(x1, x2) =
(
− 1
2πi

)2 ∮
Γ1

∮
Γ2

exp (iλ1x1 + iλ2x2)

×
[∫

D

1
λ1λ2

exp
(
iζ1
λ1
+

iζ2
λ2

)
f(ζ1, ζ2) dζ1 dζ2

]
dλ1 dλ2

=
(
− 1
2πi

)2 ∫
D

[ ∮
Γ1

∮
Γ2

1
λ1
exp

(
iλ1x1 +

iζ1
λ1

)

× 1
λ2
exp

(
iλ2x2 +

iζ2
λ2

)
dλ1 dλ2

]
f(ζ1, ζ2) dζ1 dζ2

and finally

Φ(x1, x2) =
∫ l1

0

∫ l2

0

J0(2
√
x1ζ1 )J0(2

√
x2ζ2 )f(ζ1, ζ2) dζ1 dζ2,

where

J0(2
√
x1ζ1 ) =

∞∑
n=1

(−1)n(x1ζ1)n

(n!)2
.

3. Correlation functions for commutative systems of op-
erators in case of nilpotentness of the commutator C =
[A∗

1, A2](C3 = 0).

3.1. Similar to the class of twice permutable system of linear operator
for the vector field

h(x)=Zxh, x=(x1, x2) ∈ R2, Zx=exp [i(x1A1 + x2A2)], h ∈ H,

where the system of operators {A1, A2} is such that
(9) [A1, A2] = 0, C = [A∗

1, A2], C3 = 0, C2 �= 0
we introduce the correlation functions
(10)

W1(x1, x2, y1, y2) = − ∂

∂τ1
K(x1 + τ1, x2, y1 + τ1, y2) |τ1=0

W2(x1, x2, y1, y2) = − ∂

∂τ2
K(x1, x2 + τ2, y1, y2 + τ2) |τ2=0

W (x1, x2, y1, y2) = − ∂2

∂τ1∂τ2
K(x1+τ1, x2+τ2, y1+τ1, y2+τ2) |τ1=τ2=0
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It is not difficult to see that for the case of vector field h(x) one can
obtain [3]

(11)
W1(x1, x2, y1, y2) = 2〈(A1)Ih(x), h(y)〉
W2(x1, x2, y1, y2) = 2〈(A2)Ih(x), h(y)〉
W (x1, x2, y1, y2) = 〈Dh(x), h(y)〉.

Here operator D is self-adjoint and is of the form

(12) D = 2i
(
A∗

2(A1)I − (A1)IA2

)
= 2i

(
A∗

1(A2)I − (A2)IA1

)
.

Let us show that D may be represented as (12). From formula (10)
using differentiation rules one can easily get

W1(x1, x2, y1, y2) = −
(

∂

∂x1
+

∂

∂y1

)
K(x, y)

= −
〈 ∂

∂x1
h(x), h(y)

〉
−

〈
h(x),

∂

∂y1
h(y)

〉
=

〈− iA1h(x), h(y)
〉
+

〈
h(x), iA1h(y)

〉
= 2

〈(
A1 −A∗

1

i

)
h(x), h(y)

〉
.

Then we can find W (x, y)

W (x, y) = − ∂

∂x2
2〈(A1)Ih(x), h(y)〉 − ∂

∂y2
〈2(A1)Ih(x), h(y)〉

= −〈2i(A1)IA2h(x), h(y)〉 − 〈2(A1)Ih(x), iA2h(y)〉

that is the proof (12). Elementary evaluations show that the operator
D in (12) can be reduced to

(13) D = C + 4(A2)I(A1)I = C∗ + 4(A1)I(A2)I .

In what follows,in order to render a concrete form of operator D we
confine ourselves to the systems of linear operators that satisfy the next
theorem proved in [7]. A system of operators A1, A2 is called a simple
system [4] if there is no subspace in H which, reducing the operators
A1 and A2, a contraction on which is self-adjoint at least for one of
operator Ak.
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Theorem 1. Let us assume that a simple commuting system of linear
operators A1, A2 is such that:

1. C3 = 0 , dimCH = 2

2. dimH0 = 1, H0 = 1, H0 = (A1)IH ∩ (A2)IH

3. (A1)ICkH ⊂ CkH, (A2)IC∗pH ⊂ C∗pH, k, p = 1, 2.

Then the space H is decomposed into the orthogonal sum H =
H1 ⊕H2 ⊕H3, where Hk reduces A1 and subspaces H3 and H2 ⊕H3

are invariant relative to A2 and the contractions of system {A1, A2} on
Hk are twice permutable.

