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SEQUENTIAL DEFINITIONS OF CONTINUITY
FOR REAL FUNCTIONS

JEFF CONNOR AND K.-G. GROSSE-ERDMANN

ABSTRACT. A function f : R → R is continuous at a
point u if, given a sequence x = (xn), limx = u implies that
lim f(x) = f(u). This definition can be modified by replacing
lim with an arbitrary linear functional G. Generalizing several
definitions that have appeared in the literature, we say that
f : R → R is G-continuous at u if G(x) = u implies that

G(f(x)) = f(u). When G(x) = limn n−1
∑n

k=1
xk, Buck

showed that if a function f is G-continuous at a single point
then f is linear, that is, f(u) = au+ b for fixed a and b. Other
authors have replaced convergence in arithmetic mean with A-
summability, almost convergence and statistical convergence.
The results in this paper include a sufficient condition for G-
continuity to imply linearity and a necessary condition for
continuous functions to be G-continuous, thereby generalizing
several known results in the literature. It is also shown
that, in many situations, the G-continuous functions must be
either precisely the linear functions or precisely the continuous
functions. However, examples are found where this dichotomy
fails, which, in particular, leads to a counterexample to a
conjecture of Spigel and Krupnik.

1. Introduction. The typical ‘advanced calculus’ student is often
relieved to find that the standard ε − δ definition of continuity for
real-valued functions of a real variable can be replaced by a sequential
definition of continuity. That many of the properties of continuous
functions can be easily derived using sequential arguments has also
been, no doubt, a source of relief to the occasional advanced calculus
instructor.

In this paper we investigate the impact of changing the definition of
the convergence of sequences on the structure of the set of continuous
functions. This continues a line of research initiated with a 1946
American Mathematical Monthly problem. Robbins [24] asked readers
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to show that a function f : R → R which exhibits the property

(1) lim
n→∞

1
n

n∑
k=1

xk = u =⇒ lim
n→∞

1
n

n∑
k=1

f(xk) = f(u),

even at a single point u = u0, has to be linear, that is, of the form
f(u) = au + b for all u, where a, b are fixed real numbers. In other
words, when in the usual definition of continuity sequential convergence
is replaced by convergence in arithmetic mean then only the linear
functions remain continuous in the new sense. In the same problem,
Robbins coined the term ‘Cesàro continuous’ for functions satisfying
(1). Buck’s solution was published in 1948 [7]; the problem was also
solved by five others.

Since then, there have been a number of similar investigations that
replace the usual definition of sequential convergence with one of a vari-
ety of other definitions that are typically related to matrix summability,
almost convergence or statistical convergence (these will be discussed
below). In all of these investigations, the resulting continuous func-
tions were either precisely the linear functions or precisely the functions
which are continuous in the ordinary sense. This paper shows that, as
long as the new definition of convergence satisfies certain restrictions,
this is always the case. But we will also find examples where this di-
chotomy does not hold. In particular, we will give a counterexample to
a conjecture of Spigel and Krupnik [28].

Before we can begin, it will be necessary to introduce some definitions
and notation. We will use boldface letters x,y, z, . . . for sequences
x = (xn)∞n=1, . . . of real numbers. If f is a real-valued function of
a real variable then we define f(x) = (f(xn))n. By a method of
sequential convergence, or briefly a method, we mean a linear functional
G defined on a linear subspace cG of the vector space of all real-valued
sequences. A sequence x = (xn) is said to be G-convergent to l if
x ∈ cG and G(x) = l. In particular, lim denotes the limit functional
limx = limn xn on the space c of convergent sequences. A method G
is called regular if every convergent sequence x = (xn) is G-convergent
with G(x) = limx. Throughout this paper we shall denote by I
a nondegenerate interval in R. We are now ready to define the G-
continuity of a function.
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Definition. Let G be a method of sequential convergence and
f : I → R a function. Then f is G-continuous at u ∈ I provided that
whenever an I-valued sequence x = (xn) is G-convergent to u then the
sequence f(x) = (f(xn)) is G-convergent to f(u). For a subset D of
I, f is called G-continuous on D if it is G-continuous at every u ∈ D,
and f is G-continuous if it is G-continuous on its domain I.

The G-continuity of f (on its domain) can also be expressed briefly
as follows: If x is an I-valued G-convergent sequence then

G(f(x)) = f(G(x)).

It is important to distinguish between the G-continuity of f on a
subinterval J and the G-continuity of f |J . Clearly, if f is G-continuous
on J then f |J is G-continuous, but the converse is not necessarily true
because in the latter case the sequences x are restricted to J . We
demonstrate this by an example.

Example 1. A regular method G and a function f : R → R
so that f |[a,b] is G-continuous for every interval [a, b] but f itself is
not G-continuous. It suffices to consider cG = c + span {(2n)} with
G(x+ λ(2n)) = limx for λ ∈ R. Then the function f : u �→ u2 clearly
has the desired properties.

Another phenomenon that is unknown for ordinary continuity is that
G-continuity need not be a local property. Antoni and Šalát [2] have
given an example of a regular method G and a function f : R → R
that is G-continuous only at 0 although f coincides on [−1, 1] with a
linear and hence G-continuous function.

We now discuss some special classes of methods of sequential con-
vergence that have been studied in the literature. Probably the most
important class is the class of matrix methods. Consider an infinite ma-
trix A = (ank)∞n,k=1 of real numbers. Then, for any sequence x = (xn)
the sequence Ax is defined as

Ax =
( ∞∑

k=1

ankxk

)
n

,
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provided that each of the series exists. A sequence x is A-convergent
(or A-summable) to l if Ax exists and is convergent with

limAx = lim
n→∞

∞∑
k=1

ankxk = l.

Then l is called the A-limit of x. We have thus defined a method of
sequential convergence, called a matrix method (or an ordinary matrix
method to distinguish it from the strong matrix methods considered
below), and A is called a summability matrix. For matrix methods
the notion of regularity introduced above coincides with the classical
notion of regularity for matrices. See [5], [16], [22], [20] and [31] for
an introduction to regular summability matrices.

