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NESTED SEQUENCES OF BALLS, UNIQUENESS
OF HAHN-BANACH EXTENSIONS
AND THE VLASOV PROPERTY

PRADIPTA BANDYOPADHYAY AND ASHOKE K. ROY

ABSTRACT. In this work we characterize when a single
linear functional dominated by a sublinear functional p on a
subspace of a real vector space has a unique extension to the
whole space dominated by p in terms of nested sequences of
“p-balls” in a quotient space. This is then specialized to ob-
tain characterizations of the phenomenon when a single linear
functional on a subspace of a Banach space has unique norm-
preserving extension to the whole space, thus localizing and
generalizing some recent work of Oja and Põldvere. These
results are used to characterize w∗-asymptotic norming prop-
erties in terms of nested sequences of balls in X extending
the notion of Property (V ) introduced by Sullivan. A vari-
ety of examples and applications of the main results are also
presented.

1. Introduction. We work with real scalars. For a Banach space
X, we denote by B(X), S(X) and B(x, r), or B[x, r], respectively, the
closed unit ball, the unit sphere and the open, or closed, ball of radius
r > 0 around x ∈ X. When X is just a vector space, we will denote
linear functionals on X by f, g, etc., while for a Banach space X,
elements of the dual X∗ will be denoted by x∗, y∗, etc.

Definition 1.1. A closed subspace Y of a Banach space X is said
to be a U -subspace of X if for any y∗ ∈ Y ∗ there exists a unique
Hahn-Banach (i.e., norm-preserving) extension of y∗ in X∗.

X is said to be Hahn-Banach smooth if X is a U -subspace of X∗∗

under the canonical embedding of X in X∗∗.
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U -subspaces were first systematically studied by Phelps in [13], who
referred to them as “subspaces with Property U .” Our terminology is
borrowed from [2].

Oja and Põldvere [11] have obtained characterizations of U -subspaces,
Hahn-Banach smoothness and some other geometric notions in terms
of nested sequences of balls.

Definition 1.2. A nested sequence of balls in a Banach space X is a
sequence {Bn = B(xn, rn)} of open balls in X such that for all n ≥ 1,
Bn ⊆ Bn+1 and rn ↑ ∞.

In Sections 2 and 3 we localize results of [11] to characterize when a
single linear functional on a subspace of a Banach space has a unique
Hahn-Banach extension to the whole space. Indeed we do this in a
much more general set-up and, in Section 2, actually characterize when
a single linear functional f dominated by a sublinear functional p on a
subspace Y of a real vector spaceX has a unique extension f̂ dominated
by p on the whole ofX. As in [11], our characterization also is primarily
in terms of nested sequences of “p-balls,” see Definition 2.8. This
“purely linear space” result is clearly of interest inasmuch as the general
form of the Hahn-Banach extension theorem used in applications is
most frequently in this form, see [3] or [5].

Specializing these results to Banach spaces, in Section 3, we get
characterizations of U -subspaces and of ideals that are U -subspaces.
In these cases our results and proofs, though inspired by [11], are
somewhat different. In particular, for localizing results of [11], we
use as a running thread of our arguments, a rather elementary and
well-known criterion for the uniqueness of the dominated extension,
Lemma 2.6. And, in addition, we have one quantitative criterion.

Since this paper was written, another paper on a similar theme by Oja
and Põldvere [12] has appeared. This paper provides some additional
characterizations to those of our Theorems 3.1 and 3.6.

In Section 4 we explore some applications of our results in different
areas both in the “purely linear space” context as well as in the
context of Banach spaces and also discuss examples that illustrate
and clarify our results. For instance, in this section, we characterize
the uniqueness of positive extension of a positive functional, use it and
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other results to show that a positive linear functional of norm 1 on
the subspace c, of all convergent sequences, has a unique Hahn-Banach
extension as well as a unique extension as a positive functional to �∞,
the space of all bounded sequences, if and only if its restriction to c0,
the space of all sequences converging to 0, is already of norm 1. We also
discuss the uniqueness question in an important integral representation
theorem due to Strassen [17] with diverse applications in probability
theory and related areas, where the Hahn-Banach extension procedure
with respect to a sublinear functional is crucially applied.

In Section 5 we explore another aspect of nested sequences of (norm)
balls in Banach spaces. Our starting point is the following result of
Vlasov [18] (see also [11, Theorem 2]).

Theorem 1.3. X∗ is strictly convex if and only if the union of
any nested sequence of balls in X is either the whole of X or an open
half-space.

Later Sullivan [16] introduced a stronger notion which he called the
Property (V ), see Definition 5.1 we will call it the Vlasov Property
to avoid confusion with Pe@lczynski’s Property (V ) and showed that
X has the Vlasov Property if and only if X is Hahn-Banach smooth
and X∗ is strictly convex. In [1] this was used to show that the Vlasov
Property is equivalent to w∗-ANP-Π′.

For the definitions of asymptotic norming properties (ANP for short),
and their w∗-versions, see Section 5. For various geometric notions
related to w∗-ANPs, refer to [1, 8, 9].

In Section 5, we obtain a simpler reformulation of the Vlasov Prop-
erty and use it to directly prove that it is equivalent to w∗-ANP-Π′.
This approach leads naturally to other “Vlasov-like” properties, see
Definition 5.9, and the main object of this section is to establish their
equivalence with other w∗-ANPs, Theorem 5.10.

It is known that Hahn-Banach smoothness is equivalent to w∗-ANP-
III [8]. Apart from the fact that everything we do involves nested
sequences of balls, it is this last result that ties the results of this last
section with the rest of the paper.
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2. Main results. Let X be a real vector space. We denote by X#

the space of all linear functionals on X. Let p : X → R be a sublinear
functional.

Considering the Banach space case, it is clear that the uniqueness of
the extension does not make much sense unless the norm is preserved.
In general, too, one needs to impose such restrictions.

Definition 2.1. Let X be a vector space, p a sublinear functional
and Y a subspace. Let

Y ∗
p = {f ∈ Y # : there exists K > 0 such that f ≤ Kp on Y }.

Notice that Y ∗
p is a cone, i.e., closed under addition and multiplication

by nonnegative scalars. For f ∈ Y ∗
p , let

NY (f) = sup{f(y) : y ∈ Y, p(y) ≤ 1}.

We will simply write N(f) if there is no scope of confusion.

Lemma 2.2. For f ∈ Y ∗
p , f(Y ) ≤ N(f)p(y) for all y ∈ Y .

Proof. Let K > 0 be such that f ≤ Kp on Y . Then, clearly,
0 ≤ N(f) ≤ K. If p(y) ≤ 0, then f(y) ≤ Kp(y) ≤ N(f)p(y). And if
p(y) > 0, then f(y/p(y)) ≤ N(f), and hence f(y) ≤ N(f)p(y).

Remark 2.3. If N(f) = 0, then f ≡ 0.

Definition 2.4. We say that Y is a p-U -subspace of X, if every
f ∈ Y ∗

p has a unique extension f̂ ∈ X# with f̂ ≤ N(f)p on X.

We may and will assume that N(f) = 1 in the sequel.

In the discussion of uniqueness of extension, the quotient space X/Z,
where Z = ker (f) in Y , comes naturally into the picture.

For any subspace Z of X, by analogy with the quotient norm, it is
natural to define p̃ on the quotient space X/Z by

p̃(x+ Z) = inf {p(x+ z) : z ∈ Z}.
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But this p̃ may assume −∞ as a value. For example, on X = C[0, 1],
for p(f) = sup{f(x) : x ∈ [0, 1]}, Z = {all constant functions} and
i(x) = x, the identity function on [0, 1], p̃(i+ Z) = −∞.
However, in our context, i.e., when f ∈ Y ∗

p and Z = ker (f) in Y , p̃
is a proper sublinear functional on X/Z, as p̃(x + Z) ≥ f̂(x) > −∞,
where f̂ is some extension of f dominated by p.

Observe that, in this case, f is also a well-defined functional on Y/Z.

Lemma 2.5. Let f ∈ Y ∗
p with NY (f) = 1, Z = ker (f) in Y and let

y0 ∈ Y be such that f(y0) = 1. Then p̃(y0 + Z) = 1 and NY/Z(f) = 1.

Proof. Observe that f(y) = f(y + z) ≤ p(y + z) for all y ∈ Y , z ∈ Z,
and hence, f(y) ≤ p̃(y + z) for all y ∈ Y . In particular, p̃(y0 + Z) = r,
say, and r ≥ 1.

Claim. rf(y) ≤ p(y) for all y ∈ Y .

Any y ∈ Y is of the form y = αy0 + z for some α ∈ R and z ∈ Z.
Then f(y) = α. If α = 0, y ∈ Z and the claim is clearly true. If α > 0,
r ≤ p(y0 + z/α) = p(y/α) = p(y)/α and the claim follows. And if
α < 0, then rf(y) = rα ≤ α = f(y) ≤ p(y). Hence, the claim.

It now follows that N(f) = 1 ≤ 1/r. That is, r ≤ 1 and therefore
r = 1.

It also follows that NY/Z(f) = 1.

From the proof of the analytic form of the Hahn-Banach theorem (see,
e.g., [4, Theorem 21.1]) we get the following elementary and well-known
criterion for uniqueness of extensions, which will be used repeatedly in
the sequel.

Lemma 2.6. Let X be a vector space, p a sublinear functional and
Y a subspace. Let f ∈ Y # such that f ≤ p on Y . Let x0 /∈ Y . Then

sup{f(y)− p(y − x0) : y ∈ Y } ≤ inf {f(y) + p(x0 − y) : y ∈ Y }
and α lies between these two numbers if and only if there exists an
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extension f̂ ∈ X# of f with f̂ ≤ p on X and f̂(x0) = α.

