
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 34, Number 2, Summer 2004

ON THE NORM OF IDEMPOTENTS
IN C∗-ALGEBRAS

J.J. KOLIHA AND V. RAKOČEVIĆ

ABSTRACT. In this paper we study norms of idempo-
tents in C∗-algebras. Results of Ljance, Vidav, Buckholtz
and Wimmer on idempotent operators in Hilbert spaces
are considered in the setting of C∗-algebras, and simpler
new proofs, based on algebraic and spectral rather than
spatial arguments, are given. We give an application to pro-
jections with respect to a-involutions.

1. Introduction. The paper addresses the twin problem of the
existence of an idempotent h in a C∗-algebra A satisfying hA = pA
and (1 − h)A = qA, where p, q are given projections (self-adjoint
idempotents) in A, and of the exact value of ‖h‖ if h exists. We denote
such an idempotent h by π(p, q).

Ljance [10] showed in 1959 that, for Hilbert space operators, ‖h‖ =
(1 − ‖pq‖2)−1/2. In 1964 Vidav [15] found necessary and sufficient
conditions for the existence of π(p, q), again in the case of Hilbert space
operators. Pták [13], apparently unaware of the work of Vidav, and
originally also of Ljance, gave in 1984 a solution to both problems, and
applied it to extremal operators.

Recently the Hilbert space version of the topic was revisited by
Buckholtz [3, 4], Galántai [5], Wimmer [16, 17], and the second author
[14]. The first author [8] extended Vidav’s results to C∗-algebras.

The purpose of this paper is to consider the existence of π(p, q) and
Ljance’s formula in C∗-algebras, and to give alternative simpler proofs
of these theorems. The spectral results on two projections in a C∗-
algebra given in Lemma 2.4 hold the key to this simplification. We
believe that avoiding spatial arguments in Hilbert spaces in favor of
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simpler algebraic and spectral techniques gives a greater insight into
both problems.

2. Preliminaries. We denote by A a C∗-algebra with unit 1 and
by A−1 the set of all invertible elements in A. For an element a ∈ A
we denote by σ(a) the spectrum of a and by r(a) the spectral radius
of a.

The term projection will be reserved for an element p of a C∗-algebra
A which is self-adjoint and idempotent, that is, p∗ = p = p2. If f, g ∈ A
are idempotents, then fA ⊂ gA ⇐⇒ gf = f ; consequently,

(2.1) fA = gA ⇐⇒ gf = f and fg = g.

This provides a geometrical motivation for the definition of the range
projection. Let f ∈ A be an idempotent. Following Koliha [8], we say
that p ∈ A is a range projection of f if p is a projection satisfying

(2.2) pf = f and fp = p.

If A is a C∗-subalgebra of B(H), the C∗-algebra of all bounded linear
operators on a Hilbert space H, then (2.2) holds if and only if p is
the (orthogonal) projection onto the range of f . Let us recall [8,
Theorem 1.3] that, for every idempotent f ∈ A, there exists a unique
range projection of f denoted by f⊥ given explicitly by the Kerzman-
Stein formula [7]

(2.3) f⊥ = f(f + f∗ − 1)−1.

If p is a projection, then p⊥ = p. Recall that [8, Proposition 1.4]

(2.4) 1 − f⊥ = (1 − f∗)⊥ and 1 − (f∗)⊥ = (1 − f)⊥.

Definition 2.1. Let e, f ∈ A be idempotents. By π(e, f) we denote
an idempotent h ∈ A, if it exists, satisfying the conditions

(2.5) h⊥ = e⊥, (1 − h)⊥ = f⊥.

Motivated by results obtained for bounded linear operators on Hilbert
spaces by Labrousse [9], Vidav [15], Pták [13] and Buckholtz [3, 4],
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the first author [8] considered the problem of finding π(p, q) in the case
when p, q are projections in a C∗-algebra A. In this paper we give a
new proof of the existence of π(p, q) for projections p, q in Theorem 4.1,
and discuss a more general case in Theorem 5.2. In comparison with
the proofs in [3, 4, 9, 10, 12, 13, 15 17], which depend on spatial
arguments, our proofs use algebraic and spectral techniques in C∗-
algebras.

Basic auxiliary results are summarized in the following three lemmas.
The first is the well-known Akhiezer-Glazman equality. See [1] for
the Hilbert space setting and [11, Lemma 1 (i)] for a C∗-algebra
formulation.