A number of authors (Posner [23], Iwiński [17], Srinivasan [29],
Antoni and Šalát [2], [1], Spigel and Krupnik [28]) have studied G-
continuity defined by a regular summability matrix A. In this case
G-continuity is usually called A-continuity. Note that Buck’s original
result is for the Cesàro matrix C1 = (ank) with ank = 1/n if k ≤ n and
0 otherwise.

The Hahn-Banach theorem can be used to define methods which
are not generated by a regular summability matrix. Banach used
this theorem to show that the limit functional can be extended from
the convergent sequences to the bounded sequences while preserving
linearity, positivity and translation invariance [3]; these extensions have
come to be known as Banach limits. If a bounded sequence is assigned
the same value l by each Banach limit, the sequence is said to be almost
convergent to l. Lorentz [18] proved that a sequence x = (xn) is almost
convergent to l if and only if

lim
n→∞

1
n

n∑
k=1

xk+j = l uniformly in j.

Observe that a sequence is almost convergent if and only if it is
‘uniformly Cesàro convergent’; replacing the Cesàro matrix by a regular
summability matrix A (or even a family of general regular methods)
leads to another collection of methods of sequential convergence. For
an introduction to the theory of almost convergence (with respect to
the Cesàro matrix), see [18], [22] and [4].
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Some authors (Öztürk [21], Savaş and Das [25], [26], Borśık and Šalát
[6]) have studied G-continuity for the method of almost convergence or
for related methods. In particular, Borśık and Šalát have obtained the
analogue of Buck’s result for almost convergence.

Next we consider a class of methods that is unrelated to the preceding
two classes. Fast [13] introduced the definition of statistical convergence
in 1951. Recall that for subsets A of N the asymptotic density of A,
denoted δ(A), is given by

δ(A) = lim
n→∞

1
n
|{k ≤ n : k ∈ A}| ,

if this limit exists, where |B| denotes the cardinality of the set B. A
sequence x = (xn) is statistically convergent to l if

δ({n : |xn − l| > ε}) = 0 for every ε > 0.

In this case l is called the statistical limit of x. The statistically
convergent sequences form a linear subspace of the space of all real-
valued sequences and the statistical limit is a linear functional on this
space. Note that convergent sequences are statistically convergent to
the same limit and that if a sequence is statistically convergent to l, then
the sequence has a subsequence which converges to l in the ordinary
sense, cf. [9].

The notion of statistical convergence can be generalized to µ-
statistical convergence by replacing the asymptotic density δ with an
arbitrary density µ, that is, a finitely additive set function taking val-
ues in [0, 1] defined on a field of subsets of N with µ(N) = 1 such that
if |A| < ∞ then µ(A) = 0 and if A ⊂ B with µ(B) = 0 then µ(A) = 0,
cf. [10] and [11]. This notion covers several other variants of statistical
convergence that have been considered in the literature.

For an introduction to statistical convergence, see [14], [9], [15], and
[11].

The G-continuity for methods of statistical convergence has been
considered in two papers (Schoenberg [27], Demirci [12]). The behavior
here is markedly different. While G-continuity in the case of regular
matrix summability or almost convergence typically leads to Buck-
type results, Schoenberg showed that every continuous function is
‘statistically continuous,’ see also Proposition 4 below.
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The final class of methods that we want to discuss is given by strong
matrix summability. Let A = (ank)∞n,k=1 be a nonnegative matrix with
limn ank = 0 for all k ∈ N, supn

∑∞
k=1 ank < ∞ and

∑∞
k=1 ank �→ 0

as n → ∞. Then a sequence x is strongly A-convergent (or strongly
A-summable) to l if

∑∞
k=1 ank|xk − l| < ∞ for all n and

∞∑
k=1

ank|xk − l| → 0 as n → ∞.

In this case l is called the strong A-limit of x. Under the stated
assumptions this limit is unique and strong A-convergence defines a
regular method, called a strong matrix method. The assumptions on A
are satisfied in particular if A is a nonnegative regular matrix. For an
introduction to strong matrix summability, see [20] and [31].

It seems that G-continuity for strong matrix methods G will be
studied here for the first time, see Theorems 4 and 6, among others.

In the following we let

L(I), G(I) and C(I)

denote the collections of linear, G-continuous, and continuous functions
f : I → R, and we set L = L(R),G = G(R) and C = C(R); note that
a function f will be called linear if it is of the form f(u) = au + b
with constants a and b. We turn our attention to investigating the
relationships between these three sets, which is the emphasis of this
paper.

2. A sufficient condition for G = L. We begin with the following
simple observation.

Proposition 1. If G is a regular method, then every linear function
f : I → R is G-continuous, that is, L(I) ⊂ G(I).

This shows that L is the smallest possible space of G-continuous
functions, if G is regular. As noted above, Buck [7] showed that every
Cesàro-continuous function is a linear function, that is, G = L for the
method G of Cesàro-summability. In [2], Antoni and Šalát isolate a
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property that is shared by the Cesàro matrix and that implies G = L
for an arbitrary regular matrix method G. When trying to extend this
result to general regular methods one faces the problem that the proof
of Antoni and Šalát requires thatG-continuity implies continuity, which
is no longer necessarily true for non-matrix methods, see Example 3.
The following lemma will help us to overcome this problem.

Lemma 1. Let α �= 0, 1. If f : I → R is a function such that

(2) f(αu+ (1− α)v) = αf(u) + (1− α)f(v)

whenever u, v and αu+(1−α)v belong to I, then there is a dense subset
of I on which f is linear.

Proof. First we note that we can assume that α ∈ (0, 1); for if α > 1
then we replace α by (1/α) and αu+ (1− α)v by u, and if α < 0 then
we replace α by (α/(α− 1)) and αu+ (1− α)v by v.

We now fix distinct points u0 and v0 in I. Then there are a, b ∈ R
with f(u) = au + b for u = u0 and u = v0. Let D = {u ∈ I : f(u) =
au + b}. We claim that the closure D of D is an interval. Otherwise
there is an interval J = (u1, v1) with u1, v1 ∈ D that meets no points of
D. But by (2), u1, v1 ∈ D implies that αu1+(1−α)v1 ∈ D∩J , which is
a contradiction. Hence D is an interval, and a similar reasoning shows
that D = I.