In particular if f ∈ Y ∗
p with NY (f) = 1, Z = ker (f) in Y and y0 ∈ Y

such that f(y0) = 1, then the following are equivalent:

(a) f has a unique extension from Y to X dominated by p.

(b) sup{f(y) − p(y − x0) : y ∈ Y } = inf {f(y) + p(x0 − y) : y ∈ Y }
for all x0 ∈ X \ Y .

(c) f has a unique extension from Y/Z to X/Z dominated by p̃.

(d) sup{α − p̃(αy0 − x0 + Z) : α ∈ R} = inf {α + p̃(x0 − αy0 + Z) :
α ∈ R} for all x0 ∈ X \ Y .

Proof. Equivalence of (a) and (b) as well as of (c) and (d) follows
from the first part. And one can easily check that both the right-hand
and the left-hand expressions of (b) are equal to the corresponding
expressions of (d).

Lemma 2.7. Let Y ⊆ X be a subspace and let p be a sublinear
functional on X such that p ≥ 0 on Y . Let x0 ∈ X \ Y be such that
δ = p̃(x0 + Y ) > 0. Define f on V = Y ⊕ Rx0 by

f(y + αx0) = α, α ∈ R, y ∈ Y.

Then
δf(v) ≤ p(v) for all v ∈ V and NV (f) =

1
δ
.

Consequently, there exists f̂ ∈ X# such that f̂ ≡ 0 on Y , f̂(x0) = 1,
f̂ ≤ p/δ on X and NX(f̂) = 1/δ.

Proof. To show δf(v) ≤ p(v) for all v ∈ V , we show that δα ≤
p(y + αx0) for all α ∈ R, y ∈ Y . This is clearly true for α = 0, by the
assumption on p; and for α > 0, by definition of δ. Now if α < 0, let
β = −α > 0. We need to check −δβ ≤ p(y−βx0) or δ ≥ −p(y/β−x0).
Now for any y1 ∈ Y , 0 ≤ p(y/β − y1) ≤ p(x0 − y1) + p(y/β − x0).
Thus −p(y/β − x0) ≤ p(x0 − y1). Taking infimum over y1 ∈ Y , we get
−p(y/β − x0) ≤ δ, as was to be shown.

It follows that NV (f) ≤ 1/δ. To prove the equality, fix 0 < η < 1/δ
and choose 0 < ε < ηδ. There exists y0 ∈ Y such that p(x0 − y0) <
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δ(1 + ε). Then

p

(
x0 − y0

δ(1 + ε)

)
< 1

and

f

(
x0 − y0

δ(1 + ε)

)
=

1
δ(1 + ε)

>
1− ε

δ
>
1
δ
− η.

Since η was arbitrary, this completes the proof.

Now we come to nested sequences of p-balls.

Definition 2.8. For x0 ∈ X and r > 0, define the open p-ball of
radius r around x0 by Bp(x0, r) = {x ∈ X : p(x0 − x) < r}.

A nested sequence of p-balls is a sequence {Bn = Bp(xn, rn)} of open
p-balls in X such that for all n ≥ 1, Bn ⊆ Bn+1 and rn ↑ ∞.
We adapt the proof of [18, Proposition 0.2] to obtain a necessary and
sufficient condition for p-balls to be nested.

Lemma 2.9. If 0 < r1 < r2, then Bp(x1, r1) ⊆ Bp(x2, r2) if and
only if p(x2 − x1) ≤ r2 − r1.

Proof. Sufficiency is immediate from the triangle inequality.

Conversely, if p(x2 − x1) ≤ 0, then there is nothing to prove. If
p(x2 − x1) > 0, let r1 > ε > 0 and put

x = x1 − (r1 − ε)(x2 − x1)
p(x2 − x1)

.

Then p(x1 − x) = r1 − ε < r1. Therefore, p(x2 − x) < r2. That is,

p(x2 − x) = p

(
x2 − x1 +

(r1 − ε)(x2 − x1)
p(x2 − x1)

)
< r2.

It follows that p(x2−x1) < r2−r1+ε. And hence, p(x2−x1) ≤ r2−r1.
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Lemma 2.10. Let X be a vector space and p a sublinear functional
on X. Let

p∞(x1, x2) = max{p(x1), p(x2)} and p1(x1, x2) = p(x1) + p(x2).

Then both p∞ and p1 are sublinear functionals on X ×X.

Let Y ⊆ X be a subspace. Let

∆1 = {(y,−y) : y ∈ Y } ⊆ X ×X.

If {Bp(yn, rn)} is a nested sequence of p-balls in X with centers in Y ,
0 ∈ Bp(y1, r1) and x ∈ X such that p(x) ≤ 1, then

inf
n

p̃∞((yn − x, yn + x) + ∆1)
rn

≥ 1

=⇒ inf
n

p̃1((yn − x, yn + x) + ∆1)
rn

≥ 2.

Recall that by p̃∞((yn − x, yn + x) +∆1), we mean inf {p∞(yn − x+
y, yn + x− y) : y ∈ Y }. p̃1((yn − x, yn + x) + ∆1) is defined similarly.

Proof. Let {Bp(yn, rn)} be a nested sequence of p-balls in X with
centers in Y such that 0 ∈ Bp(y1, r1) and infnp̃∞((yn − x, yn + x) +
∆1)/rn ≥ 1 for some x ∈ X with p(x) ≤ 1. Then, for all n ≥ 1,

dn = p̃∞

((
yn − x

rn
,
yn + x

rn

)
+∆1

)
≥ 1.

Now ∆1 is a linear subspace of X × X and p∞ ≥ 0 on ∆1. By
Lemma 2.7, therefore, there exists (fn, gn) ∈ X# ×X# such that

fn

(
yn − x

rn

)
+ gn

(
yn + x

rn

)
= 1,

fn(y)− gn(y) = 0 for all y ∈ Y,

fn(x1) + gn(x2) ≤ 1
dn

p∞(x1, x2),

and

(2.1)
NX(fn) +NX(gn) = sup{fn(x1) + gn(x2) : p∞(x1, x2) ≤ 1}

=
1
dn

≤ 1.
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Notice that, for all n ≥ 1,

1 ≤ dn ≤ 1
rn
max{p(yn − x), p(yn + x)}

≤ 1
rn
[p(yn) + max{p(−x), p(x)}].

Therefore,

1 ≤ lim inf dn ≤ lim sup dn ≤ lim sup p
(
yn

rn

)
≤ 1,

as p(yn) < rn. And, hence, lim dn = 1.

By Lemma 2.9, the p∞-balls Bn = Bp∞((yn − x, yn + x), rn) are
nested. And

inf (fn, gn)(Bn) = fn(yn − x) + gn(yn + x)
− rn sup{(fn, gn)(u) : p∞(u) < 1}

= rn − rn

dn
= rn

(
1− 1

dn

)
≥ 0.

It follows that for any m ≤ n, inf (fn, gn)(Bm) ≥ 0, i.e.,

(2.2) fn(ym − x) + gn(ym + x)− rm

dn
≥ 0.

Now, following the proof of the locally convex version of the Banach-
Alaoglu theorem (see e.g., [15, Theorem 3.15]), the set

V = {h ∈ (X ×X)# : max{p∞(x1, x2), p∞(−x1,−x2)}
≤ 1 =⇒ h(x1, x2) ≤ 1}

is w∗-compact and, by (2.1), (fn, gn) ∈ V . Thus, there exists (f, g) ∈
X# ×X# which is a w∗-cluster point of {(fn, gn)}. Then

f(y) = g(y) ≤ 1
2
p(y) for all y ∈ Y and NX(f) +NX(g) ≤ 1.

Moreover, from (2.2) we have

f(ym − x) + g(ym + x) ≥ rm for all m ≥ 1.
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It follows that

lim inf
m→∞ f

(
ym

rm

)
= lim inf

m→∞ g

(
ym

rm

)
≥ 1
2
.

And, since

f

(
ym

rm

)
+ g

(
ym

rm

)
≤ NX(f) +NX(g) ≤ 1,

we have

lim
m→∞ f

(
ym

rm

)
= lim

m→∞ g

(
ym

rm

)
=
1
2
.

Consequently,

NX(f) = NX(g) =
1
2
.

Now, for any y ∈ Y ,

1 ≤ f

(
yn − x

rn

)
+ g

(
yn + x

rn

)

= f

(
yn − x− y

rn

)
+ g

(
yn + x+ y

rn

)

≤ 1
2

[
p

(
yn − x− y

rn

)
+ p

(
yn + x+ y

rn

)]
.

It follows that

1
2
p̃1

((
yn − x

rn
,
yn + x

rn

)
+∆1

)
≥ 1.

Remark 2.11. Observe that f = g ≤ p/2 on Y and NX(f) = NX(g) =
1/2. But rm ≤ f(ym − x) + g(ym + x) = 2f(ym) + g(x) − f(x) ≤
p(ym) + g(x) − f(x). Therefore, g(x) − f(x) ≥ rm − p(ym) > 0 since
0 ∈ Bp(ym, rm).

We are now ready for our main theorem.
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Theorem 2.12. Let X be a vector space, p a sublinear functional
and Y a subspace. Let f ∈ Y ∗

p with N(f) = 1, Z = ker (f) in Y and
y0 ∈ Y be such that f(y0) = 1. Let

∆1(Y/Z) = {(y + Z,−y + Z) : y ∈ Y } ⊆ X/Z ×X/Z.

Then the following are equivalent:

(a) f has a unique extension f̂ to X# with f̂ ≤ p.

