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USING ELLIPTIC CURVES TO PRODUCE
QUADRATIC NUMBER FIELDS

OF HIGH THREE-RANK

MATT DELONG

ABSTRACT. We use a connection between the arithmetic
of elliptic curves of the form y2 = x3 + k and the arithmetic

of the quadratic number fields Q(
√

k) and Q(
√−3k) to look

for quadratic fields with high three-rank. We give a geometric
proof of known results on polynomials that give rise to infinite
families of quadratic number fields possessing non-trivial lower
bounds on their three-rank. We then generalize the method
to produce infinitely many such polynomials. Finally, we
produce specific examples of quadratic number fields with high
three-rank.

1. Introduction. Previous authors have documented polynomials
that give rise to infinite families of quadratic number fields possessing
non-trivial lower bounds on their three-ranks [2, 3, 8, 9]. Their
methods of proof were usually straight-forward but lengthy calculations
involving ideals, or appeals to class field theory.

In this paper we give a new and shorter proof of the results on some
of these families of fields. The method of proof leads us to a way of
generating infinitely many such polynomials. The method is geometric
in nature, and relies on a well-known connection between the arithmetic
of elliptic curves of the form y2 = x3 + d and the arithmetic of the
quadratic number fields Q(

√
d) and Q(

√−3d). We use a precise form
of the connection, given by Satgé [6].

We first illustrate the method in detail on a family of Shanks [8]. We
then discuss other previously discovered polynomials in our context.
Following this, we show how to generalize our method to produce
infinitely many such polynomials. Finally, we give some numerical data
derived using some of our new polynomials.

The specific examples of three-ranks of quadratic fields, the orders of
rational points on elliptic curves, and the conjectural upper bounds on
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ranks of elliptic curves were all calculated using GP/PARI Calculator
version 2.0.11. The systems of equations solved with Maple were solved
using Maple V, version 3.

2. A geometric proof of a result of Shanks. Shanks used the
polynomial

(1) D3(t) = 27t4 − 74t3 + 84t2 − 48t+ 12

to give an infinite family of quadratic imaginary fields each with non-
cyclic 3-Sylow subgroup of the class group. Note that D3(t) > 0 for all
t ∈ R.

Definition 2.1. Series 3 consists of the square-free values of D3(t0)
evaluated at integers t0 ≡ −1 (mod 6).

The following theorem was first proved by Shanks [8]. (By r3(a) we
mean the 3-rank of the number field Q(

√
a).)

Theorem 2.2. All of the fields associated with Series 3 satisfy

r3(−D3(t0)) = r3(3D3(t0)) + 1 ≥ 2.

In order to derive Shanks’s result in a different context, we study
elliptic surfaces over C given by

(2) y2 = x3 + k(t),

where k(t) ∈ Q[t] is an irreducible square-free polynomial of degree
four. We note that (2) can also be considered as an elliptic curve over
C(t), and we will interchange terminology throughout.

Shioda has given an algorithm for determining the Mordell-Weil
lattice over C(t) for a rational elliptic surface, and for finding a finite
set of sections that contain a set of generators for the lattice [10]. We
apply this algorithm to (2) to obtain the following.

Lemma 2.3. If k(t) is an irreducible square-free degree-four poly-
nomial, then the structure of the Mordell-Weil lattice over C(t) of
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y2 = x3 + k(t) is E∗
6 , and the rank of the Mordell-Weil group over

C(t) is 6.

Proof. To apply Shioda’s algorithm, we must find the reducible bad
fibers of the surface y2 = x3 + k(t). Using Tate’s algorithm [11], we
find that the surface has bad reduction over the roots of k(t). Here the
reduction is of type II, which is an irreducible bad fiber. At t = ∞,
after making the change of variables

(3) t =
1
s
, y =

y

s3
, x =

x

s2
,

we find that the reduction is of type IV, which is a reducible bad fiber
of multiplicity 3.

By Theorem 10.4 of Shioda [10] the root lattice is T = A2, and so
the structure of the surface is E∗

6 , and the C(t)-rank of the curve is 6.

The following corollary is a special case of Theorem 10.6 of Shioda
[10].

Corollary 2.4. If k(t) is an irreducible square-free degree-four
polynomial, then there are exactly 54 points of the form (A(t+B), Ct2+
Dt+E) on y2 = x3+k(t) where A,B,C,D,E ∈ C, and these 54 points
contain a set of generators for the Mordell-Weil group over C(t).

One can easily verify that −4D3(t) is a square-free, irreducible,
degree-four polynomial, and so we can apply Lemma 2.3 and Corol-
lary 2.4 to

(4) y2 = x3 − 4D3(t).

We compute the 54 points of the form (A(t + B), Ct2 + Dt + E) on
the surface directly, in order to find the field of definition for E(C(t)),
which is the smallest field k such that E(k(t)) = E(C(t)).