Lemma 2.2. If p, q are projections in a C∗-algebra A, then

(2.6) ‖p − q‖ = max{‖p(1 − q)‖, ‖q(1 − p)‖}.

The following result was obtained for bounded linear operators on
Hilbert spaces by Del Pasqua [12], see also [6, 8, 10, 14]. We give a
proof based on matrix representations.

Lemma 2.3. If h ∈ A is a nontrivial idempotent, then

(2.7) ‖h‖ = ‖1 − h‖ = ‖h + h∗ − 1‖.

Proof. Let p = h⊥. The C∗-algebra A has a matrix representation
which preserves the involution in A, namely

x =
[

pxp px(1 − p)
(1 − p)xp (1 − p)x(1 − p).

]

Recall that since p is a projection, pAp and (1 − p)A(1 − p) are C∗-
algebras with units p and 1 − p, respectively.

Let u = h − p. Then (h + h∗ − 1)2 = 1 + uu∗ + u∗u, and

(h + h∗ − 1)2 =
[

1 + uu∗ 0
0 1 + u∗u

]
.
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Similarly,

h∗h =
[

1 + uu∗ 0
0 0

]
, (1 − h)∗(1 − h) =

[
0 0
0 1 + u∗u

]
.

As σ(1 + uu∗) = σ(1 + u∗u), we have

σ((h + h∗ − 1)2) ∪ {0} = σ(h∗h) = σ((1 − h)∗(1 − h)),

from which (2.7) follows via the formula ‖x‖ = ‖x∗x‖1/2 = r(x∗x)1/2.

The next result summarizes pertinent spectral properties of a pair of
projections. This lemma, in particular part (v), is the key to the proof
of Theorem 3.1.

Lemma 2.4. Let p, q ∈ A be nontrivial projections. Then the
following are true.

(i) σ(pq) = σ(pqp) ⊂ [0, r(pq)] ⊂ [0, 1].

(ii) r(pq) = r(pqp) = ‖pqp‖ = ‖pq‖2.

(iii) 1 − pq ∈ A−1 if and only if ‖pq‖ < 1.

(iv) σ(p − q) ⊂ [−1, 1].

(v) If λ ∈ C \ {0, 1,−1}, then λ ∈ σ(p − q) if and only if 1 − λ2 ∈
σ(pq).

Proof. (i) For any λ ∈ C,

λ − pq =
[

p(λ − pqp)p −pq(1 − p)
0 λ(1 − p),

]
,

which implies that σ(pq) = σ′(pqp) ∪ {0}, where σ′(x) stands for
the spectrum of x ∈ pAp in the algebra pAp. From the equation
λ−pqp = p(λ−pqp)p+λ(1−p) we conclude that σ(pqp) = σ′(pqp)∪{0},
and σ(pq) = σ(pqp) follows. The rest follows from the positivity of
pqp = (pq)(pq)∗ and the inequality r(pq) ≤ ‖pq‖ ≤ ‖p‖‖q‖ = 1.

To prove (ii) we only need to observe that ‖pq‖2 = ‖(pq)(pq)∗‖ =
‖pqp‖.
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Property (iii) is a consequence of (i) and (ii), and the inclusion (iv)
follows from the Akhiezer-Glazman equality (2.6).

For (v) it is enough to note that, for any λ ∈ C,

(λ − 1 + p)[λ − (p − q)](λ + 1 − q)
= [(λ − 1)(λ + q) + pq](λ + 1 − q)
= (λ − 1)(λ + 1)(λ + q) + (λ + 1)pq − (λ − 1)(λ + 1)q − pq

= λ(λ2 − 1 + pq).

3. The norm of h = π(p, q). In this section we give a formula for
the norm of an idempotent h in A in terms of the range projections of
h and 1 − h, a C∗-algebra version of the result obtained for bounded
linear operators on Hilbert spaces by Ljance [10]. The result was proved
also in [3, 13, 14, 16] in the setting of Hilbert spaces. Our approach
is different in eschewing spatial arguments, and using algebra and a
little analysis.

Theorem 3.1. Let h ∈ A be a nontrivial idempotent. Then

(3.1) ‖h‖ =
1√

1 − ‖h⊥(1 − h)⊥‖2
.