Using this lemma we obtain the generalization of the Antoni-Šalát
theorem to general methods. With Antoni and Šalát [2] we consider
the following property for methods G:

(L1) There exists a G-convergent 0-1-sequence z such that G(z) = α
with α �= 0, 1.

Theorem 1. Let G be a regular method with property (L1). Then
every G-continuous function f : I → R is linear, that is, G(I) = L(I).

Proof. The first part of the proof is the same as that of Antoni and
Šalát. We give it here for the sake of completeness. Let f : I → R
be a G-continuous function, and let u, v ∈ I. Consider a G-convergent
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0-1-sequence z = (zn) and a scalar α as in property (L1), and define

xn = znu+ (1− zn)v,

which equals u if zn = 1, and v otherwise. By linearity and regularity
of G we have that x = (xn) ∈ cG with

G(x) = αu+ (1− α)v.

On the other hand, f(xn) equals f(u) if zn = 1, and f(v) otherwise.
Hence

f(xn) = znf(u) + (1− zn)f(v),

so that we also have

G(f(x)) = αf(u) + (1− α)f(v).

Since f is G-continuous we then have

f(αu+ (1− α)v) = f(G(x)) = G(f(x)) = αf(u) + (1− α)f(v)

whenever u, v and αu+ (1− α)v belong to I.

At this point Lemma 1 implies that there is a dense subset D of I
and a, b ∈ R such that

f(u) = au+ b for all u ∈ D.

Now let u ∈ I, and let xn ∈ D such that xn → u. Then also u = G(x),
so that G(f(x)) = G((axn + b)n) = au + b by linearity and regularity
of G. Since f is G-continuous, we finally have

f(u) = G(f(x)) = au+ b,

which had to be shown.

Apart from the Antoni-Šalát theorem this result also covers Theo-
rem 1 of Savaş and Das [26] who consider methods that generalize the
method of almost convergence.

The example in [2] shows that the theorem does not remain true if f
is only required to be G-continuous at a single point. In Section 6 we
will obtain corresponding results under this weaker assumption.
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Example 2. The converse of Theorem 1 is not true. There
is a regular method G that does not have property (L1) for which
G(I) = L(I) for any interval I.

To construct G let z = (1, 0,−1, 1, 0,−1, 1, . . . ) and cG = c+span {z}
with G(x) = limn x3n+2 for x ∈ cG. Then G is a regular method
that does not have property (L1) because, if G(x) = l, then l is a
subsequential limit of x.

Let f : I → R be a G-continuous function, and let x = y+ λz be an
I-valued sequence with limy = u0 and λ ∈ R, hence also G(x) = u0.
Then by the G-continuity of f we have that

f(x) = (f(y1 + λ), f(y2), f(y3 − λ), . . . ) ∈ cG

with
G(f(x)) = f(u0).

This implies that there is some κ ∈ R with

f(y3n+2) −→ f(u0),
f(y3n+1 + λ) −→ f(u0) + κ,

f(y3n+3 − λ) −→ f(u0)− κ

as n → ∞. If λ = 0 and y is an arbitrary I-valued sequence with
limy = u0, then the first limit relation implies that f is continuous at
u0. Taking λ ∈ R such that u0 + λ and u0 − λ belong to I and letting
yn = u0 for all n the second and third limit relations imply that

f(u0 + λ) + f(u0 − λ)
2

= f(u0).

By Lemma 1 the linearity of f follows.

3. A topological view of G-continuity, and a necessary
condition for G = C. In this section we study the connection between
G being a subsequential method and the comparison of G with C.

Definition. A method is called subsequential if whenever x is G-
convergent with G(x) = l then there is a subsequence (xnk

) of x with
limk xnk

= l.
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For a fixed subsequence (nk), define the method G = I(nk) by letting
x be G-convergent if and only if G(x) := limk xnk

exists. The method
I(nk) is obviously subsequential. The same is true for the method
considered in Example 2. Another example is statistical convergence,
see [9, Corollary 2.4].

In order to link subsequentiality with the size of G we introduce the
following ‘topological’ notions.

Definition. Let U ⊂ R and l ∈ R. Then l is in the G-hull of U if
there is a sequence x = (xn) of points in U such that G(x) = l. A set
is G-closed if it contains all of the points in its G-hull.

We let U
G

denote the G-hull of a set U . If G is a regular method,
then U ⊂ U ⊂ U

G
, and hence U is G-closed if and only if U

G
= U .

Note that, depending upon G, one can have either U = U
G

or U a
proper subset of U

G
; observe that if G is Cesàro summability then the

G-hull of {0, 1} is [0, 1], while if G is statistical convergence then the
G-hull of {0, 1} is {0, 1}. Also note that it need not be the case that the
G-hull of U

G
is equal to U

G
; for example, if x is G-convergent if and

only if G(x) := limn(xn + xn+1)/2 exists then for U = {0, 1} we have
U

G
= {0, (1/2), 1}, and the G-hull of U

G
is {0, (1/4), (1/2), (3/4), 1}.

Proposition 2. Let G be a regular method. Then U = U
G

for every
subset U of R if and only if G is a subsequential method.

Proof. Suppose that G is a subsequential method and that l ∈ U
G
.

Then there is a sequence x = (xn) in U such that G(x) = l. As G is
subsequential, there is a subsequence (xnk

) of x such that limk xnk
= l

and hence l ∈ U . As G is regular, it follows that U = U
G
.

Now suppose that U = U
G
for every subset U ofR. Let x = (xn) be a

G-convergent sequence with G(x) = l. Observe that, since G is regular,

G(x) depends only upon the ‘tail’ of x and hence l ∈ {xn : n ≥ N}G

for each N ∈ N. As {xn : n ≥ N}G
= {xn : n ≥ N} we obtain that

l ∈ ∩N{xn : n ≥ N}. Hence there is a subsequence (xnk
) of x such

that limk xnk
= l.
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Lemma 2. Suppose that f : R → R is G-continuous and U is
G-closed. Then f−1(U) is G-closed.