Proposition 2.5. The field of definition for E(C(t)) for the surface
y2 = x3 − 4D3(t) is Q(

√−3).
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Proof. Substituting x = A(t + B) and y = Ct2 + Dt + E into
y2 = x3 − 4D3(t), we obtain the following five polynomial relations
on the coefficients of a section (x, y).

C2 = −108,
2CD = A3 + 296,

2CE +D2 = 3A3B − 336,
2DE = 3A3B2 + 192,

and
E2 = A3B3 − 48.

Using Maple to solve this system, we obtain the coefficients of the 54
points. Since all 54 points are defined over Q(

√−3)(t), and these points
contain a set of generators for the Mordell-Weil group by Corollary 2.4,
the result follows.

We now wish to specialize an elliptic curve E over the function field
K(t) to elliptic curves over K via the specialization map

(5) σt0 : E(K(t)) → Et0(K),

which sends each section of E to the point on Et0 obtained by setting
t = t0 ∈ K. We need the following theorem, which is Theorem III.11.4
of Silverman [11] for the case that we study.

Theorem 2.6. If E is an elliptic curve over the function field K(t)
that is not K(t)-isomorphic to an elliptic curve defined over K, then
the specialization map σt0 is injective for all but finitely many t0 ∈ K.

Since the elliptic curve (4) is not isomorphic to one defined over
Q(

√−3) and the Q(
√−3)(t)-rank of (4) is 6 by Lemma 2.3 and

Proposition 2.5, Theorem 2.6 implies that the Q(
√−3)-rank of y2 =

x3 − 4D3(t0) is at least 6 for all but a finite number of t0 ∈ Z.

Because they have complex multiplication by a cube-root of unity,
we can relate the Q(

√−3)-ranks of these elliptic curves to their ranks
over Q. The following is a well-known result whose proof is an easy
exercise.
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Proposition 2.7. If E : y2 = x3 +k is an elliptic curve defined over
Q, where k is not a square, then the rank of E over Q(

√−3) is twice
the rank of E over Q.

The following corollary is now immediate.

Corollary 2.8. The rank of y2 = x3 − 4D3(t0) over Q is at least 3
for all but finitely many t0 ∈ Z.

We will relate the ranks of the elliptic curves to the three-ranks of the
number fields by appealing to results of Satgé [6]. If E : y2 = x3 + k
and E′ : η2 = ξ3 − 27k, then we let ψ : E → E′ denote the quotient
map

(6) ξ =
y2 + 3
x2

and η =
y(x3 − 8k)

x3
,

and let ψ′ : E′ → E denote its dual isogeny. We denote the Selmer
groups of ψ and ψ′ respectively by Sψ and Sψ

′
. The following two

propositions are the contents of Satgé’s Lemma 3.1, Proposition 3.2
and Proposition 3.3.1

Proposition 2.9. Assume that k is a 6− th-power-free integer such
that the following two conditions on k are satisfied.

(a) If p �= 2, 3 is a prime such that vp(k) = 2 or 4, then p ≡ 1
(mod 3) and k/pvp(k) is not a square modulo p.

(b) If v2(k) = 0 or 2 then k/2v2(k) ≡ 3 (mod 4).

If

(c) v3(k) = 0 and k ≡ 1, 2, 4, 8 (mod 9), or if v3(k) = 1 and k/3 ≡ 1
(mod 3), or if v3(k) = 2 and k/9 ≡ 2 (mod 3), or if v3(k) = 3 and
k/27 ≡ 2, 4 (mod 9),

then
dimF3

Sψ = r3(k).

If

(c′) v3(k) = 2 and k/9 ≡ 1 (mod 3),
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then
dimF3

Sψ ≤ r3(k).

Proposition 2.10. Assume that k is a sixth power-free integer
satisfying conditions (a) and (b) of the previous proposition. Then,

dimF3
Sψ

′
=

{
r3(k) + 1, if k > 0,
r3(k), if k < 0,

if k is in case (c) of the previous proposition. In addition,

dimF3
Sψ

′ ≤
{
r3(k) + 2, if k > 0,
r3(k) + 1, if k < 0,

if k is in case (c′) of the previous proposition.

To apply the results of Satgé to the elliptic curves y2 = x3 − 4D3(t0)
obtained from Series 3, we must verify the conditions of Proposition 2.9.
Since the values in Series 3 are square-free, condition (a) holds. To
verify condition (b), we note that v2(−4D3(t0)) = 2 since t0 ≡ −1
(mod 6) implies that t0 is odd. Therefore, we check that −D3(t0) ≡ 3
(mod 4) when t0 is odd. We note that v3(−4D3(t0)) = 0 for t0 ≡ −1
(mod 6), since this implies that t0 ≡ 2 (mod 3). Therefore, we check
that for t0 ≡ 2 (mod 3), −4D3(t0) ≡ 1 (mod 9).