This theorem has been proved in [7]. In what follows we assume
that a system of linear operators {A1, A2} satisfies the assumption of
Theorem 1. Let C2H = {λh3}, CH � C2H = {µh2} and C∗2H =
{λg3}, C∗H � C∗2H = {µg2}. It is obvious that h3 ⊥ g3, g2 and
g3 ⊥ h3, h2. This readily follows from the condition C3 = C∗3 = 0.
One can easily see that H3 ∩ H0 = {λh3}, H2 ∩ H0 = {2h2}. Let us
denote by h1 a vector such that {λh̃1} = H1 ∩ H0 and introduce the
following vectors:

h1 = h̃1 = 〈h̃1, g3〉g3,

g1 = g̃1 = 〈g̃1, h3〉h3,

where the vector g1 is such that g1 + h3 + g2 + g3 = h0, where h0 is a
basis vector of space H0.

Then it is easy to see that

DH = HD = span {h3, h2, h1, g1, g2, g3, }.

Thus, the operator D, corresponding to the defect of being non-
stationary, maps H into a six-dimensional space.

Let us find an explicit form of self-adjoint operator D defined in HD.
Really, it is easy to see that

Dh3 = Ch3 + 4(A2)I(A1)Ih3 = 4(A2)Iα3h3,

where (A1)Ih3 = α3h3. Therefore

〈Dh3, g2〉 = 0 and 〈Dh3, g3〉 = 0.
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Similarly one can obtain

Dh2 = Ch2 + 4(A2)I(A1)Ih2 = µh3 + 4(A2)Iα2h2,

where (A1)Ih2 = α2h2. Thus 〈Dh2, g3〉 = 0. By repeating the same
arguments one can obtain

〈Dh3, h1〉 = 0, 〈Dg3, h2〉 = 0, 〈Dg2, h3〉 = 0.

Hence, we have proved the following lemma.

Lemma 1. The matrix of the operator D in the basis
{h1, h2, h3, g1, g2, g3} of the space HD can be written in the form

(14)




d11 d12 d13 d14 0 0
d12 d22 d23 d24 d25 0
d13 d23 d33 d34 d35 d36

d14 d24 d34 d44 d45 d64

0 d25 d35 d45 d55 d56

0 0 d36 d46 d56 d66




where dk,s ∈ R are real numbers.

Thus D is a generalization of Jacobian matrix, namely D is a semi-
diagonal matrix.

Consequently

(15) Dh =
6∑

α,β=1

〈h, lα〉dα,β lβ,

where l1 = h3, l2 = h2, l3 = h1, l4 = g1, l5 = g2, l6 = g3.

Here as above we denote ‖lk‖ = 1, k = 1, . . . , 6, and dα,β = 〈Dlα, lβ〉.

3.2. Now let us consider the infinitesimal correlation function
W (x, y) (11):

W (x, y) = 〈Dh(x), h(y)〉.
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Then by virtue of (15) one can obtain

W (x, y) =
6∑

α,β=1

〈h(x), lα〉dα,β〈h(y), lβ〉.

Denote Φα(x) = 〈h, exp [i(x1A
∗
1 + x2A

∗
2)]lα〉, α = 1, 2, . . . , 6, then

(16) W (x, y) =
∑

α,β=1

Φα(x) · dα,βΦβ(y).

Let us find the form of functions Φα(x). Note, first of all, that the func-
tions Φα(x) are invariant relatively under unitary equivalence and hence
we can use the model presentation which was derived in [7]. As is ob-
vious from these models the vector-functions exp [−i(x1A

∗
1 + x2A

∗
2)]lα

generate subspaces Lα which are invariant relative to the operators A∗
1

and A∗
2 where the contractions of the operators A

∗
1 and A∗

2 on Lα are
twice permutable. Let us denote images of vectors {lα} under unitary
equivalence (which is realized by the model construction) by {hα}, and
denote the image of h by f(x1, x2) which is a function in the space
L2(D), where domain D has the form

           x2

           b3

           b2

           b1

                                   a1                     a2                         a3                      x1

        D

Then l1 is a function equal to zero outside domain [0, a1]× [b2, b3] and
is a constant in this domain. Similarly, l2 is a constant in [0, a2]×[b1, b2],
l3 is that in [0, a3] × [0, b1], l4 is that in [0, a1] × [0, b2], l5 is that in
[a1, a2]× [0, b2], and last l6 is a constant in [a2, a3]× [0, b1].
Since the spectrum of each operator A1, A2 lies in zero and we are in
the frames of assumptions of Theorem 1, one obtains, in virtue of the
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formulas given in Section 2