Proof. Let V = f−1(U) and suppose that l ∈ V
G
. Then there is a

V -valued sequence x such that G(x) = l. Now, since G(f(x)) = f(l),
f(x) is U -valued and U is G-closed we obtain that f(l) ∈ U . But now
l ∈ V and hence V

G ⊂ V .

With this lemma we obtain the following. Using a different method
we will obtain a stronger result in the next section, see the Corollary
to Theorem 5.

Proposition 3. If G is a regular subsequential method, then every
G-continuous function is continuous, that is, G ⊂ C.

Proof. We show that the inverse image of any closed set is closed.
Let U ⊂ R be closed. As G is subsequential, U is also G-closed. Since
f is G-continuous, it follows from Lemma 2 that f−1(U) is G-closed
and hence closed.

Theorem 2. Let G be a regular method. If every continuous function
is G-continuous, that is, if C ⊂ G, then G is a subsequential method.

Proof. We suppose thatG is not subsequential and produce a function
f : R → R which is continuous but not G-continuous. As G is not
subsequential it follows from Proposition 2 that there is a subset U of
R whose closure is properly contained in its G-hull. Let l ∈ U

G\U .
Then there is a continuous function f such that f(l) = 0 and f |U = 1.

We claim that f is not G-continuous. Since l ∈ U
G

there is a U -
valued sequence x = (xn) such that G(x) = l. Now f(xn) = 1 for all n
and f(l) = 0. As

G(f(x)) = 1 �= 0 = f(l)

we have established the claim.
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In Example 2 we have given a regular subsequential method such that
the only G-continuous functions are linear. Thus the converse of the
theorem is not true.

We see from the previous two results that for a regular method G we
have

C ⊂ G ⇐⇒ G = C.
This shows that G can never properly contain C. If there is a method
G for which G contains functions that are not in C then there also have
to be continuous functions that are not G-continuous.

For special methods it is possible to characterize when the case G = C
occurs. For ordinary matrix methods such a result follows immediately
from a theorem of Iwiński [17, Theorem 3] and its proof (note, however,
that the notion of G-continuity used in [17] is weaker than ours). Recall
the definition of the method I(nk) given at the beginning of this section;
it is clearly a regular matrix method that satisfies C ⊂ G, hence G = C.

Theorem 3 (Iwiński). If G is a regular matrix method, then the
following assertions are equivalent:

(i) the function u �→ u2 is G-continuous,

(ii) C ⊂ G,
(iii) G = C,
(iv) G = I(nk) for some sequence (nk).

In fact, by [17, Theorem 3], the function u �→ u2 may be replaced by
many other functions.

We add that the method I(2n) obviously gives an affirmative answer
to the question posed by Iwiński at the end of his paper [17].

It turns out that Theorem 3 also holds for strong matrix summability.
Note that each method I(nk) coincides with a method of strong A-
summability for a suitable matrix A.

Theorem 4. If G is a strong matrix method, then the following
assertions are equivalent:

(i) the function u �→ u2 is G-continuous,
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(ii) C ⊂ G,
(iii) G = C,
(iv) G = I(nk) for some sequence (nk).

Proof. By the discussion preceding Theorem 3 we need only show that
(i) implies (iv). Let G be a method of strong A-summability, where A
is a nonnegative matrix that satisfies the assumptions stated in the
introduction and assume that (i) holds. Let B = (bnk) be the matrix
obtained from A by deleting all zero-columns. By the assumptions on
A, B is also an infinite matrix, and it will suffice to show that strong
B-summability coincides with ordinary convergence.

Following the proof of [17, Theorem 3] we let αk = supn bnk for
k ∈ N and α = infk αk. Suppose that α = 0. Then there is an
increasing sequence (km) with

∑∞
m=1 α

1/3
km

< ∞. It follows easily that
the sequence x given by

xk =
{
α
−2/3
km

if k = km

0 otherwise

is strongly B-convergent to 0. On the other hand, choosing nm such
that bnmkm

≥ (αkm
/2) for all m we consider the sequence y with

yk =
{
α
−4/3
km

if k = km

0 otherwise.

Then it also follows easily that
∑∞

k=1 bnmk|yk| → ∞ as m → ∞ so
that y is not strongly B-convergent to 0. Since yk = x2

k for all k, this
shows that the function u �→ u2 is not G-continuous at 0, which is a
contradiction to (i).

Hence we have that α > 0. This implies that for every k ∈ N there is
some nk with bnkk ≥ α

2 for all k. Since
∑∞

k=1 bnk < ∞ for all n we must
have that nk → ∞ as k → ∞. Hence if x is strongly B-convergent to l
then we have

α

2
|xk − l| ≤ bnkk|xk − l| ≤

∞∑
j=1

bnkj |xj − l| −→ 0

as k → ∞, so that x is convergent to l. This shows that strong B-
summability coincides with ordinary convergence.
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4. A sufficient condition for G ⊂ C. We have seen that the space
L of linear functions is the smallest possible space of G-continuous
functions if G is regular, and that the case G = L can occur. We now
ask how large G can be. It was first noted by Posner [23], see also [17],
[29], that for regular matrix methods G we always have G ⊂ C, that is,
that every G-continuous function is continuous in the ordinary sense;
his proof even shows that if a function is G-continuous at a point then
it is continuous at this point. In this section Posner’s result is extended
to a wide class of methods; but we also show by a counterexample that
it does not hold for all methods. We consider the following property
for methods G:

(S) There is no sequence x with xn → ∞ for which each subsequence
(xnk

) is G-convergent.

Theorem 5. Let G be a regular method with property (S). Then every
function f : I → R that is G-continuous at u0 ∈ I is also continuous
there.