(b) If {Bp̄(yn + Z, rn)} is a nested sequence of p̃-balls in X/Z such
that the centers {yn} ⊆ Y , 0 ∈ B

p̃
(y1 + Z, r1) and p̃(x+ Z) ≤ 1, then

inf
n

d1((yn − x+ Z, yn + x+ Z),∆1(Y/Z))
rn

< 2,

where d1((yn − x+ Z, yn + x+ Z),∆1(Y/Z))

= inf {p̃(yn − x− y + Z) + p̃(yn + x+ y + Z) : y + Z ∈ Y/Z}.
(c) If {B

p̃
(yn + Z, rn)} is a nested sequence of p̃-balls in X/Z such

that the centers {yn} ⊆ Y , 0 ∈ B
p̃
(y1 + Z, r1) and p̃(x + Z) ≤ 1, then

there exist y ∈ Y and n0 ≥ 1 such that

p̃(yn0 ± (x− y) + Z) < rn0 .

(d) If {Bp(yn, rn)} is a nested sequence of p-balls in X such that the
centers {yn} ⊆ Y , 0 ∈ Bp(y1, r1) and p(x) ≤ 1, then there exist y ∈ Y
and n0 ≥ 1 such that

p̃(yn0 ± (x− y) + Z) < rn0 .

Proof. (a) ⇒ (b). Suppose (b) doesn’t hold. Then there is a
nested sequence {Bp̄(yn + Z, rn)} of p̃-balls in X/Z with {yn} ⊆ Y ,
0 ∈ B

p̃
(y1 + Z, r1) (consequently, p̃(yn + Z) < rn for all n ≥ 1) and

p̃(x+ Z) ≤ 1, such that

inf
n

d1((yn − x+ Z, yn + x+ Z),∆1(Y/Z))
rn

≥ 2.
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Then for all n ≥ 1,

rn ≤ 1
2
d1((yn − x+ Z, yn + x+ Z),∆1(Y/Z))

≤ d∞((yn − x+ Z, yn + x+ Z),∆1(Y/Z)),

where

d∞((yn − x+ Z, yn + x+ Z),∆1(Y/Z))
= inf {max{p̃(yn − x− y + Z), p̃(yn + x+ y + Z)} : y + Z ∈ Y/Z}.

Observe that Lemma 2.10, applied to Y/Z as a subspace of X/Z,
produces g, h ∈ (X/Z)# such that g = h ≤ p̃/2 on Y/Z and

NX/Z(g) = NX/Z(h) =
1
2
.

But g(x) �= h(x), see Remark 2.11. Since dim (Y/Z) = 1, we have that
f = 2g = 2h on Y/Z. Thus, uniqueness fails.

(b)⇒ (c). Suppose (c) doesn’t hold. Then there is a nested sequence
{Bp̄(yn + Z, rn)} of p̃-balls in X/Z such that the centers {yn} ⊆ Y ,
0 ∈ B

p̃
(y1 + Z, r1) and p̃(x+ Z) ≤ 1, such that for all n ≥ 1,

d∞((yn − x+ Z, yn + x+ Z),∆1(Y/Z)) ≥ rn.

By Lemma 2.10 applied to X/Z,

inf
n

d1((yn − x+ Z, yn + x+ Z),∆1(Y/Z))
rn

≥ 2,

contradicting (b).

(c) ⇒ (d) is clear.

(d) ⇒ (a). Let p(x) ≤ 1. For α ∈ R, let u(α) = α− p̃(αy0 − x+ Z)
and v(α) = α + p̃(x − αy0 + Z). By Lemma 2.6, given 0 < ε < 1, it
suffices to find α and α′ ∈ R such that v(α)− u(α′) < ε.

Following [11, Theorem 1 (e)⇒ (a)], let αn = n+ε/(n+2)−ε/2 for all
n ≥ 1. Then 0 < p̃(α1y0+Z) = α1 < 1 and 0 < p̃(αn+1y0−αny0+Z) =
αn+1 − αn < 1 for all n ≥ 1. Inductively construct a sequence {yn}
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such that yn ∈ αny0 + Z and 0 < p(y1) < 1 and 0 < p(yn+1 − yn) < 1
for all n ≥ 1. Then {Bp(yn, n)} is a nested sequence of p-balls such
that the centers {yn} ⊆ Y . Hence, by (d), there exist y ∈ Y and n0 ≥ 1
such that

p̃(yn0 ± (x− y) + Z) < n0.

Let α0 be such that y ∈ α0y0 + Z. It follows that

p̃(αn0y0 ± (x− α0y0) + Z) < n0.

Therefore,

v(α0 − αn0)− u(α0 + αn0)
= p̃(x− (α0 − αn0)y0 + Z) + p̃((α0 + αn0)y0 − x+ Z)− 2αn0

= p̃(αn0y0 + (x− α0y0) + Z) + p̃(αn0y0 − (x− α0y0) + Z)− 2αn0

< 2n0 − 2αn0 < ε.

This completes the proof.

Remark 2.13. From the proof of (d) ⇒ (a) above, it follows that it
suffices to consider nested sequences of p-balls of the type {Bp(yn, n)}
in all the statements of Theorem 2.12.

Theorem 2.14. Let X be a vector space, p a sublinear functional
and Y a subspace. Let

∆1 = {(y,−y) : y ∈ Y } ⊆ X ×X.

Then the following are equivalent:

(a) Y is a p-U-subspace of X.

(b) If {Bp(yn, rn)} is a nested sequence of p-balls in X with centers
in Y , 0 ∈ Bp(y1, r1) and p(x) ≤ 1, then

inf
n

d1((yn − x, yn + x),∆1)
rn

< 2,

where d1((yn−x, yn+x),∆1) = inf {p1((yn−x−y, yn+x+y) : y ∈ Y }.
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(c) If {Bp(yn, rn)} is a nested sequence of p-balls in X with centers
in Y , 0 ∈ Bp(y1, r1) and p(x) ≤ 1, then there exist y ∈ Y and n0 ≥ 1
such that

p(yn0 ± (x− y)) < rn0 .

Proof. (a) ⇒ (b) ⇒ (c) follows similarly as in Theorem 2.12.

(c) ⇒ (a). Let f ∈ Y ∗
p with N(f) = 1 and Z = ker (f) in Y . We

will show that f has a unique extension to X dominated by p. Let
{Bp(yn, rn)} be a nested sequence of p-balls in X such that the centers
{yn} ⊆ Y , 0 ∈ Bp(y1, r1) and p(x) ≤ 1. By (c), there exist y ∈ Y and
n0 ≥ 1 such that

p(yn0 ± (x− y)) < rn0 .

It follows that
p̃(yn0 ± (x− y) + Z) < rn0 .

By Theorem 2.12 (d)⇒ (a), f has a unique extension toX dominated
by p.

Remark 2.15. Because of the nature of sublinear functionals, where
p(x) > 0 doesn’t necessarily imply p(−x) > 0, as we see by taking
p((xn)) = lim supxn on l∞, all the above results are one-sided in
nature e.g., we had to consider one-sided p-balls, etc. When p is a
norm or a semi-norm, these difficulties do not arise and we can dispense
with such restrictions.

3. The Banach space case. Specializing to Banach spaces, we get
characterizations of U -subspaces, of which condition (c) below was first
established in [11, Theorem 1].

Theorem 3.1. Let Y be a subspace of a Banach space X. Then the
following are equivalent:

(a) Y is a U-subspace of X.

(b) If {B(yn, rn)} is a nested sequence of balls in X with centers in
Y , 0 ∈ B(y1, r1) and ‖x‖ ≤ 1, then

inf
n

d1((x− yn, x+ yn),∆)
rn

< 2,
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where d1 refers to the distance in X ⊕l1 X, and

∆ = {(y, y) : y ∈ Y } ⊆ X ×X.

(c) If {B(yn, rn)} is a nested sequence of balls in X with centers in
Y , 0 ∈ B(y1, r1) and ‖x‖ ≤ 1, then there exist y ∈ Y and n0 ≥ 1 such
that

‖x− y ± yn0‖ < rn0 .

Reversing our earlier approach, we now deduce the local result as a
consequence of the global one, the connection being given by (b) below.

Theorem 3.2. Let Y be a subspace of a Banach space X, y∗0 ∈ S(Y ∗)
and Z = ker (y∗0) in Y . Then the following are equivalent:

(a) y∗0 has a unique Hahn-Banach extension to X∗.

(b) Y/Z is a U-subspace of X/Z.

(c) If {B(yn+Z, rn)} is a nested sequence of balls in X/Z with centers
in Y/Z, 0 ∈ B(y1 + Z, r1) and ‖x+ Z‖ ≤ 1, then

inf
n

d1((x− yn + Z, x+ yn + Z),∆Y/Z)
rn

< 2,

where d1 refers to the distance in X/Z ⊕l1 X/Z, and

∆Y/Z = {(y + Z, y + Z) : y ∈ Y } ⊆ X/Z ×X/Z.

(d) If {B(yn+Z, rn)} is a nested sequence of balls in X/Z with centers
in Y/Z, 0 ∈ B(y1+Z, r1) and ‖x+Z‖ ≤ 1, then there exist y ∈ Y and
n0 ≥ 1 such that

‖x− y ± (yn0 + Z)‖ < rn0 .

(e) If {B(yn, rn)} is a nested sequence of balls in X with centers in
Y , 0 ∈ B(y1, r1) and ‖x‖ ≤ 1, then there exist y ∈ Y and n0 ≥ 1 such
that

‖x− y ± (yn0 + Z)‖ < rn0 .
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Remark 3.3. Regarding the condition (c) above, if y0 ∈ Y is such
that y∗0(y0) = 1 and we write yn +Z = αny0 +Z, then it is easy to see
that

1
2
d1((x− αny0 + Z, x+ αny0 + Z),∆Y/Z)

≤ d∞((x− yn + Z, x+ yn + Z),∆Y/Z) ≤ |αn|+ d(x, Y/Z),

where d∞ refers to the distance in X/Z ⊕l∞ X/Z.

It is therefore tempting to conjecture that the condition in (c) could
be replaced by the simpler condition

sup
n
[rn − |αn|] > d(x, Y/Z).