Φ1(x1, x2) =
∫ a1

0

∫ b3

b2

f(ζ1, ζ2)J0(2
√
x1ζ1 )J0(2

√
x2ζ2 ) dζ1 dζ2

Φ2(x1, x2) =
∫ a2

0

∫ b2

b1

f(ζ1, ζ2)J0(2
√
x1ζ1 )J0(2

√
x2ζ2 ) dζ1 dζ2

Φ3(x1, x2) =
∫ a2

0

∫ b1

0

f(ζ1, ζ2)J0(2
√
x1ζ1 )J0(2

√
x2ζ2 ) dζ1 dζ2

Φ4(x1, x2) =
∫ a1

0

∫ b2

0

f(ζ1, ζ2)J0(2
√
x1ζ1 )J0(2

√
x2ζ2 ) dζ1 dζ2

(17)

Φ5(x1, x2) =
∫ a2

a1

∫ b2

0

f(ζ1, ζ2)J0(2
√
x1ζ1 )J0(2

√
x2ζ2 ) dζ1 dζ2

Φ6(x1, x2) =
∫ a3

a2

∫ b1

0

f(ζ1, ζ2)J0(2
√
x1ζ1 )J0(2

√
x2ζ2 ) dζ1 dζ2

where J0(z) is the Bessel function

J0(z) =
∞∑
0

(−1)n(z/2)2k

(K!)2

Thus, one can formulate the following theorem.

Theorem 2. Assume that a system of linear operators {A1, A2}
satisfies the propositions of Theorem 1 where the spectrum of each
operator Ak lies in zero. Then the infinitesimal correlation function
W (x, y) (11) is represented in the form (16) where dα,β ∈ R, and the
functions Φα(x) are defined in (17).

To evaluate dk,s we represent lk graphically in the pictures
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           x2                                                                                                                                      x2

           b3                                                                                   b3

                        l1

           b2                                                                                   b2

                                  l2                                                                                                               l4

            b1                                                                                                                        b1                           l5

                                           l3                                                                                                   l6

                                   a1                     a2                         a3                      x1                                             a1                     a2                         a3                      x1

where lk are normalized constants in indicated areas (‖lk‖L2(D) = 1).
So that

lk =
SDk√
GDk

,

where SDk
is the characteristic function of the domain Dk, which is

shown in the pictures for lk and GDk
is the area.

For example,

l1 =
S[0,a1]×[b2,b3]√
a1(b3 − b2 )

, l2 =
S[0,a2]×[b1,b2]√
a2(b2 − b1 )

,

etc.

Let us evaluate Dl1:

Dl1 =
(
C + 4(A2)I(A1)I

)
l1 = 4(A2)I(A1)I l1 = 2(A2)Ia1b1

(as 2(A1)I realizes integration in variable x1). After the integration x2

which is carried out by operator (A2)I one can get

Dl1 =
a1(b3 − b3)√
a1(b3 − b2)

· S[0,a1]×[0,b3] =
√
a1(b3 − b2)

√
a1b3 l4

to evaluate d1,1 it is necessary to find

d1,1 = 〈Dl1, l1〉
=

〈√
a1(b3 − b2) S[0,a1]×[0,b3],

S[0,a1]×[b2,b3]√
a1(b3 − b2)

〉
= a1(b3 − b2).
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Then d1,2 = 〈Dl1, l2〉 we can derive that

d1,2 =
〈√

a1(b3 − b2 )S[0,a1]×[0,b3],
S[0,a2]×[b1,b2]√
a2(b2 − b1 )

〉

=

√
a1(b3 − b2 )
a2(b2 − b1)

·
√
a1(b2 − b3 )

= a1

√
b3 − b2
a2

.

Let us evaluate

d1,3 = 〈Dl1, l3〉
=

〈√
a1(b3 − b2) S[0,a1]×[0,b3],

S[0,a3]×[0,b1]√
a3b1

〉

=

√
a1(b3 − b2)√

a3b1

√
a1b1 = a1

√
b3 − b2
a3

.

Also

d1,4 = 〈Dl1, l4〉 =
〈√

a1(b3 − b2 )
√
a1b3l4, l4

〉
= a1

√
b3(b3 − b2 ) .

Since Dl1 = a1

√
b3(b3 − b2) l4 and l4 ⊥ l5 and l4 ⊥ l6 we derive that

d1,5 = d1,6 = 0. Finally

d1,1 = a1(b3 − b2)

d1,2 = a1

√
b3 − b2
a2

d1,3 = a1

√
b3 − b2
a3

d1,4 = a1

√
(b3 − b2)b2

d1,5 = 0
d1,6 = 0
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