Proof. Suppose that f is G-continuous at u0 but not continuous there.
Then there is a sequence x in I with xn → u0 but f(xn) �→ f(u0).
We choose a subsequence y of x with |f(yn) − f(u0)| ≥ δ for some
δ > 0. We may assume that f(yn) ≥ f(u0) + δ for all n. Now,
if f(y) is a bounded sequence then there is a subsequence w of y
with f(wn) → a ≥ f(u0) + δ. This implies that G(w) = u0 and
G(f(w)) = a �= f(u0), which contradicts the G-continuity of f at u0.
Hence f(y) is unbounded, so that there is a subsequence w′ of y such
that f(w′

n) → ∞. Since every subsequence of w′ converges to u0 we see
that by G-continuity the sequence f(w′) and all its subsequences are
G-convergent, in contradiction to our assumption that G has property
(S).

Corollary. Let G be a regular method. If

(a) (Posner) G is an ordinary matrix method, or

(b) G is a strong matrix method, or

(c) G is totally regular, that is, no sequence x with xn → ∞ is G-
convergent, or
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(d) G is subsequential,

then every function f : I → R that is G-continuous at u0 ∈ I is also
continuous there.

Proof. Assertion (a) follows immediately from a well-known theorem
of Buck [8] by which every regular matrix method has property (S).
Case (c) is trivial. Case (b) follows from (c) since by the assumptions on
the nonnegative matrices that define strong matrix methods it follows
that every such method is totally regular. Finally, (d) is a special case
of (c).

Apart from regular ordinary and strong matrix methods also the
methods of almost convergence in the sense of Lorentz and µ-statistical
convergence have property (S), so that all the special methods consid-
ered in the introduction have this property, provided they are regular.

In fact, in the case of almost convergence a function that is G-
continuous at a point u0 has to be a linear function, see [6] or Section 6.

For statistical convergence, Schoenberg [27, Lemma 5] has shown
that if a function is continuous at a point then it is also ‘statistically
continuous’ there, see also [27, Lemma 1]. More generally we have
the following result for µ-statistical convergence as defined in the
introduction.

Proposition 4. Let G be a method of µ-statistical convergence.
Then a function f : I → R is G-continuous at u0 ∈ I if and only if it
is continuous there.

Proof. Clearly µ-statistical convergence is a totally regular method
G for any density µ. In view of the corollary we need only show that
if a function f : I → R is continuous at u0 then it is G-continuous
at this point. Thus let xn → u0 µ-statistically, and let ε > 0. By
continuity of f at u0 there is an η > 0 such that |v−u0| ≤ η implies that
|f(v)−f(u0)| ≤ ε. Hence, by the definition of µ-statistical convergence,
we have that

µ({n : |f(xn)− f(u0)| > ε}) ≤ µ({n : |xn − u0| > η}) = 0,

so that f(xn)→f(u0) µ-statistically, and f is G-continuous at u0.
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We will next see that Theorem 5 is not true for all regular methods.

Example 3. A regular method G and a function f : R → R which
is G-continuous, but not continuous, at 0.

Proof. First we define cG and G. Let Y be the set of all sequences
y = (yn) with yn ∈ {0}∪{jj : j ∈ N} for each n such that the nonzero
yn tend to infinity. Let W be the linear span of Y . Then we define
cG = c+W and G : cG → R by G(x) = lim z if x = z+w with z ∈ c
and w ∈ W .

We need to establish that G is well-defined. The key step is to show
that for each sequence w ∈ W withw �= 0 the nonzero elements tend to
infinity. To see this let w =

∑N
ν=1 aνyν �= 0 with aν ∈ R and yν ∈ Y .

Let M = maxν |aν | and

m = min
{∣∣∣ ∑

ν∈H

aν

∣∣∣ : H ⊂ {1, . . . , N},
∑
ν∈H

aν �= 0
}
;

note that m > 0. By the definition of Y there is a sequence (Jn) of
positive integers with Jn → ∞ such that, for ν = 1, . . . , N and n ∈ N,

yν
n = 0 or yν

n ≥ (Jn)Jn .

Now, for n ∈ N we can write

wn =
∞∑

j=1

( ∑
yν

n=jj

aν

)
jj ,

where only finitely many terms are nonzero. If wn �= 0 we have that∑
yν

n=jj

aν �= 0

for some j, and we let K = K(n) be the largest such j. Then K ≥ Jn

and hence

|wn| =
∣∣∣∣
( ∑

yν
n=KK

aν

)
KK −

∑
yν

n<KK

aνy
ν
n

∣∣∣∣
≥ mKK −MN(K − 1)K−1

≥ (mK −MN)(K − 1)K−1

≥ (mJn −MN)(Jn − 1)Jn−1 −→ ∞
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as n → ∞, which had to be shown.

As a consequence we see that the sum cG = c+W is a direct sum so
that G is well-defined. It is clear that G is linear and regular.

Now define f : R → R by

f(u) =
{
jj if u = 1/j
0 otherwise.

Observe that f is clearly not continuous at 0. To see that it is G-
continuous at 0 let x = z + w ∈ cG with G(x) = lim z = 0. Then
f(xn) ∈ {0} ∪ {jj : j ∈ N} for all n. Also, f(xn) �= 0 only if
zn + wn ∈ {(1/j) : j ∈ N}, which for sufficiently large n implies that
wn = 0 and zn ∈ {(1/j) : j ∈ N}. Consequently, f(x) either has only
finitely many nonzero terms or its nonzero terms tend to infinity. In
both cases we have f(x) ∈ cG and G(f(x)) = 0, which implies that f
is G-continuous at 0.

Note, however, that the function f in this example is not G-
continuous at any point u = (1/j). We do not know if a regular
method exists for which there is a G-continuous function on R that
is not continuous.

5. The dichotomy. From the various results and examples in the
literature, and supported also by the results in the paper so far, it seems
that for a regular method G there are only two possibilities: either
only the linear functions are G-continuous on R or every continuous
function is G-continuous on R, that is, either G = L or G = C.
No regular method was known until now that allowed a nonlinear G-

continuous function without admitting all continuous functions to be
G-continuous. In fact, the dichotomy was conjectured by Spigel and
Krupnik [28, p. 147] to hold when G is restricted to methods that are
generated by matrices. We will show here that the dichotomy fails,
even for regular matrix methods, thus providing a counterexample to
the Spigel-Krupnik conjecture.