But this is not true, as the following example shows:

Example 3.4. Let X = l2∞ and Y = {(x, 0) : x ∈ R}. Then Y
obviously is a U -subspace. For n ≥ 1, let Bn = B((n, 0), n + 1/2).
Then {Bn} is a nested sequence of balls in X with centers in Y . Let
x = (1,−1). Then rn − ‖yn‖ = 1/2 < d(x, Y ) = 1. Nevertheless, (e)
holds. Indeed, for n = 1 and y = (1, 0),

‖x− y ± y1‖ = ‖(±1,−1)‖ = 1 < 3
2
= r1.

As observed in [11], the conditions can be strengthened if Y is an
ideal in X.

Definition 3.5 [7]. A subspace Y �= {0} of a Banach space X is said
to be an ideal in X if there exists a norm one projection P on X∗ with
ker (P ) = Y ⊥.

We will recall the following facts from [11]. Firstly, every Banach
space X is an ideal in X∗∗ via the canonical projection on X∗∗∗.
Secondly, if Y Is an ideal in X, then for every x∗ ∈ X∗, Px∗ ∈ X∗ is a
Hahn-Banach extension of the restriction x∗|Y ∈ Y ∗. Therefore, we can
and will identify Px∗ and x∗|Y for all x∗ ∈ X∗. This makes it possible
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to identify Y ∗ with the range of P and to consider the, generally non-
Hausdorff, topology σ(X,Y ∗), which we will denote simply by σ. Then
B(Y ) is σ-dense in B(X). Thirdly, if Y is an ideal as well as a U -
subspace of X, then the projection P is unique.

Some of the statements in the following theorem were first proved
in [11, Theorem 3]. We have, however, included the proofs as ours
are somewhat different and give some additional criteria, especially
statement (c). Note that a special case of this theorem will be needed
in Section 5.

Theorem 3.6. Let Y be an ideal in a Banach space X. Then the
following are equivalent:

(a) Y is a U-subspace of X.

(b) If {B(yn, n)} is a nested sequence of balls in X with centers in
Y , ‖y1‖ < 1 and ‖x‖ ≤ 1, and U is a convex σ-neighborhood of x, then

∆K ∩
[⋃

n

B((x+ yn, x− yn), n)
]
�= ∅,

where K = U ∩B(Y ) and ∆K = {(y, y) : y ∈ K}.
(c) If {B(yn, n)} is a nested sequence of balls in X with centers in Y ,

‖y1‖ < 1 and ‖x‖ ≤ 1, then for all α ∈ [0, 1],

inf
n

dα(x− yn, x+ yn)
n

< 1,

where dα(x1, x2) = inf
n
{α‖x1 − y‖+ (1− α)‖x2 − y‖ : y ∈ B(Y )}.

(d) If {B(yn, n)} is a nested sequence of balls in X with centers in
Y , ‖y1‖ < 1 and ‖x‖ ≤ 1 and U is a convex σ-neighborhood of x, then
for K = U ∩B(Y ),

K ∩
[⋃

n

B(x+ yn, n)
]
�= ∅.

Proof. (a) ⇒ (b). We follow the reasoning of [11, Theorem 1 (a)
⇒ (b)]. Suppose (b) doesn’t hold. Then there is a nested sequence
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{B(yn, n)} of balls in X with centers in Y , ‖y1‖ < 1 and ‖x‖ ≤ 1, such
that

∆K ∩
⋃
n≥1

B((x− yn, x+ yn), n) = ∅.

Now consider the l∞ norm on the product space and separate the
convex set ∆K from the open convex set ∪n≥1B((x − yn, x + yn), n).
That is, there exist x∗

1, x
∗
2 ∈ X∗ and γ ∈ R such that

‖x∗
1‖+ ‖x∗

2‖ = 1
and

(3.1) x∗
1(k) + x∗

2(k) ≤ γ ≤ x∗
1(x+ yn) + x∗

2(x− yn)− n

for all k ∈ K and n ≥ 1. From (3.1) it follows that

1 +
γ

n
≤ x∗

1(x) + x∗
2(x)

n
+ (x∗

1 − x∗
2)

(
yn

n

)

whence,

1 ≤ lim sup(x∗
1 − x∗

2)
(
yn

n

)
(3.2)

≤ lim sup x∗
1

(
yn

n

)
+ lim sup(−x∗

2)
(
yn

n

)
≤ ‖x∗

1|Y ‖+ ‖x∗
2|Y ‖ ≤ ‖x∗

1‖+ ‖x∗
2‖ ≤ 1.

Therefore ‖x∗
i |Y ‖ = ‖x∗

i ‖ and hence, by (a), x∗
i = Px∗

i , i = 1, 2.
Further, P (x∗

1−x∗
2) = (x∗

1−x∗
2), so that ‖x∗

1−x∗
2‖ = ‖x∗

1|Y −x∗
2|Y ‖ = 1,

by (3.2). Since x∗
i = Px∗

i , i = 1, 2 and x is in the σ-closure of K,
x∗

1(x) + x∗
2(x) ≤ γ, by the first inequality in (3.1). And, from the

second inequality in (3.1), it follows that

γ ≤ x∗
1(x) + x∗

2(x) + (x
∗
1 − x∗

2)(yn)− n < x∗
1(x) + x∗

2(x),

as ‖x∗
1 − x∗

2‖ = 1 and ‖yn‖ < n. Thus we have a contradiction.

(b) ⇒ (c). Let {B(yn, n)} be a nested sequence of balls in X with
centers in Y , ‖y1‖ < 1 and ‖x‖ ≤ 1. By the special case of (b) with
U = X, there exist y ∈ B(Y ) and m ≥ 1 such that

‖x− y ± ym‖ < m.



UNIQUENESS OF HAHN-BANACH EXTENSIONS 45

Thus for any α ∈ [0, 1], we get
α‖x− y + ym‖+ (1− α)‖x− y − ym‖ < m.

Hence, (c) follows.

(c) ⇒ (a). By Remark 2.13, we can consider nested sequences of
balls of the type {B(yn, n)} in all the statements of Theorem 3.1. And,
clearly, Theorem 3.1(b) with rn = n follows from (c) for α = 1/2.

(b) ⇒ (d). Obvious.

(d) ⇒ (a). We adapt the proof of [11, Theorem 3, (c) ⇒ (a)]. If (a)
doesn’t hold, there exists x∗ ∈ X∗ such that x∗ = Px∗ + z∗, ‖x∗‖ =
‖Px∗‖ and z∗ �= 0. Choose x ∈ S(X) such that z∗(x) > 0. Choose
0 < ε < z∗(x). Let y∗ = Px∗ and Z = ker (y∗) in Y . Find {yn} ⊆ Z
such that ‖y1‖ < 1¡ ‖yn+1 − yn‖ < 1 and y∗(yn) = n+ ε/(n+2)− ε/2.
Then {B(yn, n)} is a nested sequence of balls and we claim that if
U = {z ∈ X : y∗(x− z) > −ε/2} and K = U ∩B(Y ), then

K ∩
[⋃

n

B(x+ yn, n)
]
= ∅.

Suppose there exist y ∈ K and n0 ≥ 1 such that ‖x+ yn0 − y‖ < n0.
Then

x∗(x− y) + n0 +
ε

n0 + 2
− ε

2
≤ x∗(x) + x∗(yn0)− x∗(y)

≤ ‖x+ yn0 − y‖ < n0.

It follows that

x∗(x− y) <
ε

2
or y∗(x− y) + z∗(x) <

ε

2
=⇒ z∗(x) <

ε

2
− y∗(x− y) <

ε

2
+

ε

2
= ε.

Contradiction.

4. Some applications and examples.

Example 4.1. Let K be a compact Hausdorff space. For f ∈ C(K),
let p(f) = sup{f(t) : t ∈ K}. p is a sublinear functional on C(K). Fix
t0 ∈ K and let

Y = {f ∈ C(K) : f(t0) = 0} = ker (δt0).
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Let Λ ∈ Y ∗
p and C = NY (Λ). Then Cinf {f(t) : t ∈ K} ≤ Λ(f) ≤

C sup{f(t) : t ∈ K} for all f ∈ Y . It follows that Λ is a nonnegative
functional. Let Λ̂ be an extension of Λ to C(K) dominated by Cp.
Then Λ̂ is a nonnegative linear functional on C(K) and Λ̂(1) = C.
It follows that Λ̂ is actually norm continuous on C(K) and hence is
represented by a nonnegative measure µ with µ(1) = C.

Note that Y ⊥ = Rδt0 , in C(K)∗. And hence, if µ1 and µ2 are
extensions of some Λ ∈ Y ∗

p , then µ1 − µ2 = αδt0 for some α ∈ R.
It follows that α = µ1(1) − µ2(1) = C − C = 0. That is, µ1 = µ2.
Therefore, Y is a p-U -subspace of C(K).

So by Theorem 2.14, if {Bp(fn, rn)} is a nested sequence of p-balls in
C(K) with {fn} ⊆ Y , 0 ∈ Bp(f1, r1) and p(f) ≤ 1, then there exists
g ∈ Y such that

p(fn ± (f − g)) < rn for some n ≥ 1.

Let us see this directly. Observe that there is nothing to prove if
f ∈ Y . So |f(t0)| > 0. Choose rn so large that |f(t0)| < rn. Let r′n be
such that |f(t0)| < r′n < rn. Now

lim
t→t0

[fn(t)± f(t)] = fn(t0)± f(t0) = ±f(t0) < r′n.

So there is a neighborhood U of t0 such that for all t ∈ U , fn(t)±f(t) <
r′n and f(t) has the same sign as f(t0).

Use Urysohn’s lemma to get h ∈ C(K) such that 0 ≤ h ≤ 1, h(t0) = 0
and h|Uc ≡ 1 and let g = fh. Note that g ∈ Y and p(g) ≤ p(f) ≤ 1.
Now if t ∈ Uc, then

fn(t)± (f − g)(t) = fn(t) ≤ p(fn).