Proof. Write p = h⊥ and q = (1 − h)⊥. Using equations ph = h,
hp = p, qh = h + q − 1, hq = 0, we verify that

(1 − pq)(1 + hh∗ − h) = 1 = (1 + hh∗ − h)(1 − pq).

Hence 1 − pq ∈ A−1, and ‖pq‖ < 1 by Lemma 2.4 (iii).

By the Kerzman-Stein formula (2.3),

p = h(h + h∗ − 1)−1, q = (h − 1)(h + h∗ − 1)−1.

Therefore p − q = (h + h∗ − 1)−1, that is

p − q ∈ A−1 with (p − q)−1 = h + h∗ − 1.
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Since ‖h‖ = ‖h + h∗ − 1‖ by (2.7), we have

(3.2) ‖h‖ = ‖(p − q)−1‖.

By Lemma 2.4 (v) we obtain

(3.3)

‖(p − q)−1‖ = r((p − q)−1) =
1

inf{|λ| : λ ∈ σ(p − q)}
=

1
inf{|λ| : λ2 = 1 − t, t ∈ [0, ‖pq‖2]} =

1√
1 − ‖pq‖2

.

From (3.2) and (3.3) we get (3.1).

The theorem has the following useful corollary.

Corollary 3.2. Let h ∈ A be a nontrivial idempotent. Then

(3.4) ‖h⊥(1 − h)⊥‖ =

√‖h‖2 − 1
‖h‖ .

Proof. Clearly (3.1) implies (3.4).

For PR and PK , the projections onto the range R and the null space
K of a bounded idempotent operator M in a Hilbert space H, Vidav
[15, Proof of Theorem 1] proved the inequality

(3.5) ‖PRPK‖ ≤ ‖M‖√
1 + ‖M‖2

.

Note that PR = M⊥ and PK = (I − M)⊥. Then (3.5) follows from our
sharper estimate (3.4).

4. The existence of h = π(p, q). The results of the preceding
section lead to a simple algebraic proof of the following theorem which
extends [8, Theorem 2.2] and [8, Corollary 2.2]. In the setting of
Hilbert spaces, the equivalence of (ii) and (v) is Vidav’s result [15,
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Theorem 1], and the equivalence of (i), (ii), (vii) and (viii) was derived
by Buckholtz [3, 4]. Recall that, for projections p, q ∈ A, π(p, q)
denotes an idempotent h ∈ A satisfying p = h⊥ and q = (1 − h)⊥.

Theorem 4.1. Let p, q ∈ A be nontrivial projections. Then the
following conditions are equivalent:

(i) A = pA⊕ qA.

(ii) The idempotent π(p, q) exists.

(iii) ‖pq‖ < 1 and A = pA + qA.

(iv) 1 − pq ∈ A−1 and A = pA + qA.

(v) ‖pqp‖ < 1 and A = pA + qA.

(vi) 1 − pqp ∈ A−1 and A = pA + qA.

(vii) ‖p + q − 1‖ < 1.

(viii) p − q ∈ A−1.

The idempotent π(p, q) is given by the formulae

(4.1) π(p, q) = (1 − pqp)−1(p − pq) = (p − q)−1(1 − q).

Proof. (i) ⇐⇒ (ii). First assume that A = pA ⊕ qA. The unit 1
is uniquely decomposed as 1 = h + g, where h = pu and g = qv for
some u, v ∈ A. From this decomposition we obtain h = h2 + hg and
g = hg+g2, which implies h−h2 = g−g2 = 0 in view of pA∩qA = {0}.
Hence h, g are idempotents, and g = 1 − h. Expressing p − hp in two
ways as p−hp = p(1−up) and p−hp = (1−h)p = qvp we conclude that
p − hp = 0, that is, hp = p. On the other hand, ph = p2u = pu = h.
This proves that p = h⊥. By symmetry, q = (1 − h)⊥.

Conversely, if h = π(p, q), then A = hA ⊕ (1 − h)A = pA ⊕ qA by
(2.1).

(ii) =⇒ (iii). Write h = π(p, q). Since hA = pA and (1 − h)A = qA,
we have A = pA+ qA. By Corollary 3.2, ‖pq‖ = (‖h‖2 − 1)1/2‖h‖−1 <
1.