We first show that essentially every method that is defined by strong
matrix summability leads to a counterexample to the dichotomy. Recall
our earlier result, Theorem 4, that for the methods G = I(nk), which
are special strong matrix methods, we have G = C.
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Theorem 6. Let G be a strong matrix method. If G �= I(nk) for all
sequences (nk), then

L � G � C.

Proof. By Proposition 1 and the corollary to Theorem 5 the inclusions
L ⊂ G ⊂ C always hold. Since for every nonnegative matrix A = (ank)
we have

∞∑
k=1

ank

∣∣|xk| − |u|∣∣ ≤
∞∑

k=1

ank|xk − u|

for all n, we see that the nonlinear function u �→ |u| is G-continuous
at every u ∈ R, so that L �= G. Finally, G �= C follows from
Theorem 4.

Zeller [30] has shown that strong Cesàro summability is a matrix
method, that is, a (regular) matrixA exists so that the method of strong
Cesàro summability is identical with the method of A-summability;
by [19] the same is indeed true for strong matrix summability with
respect to an arbitrary row-finite regular matrix. Since strong Cesàro
summability clearly differs from each method I(nk), the last result leads
to a counterexample to the conjecture of Spigel and Krupnik.

Corollary. There is a regular matrix method G for which

L � G � C.

In spite of these negative results we will show in the remainder of this
section that certain kinds of dichotomy do hold. Our main tool will be
the Stone-Weierstrass theorem. Throughout this section we make the
following assumption:

(GCI) Every G-continuous function f : I → R is continuous, that is,
G(I) ⊂ C(I).
As noted at the end of the previous section, we do not know of a

regular method that does not satisfy this condition.
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Theorem 7. Let G be a regular method, and let I = R or I = [a, b].
Assuming (GCI), then

either G(I) = L(I) or G(I) is dense in C(I).

Proof. We first consider the case I = R and assume that G �= L.
We have to show that H := G, the closure of G in C, coincides with C.
Recall that C = C(R) carries the topology of uniform convergence on
compact subsets of R. We first show that the function u �→ u2 belongs
to H.

Since G �= L there is a function f ∈ G \ L. By a shift of variable we
may assume that f |[0,1] �∈ L[0, 1]. We now consider the functions fn

defined by

fn(u) =
1
n

n∑
k=1

f

(
k

n
u

)
, n ∈ N.

It is then clear that fn ∈ G. By (GCR), f is continuous on R, so that
we can define

g(u) =




1
u

∫ u

0

f(t)dt if u �= 0

f(0), if u = 0.

Then we have for u �= 0,

|g(u)−fn(u)| =
∣∣∣∣ 1u

n∑
k=1

∫ k(u/n)

(k−1)(u/n)

(
f(t)− f

(
k

n
u

))
dt

∣∣∣∣
≤ sup

{|f(t)−f(τ )| : |t− τ | ≤ |u|
n
, t, τ ∈ [0, u] or [u, 0]

}
,

the estimate being trivially true for u = 0. This shows that

fn −→ g in C,
so that g ∈ H.

Since the functions u �→ g(αu) also belong to H for any α, we can
repeat the process to find that the function

h(u) =




1
u

∫ u

0

g(t) dt if u �= 0

g(0) if u = 0



112 J. CONNOR AND K.-G. GROSSE-ERDMANN

belongs to H as well. It is clear that h is twice differentiable on R\{0}.
In addition we have that h′′(u) �≡ 0 on (0, 1). Otherwise we would have

h(u) = au+ b on [0, 1],

hence ∫ u

0

g(t)dt = au2 + bu on [0, 1].

This implies that
g(u) = 2au+ b on [0, 1],

hence ∫ u

0

f(t) dt = 2au2 + bu on [0, 1],

which finally gives that

f(u) = 4au+ b on [0, 1],

contradicting the fact that f |[0,1] /∈ L[0, 1].
Writing f = h we have thus found an element f ∈ H that is twice

differentiable on R \ {0} with f ′′(u0) �= 0 for some u0 ∈ (0, 1). By
a shift of variable we may assume that f is twice differentiable in a
neighborhood of 0 with f ′′(0) �= 0. Hence we can write

f(u) = f(0) + f ′(0)u+
1
2
f ′′(0)u2 + r(u) for u ∈ R

with |r(u)|
u2

−→ 0 as u −→ 0.

Substituting (u/n) for u and multiplying the equation by n2 we obtain
that

1
2
f ′′(0)u2 −

(
n2f

(
u

n

)
− n2f(0)− nf ′(0)u

)
= −n2r

(
u

n

)

for all u ∈ R and n ∈ N. Now, since each function fn given by

fn(u) = n2f

(
u

n

)
− n2f(0)− nf ′(0)u
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lies in H, and since for every M > 0

sup
|u|≤M

∣∣∣∣− n2r

(
u

n

)∣∣∣∣ = sup
0<|u|≤M

∣∣∣∣r(u/n)(u/n)2

∣∣∣∣ |u|2 −→ 0 as n −→ ∞,

we see that
fn(u) −→ 1

2
f ′′(0)u2 in C,

hence that the function u �→ u2 belongs to H since f ′′(0) �= 0.

Using this result we can show that H = C. It suffices to show that
H|[a,b] := {f |[a,b] : f ∈ H} is dense in C[a, b] for all [a, b]. Since H ⊃ L,
H|[a,b] separates the points of [a, b] and contains the constant functions.
In view of the Stone-Weierstrass theorem it remains to prove thatH|[a,b]

is a subalgebra of C[a, b], for which we need only show that fg ∈ H if
f, g ∈ H. But since fg = ((f + g)2 − f2 − g2)/2 this follows easily from
the fact that the function u �→ u2 belongs to H.

The proof in the case I = [a, b] is similar. Here we have to note that
if the function u �→ u2 belongs to H[a, b], the closure of G[a, b] in C[a, b],
then it also belongs to H[c, d] for any interval [c, d] so that again we
can deduce that f2 ∈ H[a, b] whenever f ∈ H[a, b].