And if t ∈ U , suppose f(t0) > 0. Then f(t) > 0 and

fn(t) + (f − g)(t) = fn(t) + (1− h(t))f(t) ≤ fn(t) + f(t) < r′n,

and

fn(t)− (f − g)(t) = fn(t)− f(t) + h(t)f(t) ≤ fn(t) + f(t) < r′n.

And if f(t0) < 0, then the arguments are interchanged. It follows that

p(fn ± (f − g)) ≤ max{r′n, p(fn)} < rn.
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Example 4.2. On �∞, p((xn)) = lim supxn is a sublinear functional.
On the subspace c, the functional Λ((xn)) = limxn is dominated by p.
It does not have unique extension to �∞ dominated by p.

To see this, let x0 = (1, 0, 1, 0, . . . , 1, 0, . . . ) ∈ �∞. Let y = (yn) ∈ c.
Let α = Λ(y). Then, since α > α− 1,

p(y − x0) = p(y1 − 1, y2, y3 − 1, y4, . . . ) = α

and

p(x0 − y) = p(1− y1,−y2, 1− y3,−y4, . . . ) = 1− α.

Therefore,

0 = sup{Λ(y)− p(y − x0) : y ∈ c} < inf {Λ(y) + p(x0 − y) : y ∈ c} = 1.

To interpret this in terms of nested sequences of p-balls (cf. Theorem
2.12 (c)), note that Z=ker (Λ)=c0. Let x=(1,−1, 1,−1, . . . , 1,−1, . . . )
∈ �∞, let zn ∈ Z = c0 and define yn = αn(1, 1, . . . , 1, . . . ) + zn ∈ c,
y = α(1, 1, . . . , 1, . . . ) + z ∈ c, where |α| ≤ 1, αn ≥ 0, α1 < 1 and
αn ↑ ∞. Let rn = 1+αn for n ≥ 1. Then {B

p̃
(yn+ c0, rn)} is a nested

sequence of p̃-balls in �∞/c0 and

p̃(yn + y − x+ c0) = max{(αn + α− 1), (αn + α+ 1)} ≥ rn, if α ≥ 0;
p̃(yn − y + x+ c0) = max{(αn − α− 1), (αn − α+ 1)} ≥ rn, if α < 0.

It may also be noted that, in terms of Theorem 2.12 (b),

inf
n

d1((yn − x+ c0, yn + x+ c0),∆1(c/c0))
rn

= 2.

Therefore, c is not a p-U -subspace of �∞. Moreover, as p(x) ≤ ‖x‖,
even Hahn-Banach extensions are not unique, that is, there is no unique
way of extending the notion of limits to �∞. Observe that to verify this
directly is computationally more complicated than the above argument.

Example 4.3. We have just observed that c is not a U -space of
�∞. But c0 is known to be a U -subspace of �∞ (c0 is Hahn-Banach
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smooth). It follows that a linear functional of norm 1 on c has unique
Hahn-Banach extension to �∞ if its restriction to c0 is already of norm 1.
Here we would like to observe that the converse is also true for positive
functionals. Recall that c∗ = l1 and that s = (s0, s1, . . . , sn, . . . ) ∈ l1
acts on x = (x1, . . . , xn, . . . ) ∈ c as

〈s,x〉 = s0 limxn +
∞∑

n=1

snxn.

We want to show that the functional s with sn ≥ 0 and ‖s‖1 = 1 has
unique Hahn-Banach extension to �∞ if and only if s0 = 0. It clearly
suffices to prove that for any u ∈ �∞,

sup{〈s,x〉 − ‖x− u‖ : x ∈ c} = s0(lim inf
n

un) +
∞∑

n=1

snun,

and

inf {〈s,x〉+ ‖x− u‖ : x ∈ c} = s0(lim sup
n

un) +
∞∑

n=1

snun.

Now for any x ∈ c and u ∈ �∞, and for any n ≥ 1, xn −‖x−u‖ ≤ un

and, hence, limn xn − ‖x − u‖ ≤ lim infn un. Since ‖s‖1 = 1, we have

〈s,x〉 − ‖x − u‖ = s0 lim xn +
∞∑

n=1

snxn − ‖x − u‖

= s0(limxn − ‖x − u‖) +
∞∑

n=1

sn(xn − ‖x − u‖)

≤ s0(lim inf un) +
∞∑

n=1

snun.

And, hence,

sup{〈s,x〉 − ‖x− u‖ : x ∈ c} ≤ s0(lim inf
n

un) +
∞∑

n=1

snun.

To show equality, let ε > 0. For notational simplicity, let λ1 =
lim inf un and λ2 = lim supun and put λ = (λ1 + λ2)/2. Choose
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N ≥ 1 such that, for all n ≥ N + 1, λ1 − ε < un < λ2 + ε and∑∞
n=N+1 sn < min{ε, ε/‖u‖}. Let d = supn≥N+1 |λ − un|. Observe

that, by the last condition, d ≤ (λ2 − λ1)/2 + ε and, therefore,
λ− d ≥ λ1 − ε. Also |λ− d| ≤ ‖u‖. Define x ∈ c by

xn =
{
un + d if 1 ≤ n ≤ N ,
λ if n ≥ N + 1.

Then ‖x− u‖ = d and

〈s,x〉 − ‖x− u‖ = s0λ+
∞∑

n=1

snxn − d

= s0(λ− d) +
N∑

n=1

sn(xn − d) +
∞∑

n=N+1

sn(xn − d)

= s0(λ− d) +
N∑

n=1

snun +
∞∑

n=N+1

sn(λ− d)

≥ s0(λ1 − ε) +
∞∑

n=1

snun − ε− ε

≥ s0λ1 +
∞∑

n=1

snun − ε(s0 + 2),

and we are done.

The other identity can also be proved similarly.

We now note that what we observed in Example 4.2 is, in fact, a
special case of a more general phenomenon. The following simple yet
useful result should be known, but we are unable to cite a reference.
The closest one we could find was [4, Corollary 21.3], where it is noted
that if Y = {0}, then f has a unique extension dominated by p if and
only if p is linear on X.

Proposition 4.4. Let X be a vector space and Y a subspace. Let p
be a sublinear functional such that p restricted to Y is linear, and let
f = p|Y . Then f has a unique extension dominated by p if and only if
p is linear on X.
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Proof. If p is linear, the uniqueness of the extension is easily seen.

Conversely, by Lemma 2.6, if f̂ is the unique extension of f , then for
any x0 /∈ Y ,

f̂(x0) = sup{f(y)−p(y−x0) : y ∈ Y } = inf {f(y)+p(x0 − y) : y ∈ Y }.
Moreover, f̂ ≤ p. Now since f = p|Y ,

f̂(x0) = inf {f(y) + p(x0 − y) : y ∈ Y }
= inf {p(y) + p(x0 − y) : y ∈ Y } ≥ p(x0).

Thus p = f̂ is linear.

Example 4.5 (The Banach Limit). In Example 4.2 we saw that the
functional Λ((xn)) = limxn on c does not have unique extension to �∞

dominated by the sublinear functional lim supxn.

However, the usual definition of Banach limit on �∞ requires the
functional to be translation invariant, see [15]. For this, one has to
consider the sublinear functional

p(xn)) = lim sup
n

1
n

n∑
k=1

xk.

On c, the functional Λ((xn)) = limxn is still dominated by p. Again
it does not have unique extension to �∞ dominated by p, that is, there
is no uniquely defined Banach limit on �∞.

This follows from Proposition 4.4. Clearly, on c, p coincides with
Λ and therefore Λ would have a unique extension dominated by p if
and only if p were linear on �∞. However, if p is linear, then for every
(xn) ∈ �∞, lim supn(1/n)

∑n
k=1 xk = lim infn(1/n)

∑n
k=1 xk, that is,

limn(1/n)
∑n

k=1 xk exists. It is rather easy to see that this is false. For
example, let

x0 = (1,−1,−1, 1, . . . , 1︸ ︷︷ ︸
22 terms

,−1, . . . ,−1︸ ︷︷ ︸
23 terms

, . . . , (−1)k, . . . , (−1)k︸ ︷︷ ︸
2k terms

, . . . ) ∈ �∞.

Let

σm((xn)) =
1
m

m∑
k=1

xk.
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Then, for m =
∑2k

i=0 2
i = 22k+1 − 1,

σm(x0) =

k∑
i=0

22i−
k−1∑
i=0

22i+1

2k∑
i=0

2i

=
(22k+2− 1)−2(22k− 1)

3(22k+1− 1) =
22k+1+ 1
3(22k+1− 1) ,

while for m =
∑2k−1

i=0 2i = 22k − 1,

σm(x0) =

k−1∑
i=0

22i−
k−1∑
i=0

22i+1

2k−1∑
i=0

2i

=
(22k− 1)−2(22k− 1)

3(22k− 1) =
−22k+ 1
3(22k− 1) .

Clearly the value of σm(x0) for other values ofm lies between the above
values and, therefore,

p(x0) = lim sup σm(x0) =
1
3
and − p(−x0) = lim inf σm(x0) = −1

3
.