The equivalence of (iii) (vi) follows from Lemma 2.4.
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The implication (vi) =⇒ (ii) is established in the proof of [8, Theo-
rem 2.1] by verifying that h = (1− pqp)−1(p− pq) = π(p, q). Note that
the condition A = pA+ qA is used to show that (1 − h)q = q: Indeed,
1−h = pa+qb for some a, b ∈ A. Then 0 = h(1−h) = hpa+hqb = pa,
so that 1 − h = qb and q(1 − h) = qqb = qb = 1 − h.

(ii) =⇒ (vii). By hypothesis, h = π(p, q) exists. We show that

(4.2) ‖p + q − 1‖ = ‖pq‖ = ‖(1 − q)(1 − p)‖.

By (2.4), (h∗)⊥ = 1− (1−h)⊥ = 1− q and (1−h∗)⊥ = 1−h⊥ = 1−p.
Hence ‖pq‖ = ‖(1 − q)(1 − p)‖. Equation (4.2) follows from the
Akhiezer-Glazman equality (2.6).

(vii) =⇒ (viii) follows from the equation (p − q)2 = 1 − (p + q − 1)2.

(viii) =⇒ (ii). Set h = (p − q)−1(1 − q). Since (p − q)p = (1 − q)p =
(1− q)(p− q), we have also h = p(p− q)−1. We show that h = π(p, q).
First,

h2 = (p− q)−1(1− q)p(p− q)−1 = (p− q)−1(1− q)(p− q)(p− q)−1 = h,

and h is idempotent. Clearly, ph = h and (1 − h)q = q. From
(1 − q)p = (p − q)p we obtain hp = p. Finally, from 1 − h =
1 − p(p − q)−1 = −q(p − q)−1 we get q(1 − h) = 1 − h.

From the proof of Theorem 4.1 we distill the following result.

Theorem 4.2. Let p, q be nontrivial projections in A satisfying one
of the equivalent conditions of Theorem 4.1. Then (4.2) holds.

Example 4.3. Equation (4.2) does not hold for general projections
p, q. Consider the C∗-algebra C3,3 of all 3 × 3 complex matrices with
the spectral norm, and let

p =

⎡
⎣ 0 0 0

0 0 0
0 0 1

⎤
⎦ , q =

⎡
⎣ 1 0 0

0 0 0
0 0 0

⎤
⎦ , 1 − p − q =

⎡
⎣ 0 0 0

0 1 0
0 0 0

⎤
⎦ .

Then p and q are projections in C3,3, and pq = 0. Hence ‖pq‖ = 0 
=
1 = ‖p + q − 1‖.
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5. Applications. Our aim in this section is to further extend the
problem considered in Theorem 4.1, and to give simpler algebraic proofs
for recent Wimmer’s results [17].

But first the following generalization of Theorem 4.1.

Theorem 5.1. Let a be a positive invertible element of A. If p, q ∈ A
are nontrivial idempotents satisfying ap = p∗a and aq = q∗a, then the
following conditions are equivalent:

(i) A = pA⊕ qA.

(ii) There exists an idempotent f ∈ A such that

p = a−1/2f⊥a1/2 and q = a−1/2(1 − f)⊥a1/2.

(iii) ‖a−1/2pqa−1/2‖ < 1 and A = pA + qA.

(iv) 1 − pq ∈ A−1 and A = pA + qA.

(v) ‖a1/2pqa−1/2 < 1 and A = pA + qA.

(vi) 1 − pqp ∈ A−1 and A = pA + qA.

(vii) ‖a1/2(p + q − 1)a−1/2‖ < 1.

(viii) p − q ∈ A−1.

The idempotent f is given by the formula

f = a1/2(p − q)−1(1 − q)a−1/2.

Proof. It is known (see, for instance, [2]) that x∗a = a−1x∗a is an
involution on A and that A becomes a C∗-algebra with the involution
x �→ x∗a and the norm ‖x‖a = ‖a1/2xa−1/2‖. We denote this C∗-
algebra by Aa. The condition ax = x∗a means that x is self-adjoint
in Aa; hence, the hypotheses of the theorem imply that p, q are
projections in Aa. We then apply Theorem 4.1 to Aa: There exists
an idempotent h ∈ Aa such that h⊥a = p and (1 − h)⊥a = q, where ⊥a

denotes the range projection in Aa.