In order to derive a ‘real’ dichotomy from Theorem 7 we have to
find conditions under which G(I) is closed in C(I). We say that G-
continuity is boundedly determined, if a function f is G-continuous on
R whenever f |[a,b] ∈ G[a, b] for all compact intervals [a, b]. In addition,
l∞ denotes the space of bounded sequences endowed, as usual, with the
supremum-norm ‖ · ‖∞.

Lemma 3. Let G be a regular method. Assuming (GCI), suppose
that cG ∩ l∞ is closed in l∞ and that G : (cG ∩ l∞, ‖ · ‖∞) → R is
continuous. If

(a) I = [a, b] or

(b) I = R and G-continuity is boundedly determined, then G(I) is
closed in C(I).

Proof. (a) Let fn ∈ G[a, b] with fn(u) → f(u) uniformly on [a, b].
Let x be a G-convergent sequence in [a, b] with G(x) = u ∈ [a, b].
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Since each fn is G-continuous and continuous on [a, b] we have that
fn(x) ∈ cG ∩ l∞ for all n and

sup
k

|fn(xk)− f(xk)| ≤ ‖fn − f‖∞ −→ 0 as n → ∞.

By assumption this implies that f(x) ∈ cG ∩ l∞ and fn(x) → f(x) in
(cG ∩ l∞, ‖ · ‖∞). Moreover, we have by the continuity of G and the
G-continuity of each function fn that

fn(u) = fn(G(x)) = G(fn(x)) → G(f(x)).

Since also fn(u) → f(u), this shows that G(f(x)) = f(u), so that f
belongs to G[a, b].
(b) This follows directly from (a) since f |[a,b] ∈ G[a, b] if
f ∈ G(R).

As an immediate consequence of the last two results we obtain the
following dichotomy.

Theorem 8. Let G be a regular method. Assuming (GCI), suppose
that cG ∩ l∞ is closed in l∞ and that G : (cG ∩ l∞, ‖ · ‖∞) → R is
continuous. If

(a) I = [a, b] or

(b) I = R and G-continuity is boundedly determined,

then either G(I) = L(I) or G(I) = C(I).

If G is an ordinary or strong matrix method that is regular then
cG∩ l∞ is closed in l∞ and G : (cG∩ l∞, ‖ · ‖∞) → R is continuous. For
ordinary matrix methods, the first statement follows from the fact that
by the Silverman-Toeplitz theorem, cf. [20], a regular matrix A defines
a continuous linear mapping A : l∞ → l∞ with cG ∩ l∞ = A−1(c),
while the second then follows since G(x) = limAx for x ∈ cG ∩ l∞, and
lim : c → R is continuous. For strong matrix methods the claim can
be proved similarly, see also [10, Proposition 4 and Theorem 8].

We thus obtain the following dichotomy, using also the corollary to
Theorem 5.
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Corollary. Let G be a regular ordinary or strong matrix method and
let

(a) I = [a, b] or

(b) I = R and G-continuity is boundedly determined.

Then either G(I) = L(I) or G(I) = C(I).

It follows from Theorem 6 and its corollary that for ordinary or strong
matrix methods G that are regular, G-continuity is in general not
boundedly determined. For matrix summability, Example 1 gives a
concrete such example if we note that the method defined there is a
matrix method, cf. [31, Section 26].

6. Global consequences of G-continuity at a single point.
We return to the first result proved for G-continuity. Buck [7] had
in fact shown that a function is already linear if it is only Cesàro
continuous at a single point. Antoni [1, Theorems 1 and 2] and Spigel
and Krupnik [28, Theorems 1 and 2] have obtained general results in
this direction for matrix methods. We first generalize and strengthen
Antoni’s Theorem 2; note that Antoni’s result also contains Theorem
1 of Spigel and Krupnik. The condition imposed on G is in the spirit
of property (L1) considered in Section 2. Calling two 0-1-sequences
disjoint if their supports are disjoint we consider the following property
for methods G:

(L2) Disjoint G-convergent 0-1-sequences z and z′ exist such that
G(z) = α and G(z′) = β with α, β �= 0 and α+ β �= 1.

Theorem 9. Let G be a regular method with property (L2). Then
every function f : R → R that is G-continuous at one point is linear.

Proof. We can assume without loss of generality that f is G-
continuous at 0 and f(0) = 0. Let z and z′ be the sequences guaranteed
by (L2), and define z′′n = 1 − zn − z′n. Then z′′ = (z′′n) is a G-
convergent 0-1-sequence with γ := G(z′′) = 1 − (α + β) �= 0, and
z, z′ and z′′ are pairwise disjoint. Let u and v be any real numbers
and set xn = −zn(γ/2α)u − z′n(γ/2β)v + z′′n((u + v)/2). Then x is
G-convergent with G(x) = −(γ/2)u − (γ/2)v + γ((u + v)/2) = 0.
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By G-continuity of f at 0 we have that G(f(x)) = f(0) = 0. Since
f(xn) = znf(−(γ/2α)u) + z′nf(−(γ/2β)v) + z′′nf((u + v)/2), we see
that

(3) 0 = G(f(x)) = αf

(
− γ

2α
u

)
+ βf

(
− γ

2β
v

)
+ γf

(
u+ v

2

)
.

If v = 0 or u = 0 in (3), then

αf

(
− γ

2α
u

)
= − γf

(
u

2

)

and

βf

(
− γ

2β
v

)
= −γf

(
v

2

)
.

Substituting this into (3) and dividing by γ we obtain that

f

(
u

2

)
+ f

(
v

2

)
= f

(
u+ v

2

)

holds for all u and v. Setting u = v we see that f(u/2) = (f(u)/2), so
that we get

1
2
(
f(u) + f(v)

)
= f

(
u+ v

2

)

for all u and v.

Lemma 1 shows that there is a dense subset D of R and a, b ∈ R
such that

f(u) = au+ b for u ∈ D.

Now let u ∈ R be arbitrary and choose xn ∈ D with xn → 2u. Then

f(u) =
1
2
(
f(xn) + f(2u− xn)

)

=
1
2
(
axn + b+ f(2u− xn)

)
.