Again, to interpret this in terms of nested sequences of p-balls, note
that, as before, Z = ker (Λ) = c0. Let x0 be as above, let zn ∈ c0 and
define yn = αn(1, 1, . . . , 1, . . . ) + zn ∈ c, y = α(1, 1, . . . , 1, . . . ) + z ∈ c,
where αn ≥ 0, α1 < 1 and αn ↑ ∞. Let rn = αn+1/2 for n ≥ 1. Then
{B

p̃
(yn + c0, rn)} is a nested sequence of p̃-balls in �∞/c0. Then, as

above, for m = 22k+1 − 1,

σm(yn + y − x0) =

(αn + α− 1)
k∑

i=0

22i + (αn + α+ 1)
k−1∑
i=0

22i+1

2k∑
i=0

2i

= αn + α− 22k+1 + 1
3(22k+1 − 1) ,

σm(yn − y + x0) = αn − α+
22k+1 + 1
3(22k+1 − 1) ,
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while, for m = 22k − 1,

σm(yn + y − x0) = αn + α+
22k+1 − 1
3(22k − 1) ,

σm(yn − y + x0) = αn − α− 22k+1 − 1
3(22k − 1) .

It follows that

p̃(yn + y − x0 + c0) = max
{
αn + α− 1

3
, αn + α+

2
3

}

= αn + α+
2
3
= rn + α+

1
6
≥ rn, if α ≥ −1

6

p̃(yn − y + x0 + c0) = max
{
αn − α+

1
3
, αn − α− 2

3

}

= αn − α+
1
3
= rn − α− 1

6
≥ rn, if α ≤ −1

6
.

It may also be noted that, in this case,

d1((yn − x0 + c0, yn + x0 + c0),∆1(c/c0))
rn

= 2, for all n.

Example 4.6 (Uniqueness of extensions of positive linear function-
als). Let Y ⊆ X be a subspace of an ordered linear space (X,≥). Say
that Y is cofinal in X if given any x ∈ x, there exists y ∈ Y such that
x ≤ y (this is assured if X has an order unit e ∈ Y ). Then any f ∈ Y #,
f ≥ 0 has an extension f̂ ∈ X#, f̂ ≥ 0, see [6]. Briefly, this is seen as
follows: define

q(x) = inf {f(y) : x ≤ y, y ∈ Y }.
Then q is finite-valued, sublinear and f(y) = q(y) for all y ∈ Y . Extend
f to f̂ such that f̂ ≤ q. Then f̂ ≥ 0 (if x ≥ 0, then −x ≤ 0, so
f̂(−x) ≤ q(−x) ≤ f(0) = 0, thus f̂(x) ≥ 0). On the other hand, let F
be an extension of f with F ≥ 0. For x ∈ X, there exists y ∈ Y such
that x ≤ y. Thus F (x) ≤ F (y) = f(y) and, hence, F (x) ≤ q(x). Thus
an extension of a positive functional is positive if and only if it is an
extension dominated by q.
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In this case our theorem takes the following form:

Theorem 4.7. Let X be an ordered vector space and Y a cofinal
subspace. Let f ∈ Y # be positive. Let

q(x) = inf {f(y) : x ≤ y, y ∈ Y }.

Then the following are equivalent:

(a) f has a unique positive extension f̂ to X#.

(b) q is linear.

(c) If {Bq(yn, rn)} is a nested sequence of q-balls in X such that the
centers {yn} ⊆ Y , 0 ∈ Bq(y1, r1) and q(x) ≤ 1, then there exist y ∈ Y
and n0 ≥ 1 such that

q(yn0 ± (x− y)) < rn0 .

(d) Y is a q-U-subspace of X.

Proof. (a) ⇔ (b). This follows from Proposition 4.4.

(a) ⇔ (c). It clearly suffices to show that, for Z = ker (f) ⊆ Y ,
q̃(x+ Z) = q(x) for all x ∈ X \ Z.
By definition of q̃, q̃(x + Z) ≤ q(x). Now for any z ∈ Z and ε > 0,
there exists y ∈ Y such that x+ z ≤ y and f(y) < q(x+ z) + ε. Then
x ≤ y − z. Therefore, q(x) ≤ f(y − z) = f(y) < q(x + z) + ε. And,
hence, q(x) ≤ q̃(x+ Z).

(c) ⇔ (d) follows from Theorem 2.14.

Remark 4.8. It can be easily verified that Bq(y0, r) = {x ∈ X :
f(y0) − r < −q(−x)}. In particular, if q is linear, the q-balls are
actually half-spaces.

From the proof of [6, Theorem 2.6.3] (which is often called the Krein-
Rutman theorem), one can see that the conditions for unique extension
of f as a continuous positive functional are the same as in the linear
space situation.
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Example 4.9. Returning to Example 4.3, observe that s =
(s0, s1, . . . , sn, . . . ) ∈ l1 with sn ≥ 0 acts as a positive functional on
c. By Proposition 4.4, it has a unique extension as a positive func-
tional if and only if q(x) = inf {〈s,y〉 : x ≤ y,y ∈ c} is linear on �∞.
Observe that for any u ∈ �∞, q(u) ≤ ‖u‖. Thus, from definition and
Example 4.3, it follows that if ‖s‖1 = 1, then for any u ∈ �∞,

−q(−u) ≤ s0(lim inf
n

un) +
∞∑

n=1

snun = sup{〈s,x〉 − ‖x − u‖ : x ∈ c}

≤ sup{〈s,x〉 − q(x − u) : x ∈ c}
≤ inf {〈s,x〉+ q(u − x) : x ∈ c}
≤ inf {〈s,x〉+ ‖x − u‖ : x ∈ c}

= s0(lim sup
n

un) +
∞∑

n=1

snun ≤ q(u).

Thus, if q is linear, then −q(−u) = q(u) and therefore s0 = 0.
Conversely, if s0 = 0, then from the above inequalities,

sup{〈s,x〉 − q(x− u) : x ∈ c} = inf {〈s,x〉+ q(u − x) : x ∈ c},

and this clearly implies that the uniqueness of the extension dominated
by q.

Combining Example 4.3 with this, we conclude that the condition
s0 = 0 is necessary and sufficient for s to have a unique Hahn-Banach
extension as well as a unique extension as a positive functional to �∞.

Example 4.10 (Uniqueness in Strassen’s theorem). We now deal
with the uniqueness question in the theorem of Strassen mentioned in
the introduction. This theorem has applications in results about the
existence of probability measures with given marginals, about dilation
of measures, etc., see [10, 14, 17] for details.

Let X be a Banach space and S the collection of all sublinear
functionals on X. Let (Ω,Σ) be a measurable space.
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Definition 4.11. A mapping q : w � qw from Ω to S is

(i) weakly measurable if the real-valued function w � qw(x) is
measurable for every x ∈ X;

(ii) bounded if there exists K > 0 such that |qw(x)| ≤ K‖x‖ for
every x ∈ X and w ∈ Ω.
If q is bounded by K > 0, it follows easily that |qw(x) − qw(y)| ≤
K‖x− y‖ and, hence, qw is continuous on X.

Theorem 4.12 [17]. Let X be a separable Banach space and (Ω,Σ, µ)
be a complete probability space. Let p : w � pw be a bounded weakly
measurable mapping from Ω into S. Denote by s the sublinear function

s(x) =
∫

Ω

pw(x) dµ(w), x ∈ X.

For x∗ ∈ X∗, the following are equivalent:

(a) x∗ is dominated by s on X;

(b) there exists a bounded weakly measurable mapping w � gw from
Ω to X∗ such that gw is dominated µ-almost everywhere by pw and

x∗(x) =
∫

Ω

gw(x) dµ(w), for every x ∈ X.

Clearly, (b) ⇒ (a). Briefly the converse is proved as follows (see [10]
for the details): identify X with the constant functions in L1(µ,X).
For any f ∈ L1(µ,X), the map w � pw(f(w)) is obviously integrable
and, therefore, we can extend the sublinear functional s from X to
L1(µ,X) by defining

S(f) =
∫

Ω

pw(f(w)) dµ(w), f ∈ L1(µ,X).

Extend x∗ to F on L1(µ,X) such that F ≤ S. By the representation
of L1(µ,X)∗, there exists a bounded weakly measurable map w � gw

from Ω to X∗ such that

F (f) =
∫

Ω

gw(f(w)) dµ(w), for every f ∈ L1(µ,X).
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Further, it can be shown that gw is dominated µ-almost everywhere by
pw.

We are interested in exploring the question of when x∗ has a unique
Hahn-Banach extension to L1(µ,X) dominated by S.

Definition 4.13. Let n ≥ 1, and let {Ω1,Ω2, . . . ,Ωn} be a partition
of Ω. Let αi = µ(Ωi) and µi = (1/αi)µ|Ωi

. Let

si(x) =
∫

Ωi

pw(x) dµ(w), x ∈ X.

By Theorem 4.12 then, there exists x∗
i ∈ X∗ dominated by si on X.

We will call the representation µ =
∑n

i=1 αiµi an n-decomposition of
µ and the corresponding representation x∗ =

∑n
i=1 αix

∗
i , the induced

decomposition of x∗.

Theorem 4.14. The following are equivalent:

(a) x∗ has a unique Hahn-Banach extension to L1(µ,X) dominated
by S.

(b) For each 2-decomposition of µ = α1µ1 + α2µ2, the induced
decomposition of x∗ = α1x

∗
1 + α2x

∗
2 is unique with x∗

i dominated by
si.

(c) For every n ≥ 1 and each n-decomposition of µ =
∑n

i=1 αiµi, the
induced decomposition of x∗ =

∑n
i=1 αix

∗
i is unique with x∗

i dominated
by si.

(d) For every n ≥ 1, each n-decomposition of µ =
∑n

i=1 αiµi and, for
each choice of x1, x2, . . . , xn ∈ X,

sup
{
x∗(x)−

n∑
i=1

αisi(x− xi) : x ∈ X
}

= inf
{
x∗(x) +

n∑
i=1

αisi(xi − x) : x ∈ X
}
.

Proof. (a) ⇒ (b). Suppose x∗ = α1y
∗
1 + α2y

∗
2 , y∗i ∈ X∗ and y∗i ≤ si.

By Theorem 4.12,

y∗i =
∫

Ωi

gi(w) dµi.