694 J.J. KOLIHA AND V. RAKOČEVIĆ

Write f = a1/2ha−1/2. Then f is an idempotent, and

h⊥a = h(h + a−1h∗a − 1)−1

= h[a−1/2(a1/2ha−1/2 + a−1/2h∗a1/2 − 1)a1/2]−1

= ha−1/2(f + f∗ − 1)−1a1/2

= a−1/2f(f + f∗ − 1)−1a−1/2

= a−1/2f⊥a1/2.

Similarly, 1−f = a1/2(1−h)a−1/2, and (1 − h)⊥a = a−1/2(1 − f)⊥a1/2.
The rest follows from Theorem 4.1.

The following theorem is motivated by Wimmer’s result [17, Theo-
rem 2.1], proved for finite dimensional Hilbert spaces. Recall that, for
idempotents u, v ∈ A, π(u, v) = π(u⊥, v⊥).

Theorem 5.2. Let h ∈ A be a nontrivial idempotent and f ∈ A a
nontrivial projection such that

(5.1) ‖h‖‖f − (1 − h)⊥‖ < 1.

Then g := π(h, f) exists and

(5.2) ‖g − h‖ ≤ ‖h‖2‖f − (1 − h)⊥‖
1 − ‖h‖‖f − (1 − h)⊥‖

.

Proof. From the proof of Theorem 3.1 we recall that h⊥− (1 − h)⊥ =
(h + h∗ − 1)−1. In view of (5.1) and Lemma 2.3,

‖f − (1 − h)⊥‖ <
1

‖h‖ =
1

‖(h⊥ − (1 − h)⊥)−1‖
.

Hence ‖f − (1 − h)⊥‖‖(h⊥ − (1 − h)⊥)−1‖ < 1, and

h⊥ − f = (h⊥ − (1 − h)⊥) − (f − (1 − h)⊥) ∈ A−1.
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By Theorem 4.1 (viii) there exists g = π(h, f), that is, an idempotent
g ∈ A such that g⊥ = h⊥ and (1 − g)⊥ = f . Hence

(5.3) gh⊥ = h⊥, h⊥g = g, (1 − g)f = f, f(1 − g) = 1 − g.

From these equations and properties of range projection we deduce

(5.4) h(1 − h)⊥ = 0, gh = h, hg = g.

In the following calculations we will use (5.3) and (5.4) freely.

Consider s = (1 − g)(1 − h)⊥ = (1 − h)⊥ − g(1 − h)⊥. We have

−g(1 − h)⊥ = h(1 − g)(1 − h)⊥ = hf(1 − g)(1 − h)⊥ = hfs,

and s = (1 − h)⊥ + hfs. Hence ‖s‖ ≤ 1 + ‖hf‖‖s‖, and

‖s‖ ≤ 1
1 − ‖hf‖ ,

since ‖hf‖ = ‖h(f − (1 − h)⊥)‖ ≤ ‖h‖‖f − (1 − h)⊥‖ < 1. Therefore

g − h = g(1 − h) = g(1 − h)⊥(1 − h) = −hfs(1 − h).

Applying the norm, we get

‖g − h‖ ≤ ‖hf‖‖s‖‖1 − h‖ ≤ ‖hf‖
1 − ‖hf‖ ‖h‖,

and (5.2) follows.

From the preceding theorem and its proof we obtain the following
result.

Corollary 5.3. Let h, g ∈ A be nontrivial idempotents and f ∈ A a
nontrivial projection such that ‖hf‖ < 1 and g = π(h, f). Then

(5.5) ‖g − h‖ ≤ ‖hf‖
1 − ‖hf‖ ‖h‖.
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Remark 5.4. From Theorem 5.2 we recover Wimmer’s result [17,
Theorem 2.1 (ii)]. Corollary 5.3 is a C∗-algebra version of [17, The-
orem 2.1 (i)] with an additional hypothesis that π(h, f) exists which
compensates for the finite dimensionality assumption of [17].
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de semigroups analytiques et de contractions sur un espace de Hilbert, Atti Accad.
Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 52 (1972), 631 636.

10. V.E. Ljance, Some properties of idempotent operators, Teor. i Prikl. Mat.
L’vov 1 (1959), 16 22 (in Russian).

11. S. Maeda, On the distance between two projections in C∗-algebras, Math.
Japon. 22 (1977), 61 65.

12. D. Del Pasqua, Su una nozione di varietà lineari disgiunte di uno spazio di
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