Since (2u−xn)n is G-convergent to 0 the same holds for
(
f(2u−xn)

)
n
.

Thus,

f(u) = G

((
1
2
(
axn + b+ f(2u− xn)

))
n

)
=

1
2
(a2u+ b+ 0)

= au+
b

2
.
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This shows that f is linear (note that in fact b = 0 because
f(0) = 0).

Even in the case of matrix methods this result strengthens Theorem 2
of [1] since our result does not exclude that α = 1, β = 1 or α+ β = 0.
Theorem 9 also implies the main result of Borśık and Šalát [6] that
every function that is G-continuous at one point for the method G
of almost convergence must be linear. More generally, we obtain the
following extension of a result of Spigel and Krupnik [28, Theorem
1]. Recall that a method G is called strongly regular if every almost
convergent sequence is G-convergent to the same limit.

Corollary. Let G be a strongly regular method. Then any function
that is G-continuous at one point is linear.

Proof. We can apply Theorem 9 to the sequences z = (1, 0, 0, 1, 0, 0, 1,
...) and z′ = (0, 1, 0, 0, 1, 0, 0, 1, 0, ...) which are both almost convergent,
hence G-convergent, to the value 1/3.

In view of Theorem 1 one may ask if Theorem 9 remains true if
the method G only has property (L1). This is not the case as was
shown by Antoni and Šalát [2, Example]. They produce an example
of a regular matrix method G with property (L1) and a non-linear
continuous function f : R → R that is G-continuous at (exactly) one
point. Now, by a result of Antoni [1, Lemma 1], that is the worst
that can happen: For any such method G, if a function f : R → R is
G-continuous at one point then it must be continuous on R. Antoni’s
proof, however, contains a gap (the case when y = ±∞ is not treated).
We will show that his result in fact holds for all regular methods. To
this end we need the following lemma.

Lemma 4. Let f : R → R be a function such that at every point
u0 of discontinuity we have limx→u0 |f(x)| = ∞. Then for every such
point u0 and every λ �= 0 there are sequences x and x′ with xn → u0,
x′n → u0 and f(xn)− f(x′n) = λ for all n.
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Proof. Let u0 be a point of discontinuity of f and set U = {u < u0 :
f is continuous at u}. Every u ∈ U has an open neighborhood in which
f is bounded and hence continuous by our assumption. Thus U is an
open set. Also, every neighborhood of u0 intersects U because for every
ε > 0 there is anM > 0 such that the set {u ∈ [u0−ε, u0] : |f(u)| ≤ M}
is infinite and hence has an accumulation point; this point has to belong
to U by the assumption. We can therefore find maximal open intervals
In = (an, bn) ⊂ U with bn → u0 as n → ∞ (possibly bn = u0 for all
n). Then f is continuous on each interval (an, bn), and by maximality
we have limx→bn

|f(x)| = ∞ for all n. Using the intermediate value
theorem it is now easy to construct the desired sequences x and
x′.

With this we can prove the extension of Antoni’s lemma.

Theorem 10. Let G be a regular method with property (L1). Then
every function f : R → R that is G-continuous at one point is
continuous on R.

Proof. Suppose that f is G-continuous at v0. Let u0 ∈ R. We first
show that for all sequences x = (xn) with xn → u0 the sequences f(x)
are G-convergent to the same value. By (L1) there is a G-convergent
0-1-sequence z with G(z) = α �= 0, 1. Then we consider the sequences
y and y′ with

yn = zns0 + (1− zn)xn

and
y′n = znxn + (1− zn)t0,

where s0 = ((v0 − (1 − α)u0)/α) and t0 = ((v0 − αu0)/(1 − α). Since
(znxn − znu0)n is a null sequence the linearity and regularity of G
implies that y and y′ are G-convergent with

G(y) = αs0 + (1− α)u0 = v0,

and similarly G(y′) = v0. Since f is G-continuous at v0 we see that
the sequences w and w′ given by

wn = znf(s0) + (1− zn)f(xn)
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and
w′

n = znf(xn) + (1− zn)f(t0)

are G-convergent to f(v0), cf. the proof of Theorem 1. Hence the
sequence w +w′ with

wn + w′
n = f(xn) + znf(s0) + (1− zn)f(t0) =: f(xn) + y′′n

is G-convergent to 2f(v0). Since the sequence y′′ = (y′′n) is G-
convergent to αf(s0)+(1−α)f(t0) we deduce that f(x) is G-convergent
with

(4) G(f(x)) = 2f(v0)− αf(s0)− (1− α)f(t0).

This value is the same for all sequences x with xn → u0.

We can now show that the assumptions of the lemma are satis-
fied, that is, that at every point u0 of discontinuity of f we have
limx→u0 |f(x)| = ∞. For otherwise there are sequences x and x′ with
xn → u0, x′n → u0 and limn f(xn) �= limn f(x′n) as n → ∞; in fact,
one may take x′n = u0 for all n. By the regularity of G we obtain that
G(f(x)) �= G(f(x′)) contradicting (4). Hence Lemma 4 implies that if
u0 is a point of discontinuity of f then there are sequences x and x′

with xn → u0, x′n → u0 and f(xn) − f(x′n) = λ �= 0 for all n, which
by regularity and linearity of G again leads to a contradiction with (4).
Thus f cannot have any discontinuities.

Antoni has used his lemma to obtain another sufficient condition
under which G-continuity at one point implies linearity [1, Theorem
1]. With Theorem 10 this can be extended to all regular methods.
On the other hand, Spigel and Krupnik [28, Theorem 2] have also
obtained this result (under a slightly stronger condition) for regular
matrix methods, and a careful analysis of their proof shows that it also
works under the weaker condition for general regular methods. The
condition is the following:

(L′
2) G-convergent 0-1-sequences z and z′ exist such that G(z) = α

and G(z′) = β with α ∈ (0, 1), β �= 0, 1 and

(
α

1− α

)p

�=
(

β

1− β

)q

for all non-zero integers p, q.
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Theorem 11 (Spigel-Krupnik). Let G be a regular method with
property (L′

2). Then every function f : R → R that is G-continuous
at one point is linear.
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