UNIQUENESS OF HAHN-BANACH EXTENSIONS 57

Put

h(w) =
{
g1(w) if w ∈ Ω1,
g2(w) if w ∈ Ω2.

Then

x∗ = α1y
∗
1 + α2y

∗
2 = α1

∫
Ω1

h(w) dµ1 + α2

∫
Ω2

h(w) dµ2 =
∫

Ω

h(w) dµ.

By uniqueness, g(w) = h(w), a.e., and hence, x∗
i = y∗i .

(b) ⇒ (c). Given any n-decomposition of µ =
∑n

i=1 αiµi, the
expression

µ = α1µ1 + (1− α1)
[

1
1− α1

n∑
i=2

αiµi

]

is a 2-decomposition of µ and therefore, in the induced decomposition
x∗ =

∑n
i=1 αix

∗
i , x

∗
i is unique; similarly for all other x

∗
i s.

(c)⇒ (d). Define a sublinear functional P on Xn by

P (x1, x2, . . . , xn) =
n∑

i=1

αisi(xi) =
n∑

i=1

αi

∫
Ωi

pw(xi) dµi

=
n∑

i=1

∫
Ωi

pw(xi) dµ.

Let F = {(x, x, . . . , x) : x ∈ X} ⊆ Xn and define Λ on F by
Λ(x, x, . . . , x) = x∗(x). Observe that, since x∗ ≤ s on X, Λ ≤ P
on F . By Lemma 2.6, for any x1, x2, . . . , xn ∈ X,

sup
{
x∗(x)−

n∑
i=1

αisi(x− xi) : x ∈ X
}

≤ inf
{
x∗(x) +

n∑
i=1

αisi(xi − x) : x ∈ X
}
.

And, if the inequality above is strict, the extension of Λ to Xn is not
unique. Let L be an extension of Λ. Then there exist y∗1 , y∗2 , . . . , y∗n ∈
X∗ such that L(x1, x2, . . . , xn) =

∑n
i=1 y

∗
i (xi). Moreover, since L ≤ P ,

y∗i ≤ αisi. Further, x∗(x) = Λ(x, x, . . . , x) =
∑n

i=1 y
∗
i (x). Therefore,
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x∗ =
∑n

i=1 αi(y∗i /αi) is an induced decomposition of x∗ and, clearly,
different extensions of Λ gives rise to different induced decompositions.

(d) ⇒ (a). Let f =
∑n

i=1 xiχΩi
∈ L1(µ,X) be a simple function,

where {Ω1,Ω2, . . . ,Ωn} is a partition of Ω. Let µi and αi be as before.
Then µ =

∑n
i=1 αiµi is an n-decomposition of µ and, by (d),

sup
{
x∗(x)−

n∑
i=1

αisi(x− xi) : x ∈ X
}

= inf
{
x∗(x) +

n∑
i=1

αisi(xi − x) : x ∈ X
}
.

It follows that

sup{x∗(x)− S(x− f) : x ∈ X} = inf {x∗(x) + S(f − x) : x ∈ X},
i.e., the extension of x∗ to the space of simple functions dominated by
S is unique.

To show that the extension of x∗ to L1(µ,X) dominated by S is
unique, we use Theorem 2.12.

Let {BS(xn, rn)} be a nested sequence of S-balls in L1(µ,X) such
that the centers {xn} ⊆ {x ∈ X : x∗(x) ≥ 0}, 0 ∈ BS(x1, r1) and
f ∈ L1(µ,X) such that S(f) ≤ 1.
Fix ε > 0. Let K > 0 be such that |pw(x)| ≤ K‖x‖ for every x ∈ X.
Choose a simple function f1 ∈ L1(µ,X) such that‖f − f1‖1 < ε/K.
It follows that S(f1) ≤ S(f1 − f) + S(f) < 1 + ε. And, hence,
S(f1/(1 + ε)) < 1. By the uniqueness of extension to simple functions
and Theorem 2.12 (d) applied to the nested sequence {BS(xn/(1 +
ε), (rn −ε)/(1+ε))} of S-balls, there exist x ∈ X and n0 ≥ 1 such that
for Z = kerx∗ ⊆ X,

S̃

(
xn0

1 + ε
±

(
f1

1 + ε
− x

)
+ Z

)
<

rn0 − ε

1 + ε
.

Therefore,
S̃(xn0 ± (f1 − (1 + ε)x) + Z) < rn0 − ε.

It follows that

S̃(xn0 ± (f − (1 + ε)x) + Z) < rn0 .



UNIQUENESS OF HAHN-BANACH EXTENSIONS 59

And this completes the proof.

One special case of Theorem 4.14 that is of particular importance is
when X = C(K) for some compact convex set K in a locally convex
Hausdorff topological vector space. In this case, for a suitably defined
sublinear functional on X, we obtain [14, Theorem 3.2] as a corollary.

5. The Vlasov Property. We begin by recalling the definition.

Definition 5.1 [16]. A Banach space X is said to have the Vlasov
Property, if there do not exist a nested sequence of balls {Bn}, and x∗

and y∗k ∈ S(X∗) such that, for some constant c,

x∗(b) > c for all b ∈ ∪Bn,

y∗k(b) > c for all b ∈ Bn, n ≤ k,

and dist (co (y∗1 , y
∗
2 , . . . ), x

∗) > 0.

Observe that since the balls {Bn} are nested, the above conditions
are same as

x∗(b) > c for all b ∈ ∪Bn,(5.1)
y∗n(b) > c for all b ∈ Bn,(5.2)

and we will use this form in the sequel.

Since the definition is rather difficult to handle, it is desirable to have
a more workable form.

Proposition 5.2. A Banach space X has the Vlasov Property if and
only if for every nested sequence {Bn} of balls and x∗, y∗n ∈ S(X∗), if
(5.1) and (5.2) are satisfied for some c ∈ R, then y∗n → x∗ weakly.

Proof. From the contrapositive of the definition, it is clear that X
has the Vlasov Property if and only if for every nested sequence {Bn}
of balls and x∗, y∗n ∈ S(X∗), if there exists c ∈ R such that (5.1) and
(5.2) are satisfied, then x∗ ∈ co (y∗1 , y∗2 , . . . ).
The sufficiency is thus immediate. And, once we observe that any
subsequence {y∗nk

} of {y∗n} also satisfies all the given conditions, and
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hence allows us to conclude x∗ ∈ co (y∗n1
, y∗n2

, . . . ), necessity also
follows.

We also recall the definitions and results about the ANPs.

Definition 5.3. (a) A subset Φ of B(X∗) is called a norming set for
X if ‖x‖ = sup{x∗(x) : x∗ ∈ Φ} for all x ∈ X.

(b) A sequence {xn} in S(X) is said to be asymptotically normed
by Φ if, for any ε > 0, there exist an x∗ ∈ Φ and N ≥ 1 such that
x∗(xn) > 1− ε for all n ≥ N .

(c) For κ = I, II, II′ or III, a sequence {xn} in X is said to have the
property κ if

I. {xn} is convergent.
II. {xn} has a convergent subsequence.
II′. {xn} is weakly convergent.
III. {xn} has a weakly convergent subsequence.
(d) For κ = I, II, II′ or III, X is said to have the asymptotic norming
property κ with respect to Φ, Φ-ANP-κ, if every sequence in S(X) that
is asymptotically normed by Φ has property κ.

(e) For κ = I, II, II′ or III, X is said to have the w∗-ANP-κ, if X∗

has B(X)-ANP-κ.

Remark 5.4. The original definition of Φ-ANP-III was different. The
equivalence with the one above was established in [8, Theorem 2.3].
The Φ-ANP-II′ and w∗-ANP-II′ were introduced and studied in [1].

We recall the following result from [8, Theorem 3.1] and [1, Theorem
3.1].

Theorem 5.5. A Banach space X

(a) has w∗-ANP-I if and only if X∗ is strictly convex and (S(X∗), w∗) =
(S(X∗), ‖ · ‖).
(b) has w∗-ANP-II if and only if (S(X∗), w∗) = (S(X∗), ‖ · ‖).
(c) has w∗-ANP-II′ if and only if X∗ is strictly convex and (S(X∗), w∗)
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= (S(X∗), w).

(d) has w∗-ANP-III if and only if (S(X∗), w∗) = (S(X∗), w) if and
only if X is Hahn-Banach smooth.

We need the following.

Lemma 5.6. Given x∗
α, x∗ ∈ S(X∗) such that x∗

α → x∗ in the w∗-
topology, δn > 0 and {xn} ⊆ B(X), there exist a sequence {y∗n = x∗

αn
}

and an increasing sequence {Fn} of finite subsets of B(X) satisfying

(i) xn ∈ Fn, αn ≤ αn+1.

(ii) Fn(1 − δn)-norms span {x∗, y∗1 , y
∗
2 , . . . , y

∗
n}, i.e., for any y∗ ∈

span {x∗, y∗1 , y
∗
2 , . . . , y

∗
n}, i.e., for any y∗ ∈ span {x∗, y∗1 , y

∗
2 , . . . , y

∗
n},

sup{y∗(x) : x ∈ Fn} ≥ (1− δn)‖y∗‖.
(iii) |y∗n(z)− x∗(z)| < δk for all z ∈ Fk, n ≥ k.

Moreover, if
∑∞

n=1 δn < 1, there exists {un} ⊆ X such that {Bn =
B(un, n)} is a nested sequence of balls with (5.1) and (5.2) satisfied for
c = −2.

Proof. The sequences {y∗n} and {Fn} satisfying (i) (iii) obtained by
an inductive construction essentially as in the proof of [8, Lemma 2.1].

We will define un =
∑n

i=1 vi for a suitable choice of vn with ‖vn‖ < 1.
By (ii), find v′n ∈ Fn such that x∗(v′n) > 1 − δn. If ‖v′n‖ < 1, put
vn = v′n. If ‖v′n‖ = 1, find 0 < λn < 1 such that x∗(λnv

′
n) > 1 − δn

and put vn = λnv
′
n. Note that though vk need not belong to Fk,

|y∗n(vk)−x∗(vk)| = λk|y∗n(v′k)−x∗(v′k)| < λkδk < δk, i.e., (iii) is satisfied.

The balls {Bn} are then clearly nested. Moreover, for any n ≥ 1,

infx∗(Bn) = x∗
( n∑

i=1

vi

)
− n =

n∑
i=1

[x∗(vi)− 1] > −
n∑

i=1

δi > −2

and

inf y∗n(Bn) =
n∑

i=1

[y∗n(vi)− 1] =
n∑

i=1

{[y∗n(vi)− x∗(vi)] + [x∗(vi)− 1]}

> −2
n∑

i=1

δi > −2
∞∑

i=1

δi > −2.



62 P. BANDYOPADHYAY AND A.K. ROY

Theorem 5.7. X has the Vlasov Property if and only if X has the
w∗-ANP-II′.

Proof. We first note that if {y∗n} satisfies (5.2), it is asymptotically
normed by B(X). Indeed, let Bn = B(xn, rn). We may assume,
without loss of generality, that 0 ∈ B1. If we now put yn = xn/rn,
it follows that ‖yn‖ < 1. Then (5.2) and the fact that {Bn} is nested
implies that y∗n(yk) ≥ 1 + c/rk for all n ≥ k. Since rn → ∞, we are
done.

Since X has the w∗-ANP-II′, {y∗n} is weakly convergent. If y∗n → y∗

weakly, it follows that y∗ ∈ S(X∗) and

y∗(b) > c for all b ∈ ∪Bn.

Since X∗ is strictly convex, by Theorem 1.3 this implies that x∗ = y∗,
i.e., y∗n → x∗ weakly. The sufficiency thus follows from Proposition 5.2.

For the converse, we use Theorem 5.5 (c), i.e., we show that X∗ is
strictly convex and (S(X∗), w∗) = (S(X∗), w).

To show X∗ is strictly convex, we again use Theorem 1.3. Suppose
{Bn} is a nested sequence of balls such that B = ∪Bn is neither whole
of X nor a half-space. Since B is a proper open convex subset of X,
there exist x∗ ∈ S(X∗) and α ∈ R such that

α = infx∗(B) > −∞ and B ⊆ {x : x∗(x) > α} = H.

Since B �= H, there exist z ∈ H and y∗ ∈ S(X∗) such that inf y∗(B) >
y∗(z) = β, say. Then x∗ �= y∗. Otherwise,

β = y∗(z) = x∗(z) > α = infx∗(B) = inf y∗(B) > β.

Putting y∗n = y∗, we see that (5.1) and (5.2) are satisfied with any
c < min(α, β), but {y∗n} cannot converge weakly to x∗.

Now, if (S(X∗), w∗) �= (S(X∗), w), there exist a net {x∗
α} and x∗ in

S(X∗), x∗∗ ∈ X∗∗ and ε > 0 such that x∗
α → x∗ in the w∗-topology

and |x∗∗(x∗
α − x∗)| ≥ ε for all α.

Choose a sequence {δn} such that δn > 0 for all n and
∑∞

n=1 δn < 1.
By Lemma 5.6, there is a sequence {y∗n = x∗

αn
} with αn ≤ αn+1 and



UNIQUENESS OF HAHN-BANACH EXTENSIONS 63

a nested sequence {Bn} of balls such that (5.1) and (5.2) are satisfied
with c = −2. But clearly y∗n cannot converge to x∗ weakly.

Replacing the weak topology by the norm topology in the above
theorem, we immediately obtain

Corollary 5.8. X has w∗-ANP-I if and only if for every nested
sequence {Bn} of balls and x∗, y∗n ∈ S(X∗) if there exists c ∈ R such
that (5.1) and (5.2) are satisfied, then y∗n → x∗ in norm.

From the proof of Proposition 5.2, it is clear that the analog of the
above properties for II or III doesn’t give us anything new. Indeed, the
strict convexity of X∗ remains. So we need some modification.

Definition 5.9. A Banach space X has property V -κ, κ = I, II, II′

or III, if for every nested sequence {Bn} of balls and {y∗n} ⊆ S(X∗) if
(5.2) is satisfied for some c ∈ R, then {y∗n} has property κ.

And here is the main theorem of this section.

Theorem 5.10. For a Banach space X and κ = I, II, II′ or III, X
has w∗-ANP-κ if and only if X has V -κ.

Proof. For necessity it suffices to note, as before, that if {y∗n} satisfies
(5.2), it is asymptotically normed by B(X).

As in [8], we will prove the converse in three steps.

Step 1. κ = III.

By Theorem 5.5 (d) it suffices to show that X is a U -subspace of
X∗∗. Since X is always an ideal in X∗∗, if X is not a U -subspace
of X∗∗, by Theorem 3.6 there exists a nested sequence {B(xn, n)} of
balls in X∗∗ with centers in X, ‖x1‖ < 1 and ‖x∗∗

0 ‖ ≤ 1, and a convex
w∗-neighborhood U of x∗∗

0 , such that for K = U ∩B(X),

K ∩
[⋃

n

B(x∗∗
0 + xn, n)

]
= ∅.
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Now, separate the convex setK from the open convex set ∪n≥1B(x∗∗
0 +

xn, n). That is, there exist x∗∗∗ ∈ S(X∗∗∗) and γ ∈ R such that

(5.3) sup x∗∗∗(K) ≤ γ ≤ x∗∗∗(x∗∗
0 + xn)− n

for all n ≥ 1. Let x∗ = x∗∗∗|X . As in the proof of (a) ⇒ (b) in
Theorem 3.6, we conclude from (5.3) that ‖x∗‖ = 1 and

(5.4) x∗(xn)− n ≥ γ − x∗∗∗(x∗∗
0 ) = c, say.

Moreover, since x∗∗
0 is in the w∗-closure of K, it also follows from (5.3)

that

x∗(x∗∗
0 ) ≤ x∗∗∗(x∗∗

0 ) + x∗(xn)− n

or

(x∗∗∗ − x∗)(x∗∗
0 ) ≥ n− x∗(xn) ≥ n− ‖xn‖ ≥ 1− ‖x1‖ > 0.

(5.5)

By Goldstein’s theorem, choose a net {x∗
α} ⊆ S(X∗) such that

x̂∗
α → x∗∗∗ in w∗-topology on B(X∗∗∗). It follows that x∗

α → x∗ in
w∗-topology on B(X∗), but by (5.5),

lim
α
(x∗

α − x∗)(x∗∗
0 ) = (x

∗∗∗ − x∗)(x∗∗
0 ) ≥ 1− ‖x1‖ > 0.

Let ε = (1− ‖x1‖)/2. Without loss of generality, we may assume

(x∗
α − x∗)(x∗∗

0 ) ≥ ε for all α.

Note that xn/n ∈ B(X). Let δn = 1/n. Then, by the first part
of Lemma 5.6, there exist a sequence {y∗n = x∗

αn
} and an increasing

sequence {Fn} of finite subsets of B(X) satisfying
(i) xn/n ∈ Fn, αn ≤ αn+1.

(ii) Fn(1− 1/n)-norms span {x∗, y∗1 , y
∗
2 , . . . , y

∗
n}.

(iii) |y∗n(z)− x∗(z)| < 1/k for all z ∈ Fk, n ≥ k.

Now, by (iii) and (5.4),

y∗n(xn)− n = n[y∗n(xn/n)− 1] > n[x∗
n(xn/n)− 1/n− 1] > c− 1.
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That is, (5.2) is satisfied.

By (iii), y∗n(z) → x∗(z) for all z ∈ ∪nFn which, by (ii), is a norming
set for span {x∗, y∗n;n ≥ 1}. Thus any weakly convergent subsequence
of {y∗n} must converge to x∗, which is impossible.

Step 2. For κ = II, we combined the arguments of Theorem 5.7 and
Step I.

If (S(X∗), w∗) �= (S(X∗), ‖·‖), there exist a net {x∗
a} and x∗ in S(X∗)

and ε > 0 such that x∗
α → x∗ in the w∗-topology and ‖x∗

α − x∗‖ ≥ ε
for all α.

As before, choose a sequence {δn} such that δn > 0 for all n and∑∞
n=1 δn < 1. Since ‖x∗‖ = 1, there exists {xn} ⊆ S(X) such that

x∗(xn) > 1− δn.

By Lemma 5.6, there exist a sequence {y∗n = x∗
αn

} and an increasing
sequence {Fn} of finite subsets of B(X) satisfying
(i) xn ∈ Fn, αn ≤ αn+1.

(ii) Fn(1− δn)-norms span {x∗, y∗1 , y
∗
2 , . . . , y

∗
n}.

(iii) |y∗n(z)− x∗(z)| < δk for all z ∈ Fk, n ≥ k,

and a nested sequence {Bn} of balls such that (5.2) is satisfied with
c = −2.
Therefore, by V -II, {y∗n} has a convergent subsequence. But, again,
as in Step I, any convergent subsequence of {y∗n} must converge to x∗,
which is impossible.

Step 3. By Theorem 5.5 it now suffices to show that X has V -II′

implies X∗ is strictly convex.

Proceed as in the proof of Theorem 5.7 to obtain a nested sequence
{Bn} of balls, x∗, y∗ ∈ S(X∗) and c ∈ R such that x∗ �= y∗,
x∗(∪Bn) > c and y∗(∪Bn) > c. Putting

y∗n =
{
x∗ if n is odd
y∗ if n is even

we see that (5.2) is satisfied, but {y∗n} cannot converge weakly.
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Remark 5.11. From the proof, it follows that it suffices to define
Property V -κ for nested sequences of balls of the type {B(xn, n)}.
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