Thus Proposition 2.9 and Proposition 2.10 give us that

(7) dimSψ = r3(−D3(t0)) and dimSψ
′
= r3(−D3(t0))

for t0 ≡ −1 (mod 6). Since the sum of the dimensions of the Selmer
groups is an upper bound for the Q-rank of the elliptic curve, by
Corollary 2.8 we have the inequality

(8) 3 ≤ 2r3(−D3(t0)).

Since the three-rank must be an integer, equation (8) gives

(9) 2 ≤ r3(−D3(t0)),
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which is the result of Theorem 2.2 on the three-rank of the imaginary
field.

Combining equation (9) with the classical theorem of Scholz [7] gives

(10) 1 ≤ r3(3D3(t0))

for the values in Series 3. In fact, Shanks [8] verified that these fields
are in the escalatory case of Scholz’s theorem.

Remark 2.11. Actually, in the last few paragraphs we have been
overstating things a bit. Shanks’s theorem is actually stronger than
what we have obtained. He proved the result of Theorem 2.2 for
all fields in Series 3, whereas our method only proves the result for
all but finitely many values of Series 3. The method of this paper
seems unlikely to obtain the result for all fields, since it relies on the
specialization theorem of Silverman. This theorem does not give an
effectively computable constant for the maximal height of the rational
numbers for which the specializations may not be injective.

3. Other known polynomials. Shanks exhibited three other poly-
nomials which give rise to families of quadratic fields with nontrivial
three-ranks [8]. These polynomials are

∆(w) = 9w4 − 74w3 + 252w2 − 432w + 324,(11)
∆2(x) = 36x4 − 148x3 + 252x2 − 216x+ 81, and(12)
D6(z) = 108z4 − 148z3 + 84z2 − 24z + 3(13)

Definition 3.1. Series 1 consists of the square-free values of ∆(w).
Series 2 consists of the square-free values of ∆2(x). Series 6 consists
of the square-free values of D6(z) evaluated at z0 ≡ 1 (mod 3).

The following theorems are all due to Shanks. We use Shanks’s
notation, which is r = r3(k) and s = r3(−3k), where k is a value
in Series 1, 2, or 6.

Theorem 3.2. For Series 1 we have r = s ≥ 1.
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Theorem 3.3. With the exception of ∆2(1) = 5, which has r = s =
0, all Series 2 fields have r = s ≥ 1.

Theorem 3.4. With the exception of D6(1) = 23, which has r = 0
and s = 1, all Series 6 fields have s = r + 1 ≥ 2.

These results can be obtained for all but finitely many values of
Series 1, Series 2, and Series 6 using the methods of the previous section
by looking at the surfaces y2 = x3 + 4∆(w), y2 = x3 + 16∆2(x), and
y2 = x3 − 16∆6(z). The next section will provide an infinite family of
such series.

The exceptional cases ∆2(1) = 5 and D6(1) = 23 fail because of
the noninjectivity of the specialization map from the elliptic surface
to the elliptic curves. The surface y2 = x3 + 16∆2(x) has Q(x)-rank
three, as can be seen via the methods of the previous section. On the
other hand, one can easily verify by classical descent that the Q-rank
of y2 = x3 + 16∆2(1) is one.

Similarly, although the surface y2 = x3−16D6(t) has Q(t)-rank three,
the elliptic curve y2 = x3 − 16D6(1) has Q-rank two.

The unfortunate drawback to our method is that the possible non-
injectivity of the specialization at finitely many specializations means
that we can only state the results for all but finitely many quadratic
fields in a particular family.

As a final example, Buell and Ennola [3] consider the polynomial

(14) d(t) = t4 + 14t3 + 67t2 + 126t+ 49.

They prove the following

Theorem 3.5. For integers t �≡ 0 (mod 7) and t > 0, r3(d(t)) =
r3(−3d(t)) ≥ 1.

By considering the surface y2 = x3 + 16d(t), we can obtain similar
results with our method. In fact, we can slightly improve the restriction
t �≡ 0 (mod 7). For example, d(21) = 73 × 1039. In this case the
restriction of Theorem 2.9 does not come into play, and one can check
that r3(1039) = r3(−3 × 1039) = 1. Therefore, the best restriction
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would be to say that if v7(d(t)) ≡ 2, 4 (mod 6), which will by the way
only occur when t ≡ 0 (mod 7), then d(t)/7v7(d(t)) is not a square
modulo 7.

4. A two-parameter family of fields. Our goal in this section is
to mirror our analysis of D3(t) to find an infinite family of degree-four
polynomials in Q[t], such that every polynomial in the family yields
infinitely many real quadratic number fields of non-trivial three-rank.
As in the previous section, we study elliptic curves over C(t) of the
form

(15) y2 = x3 + k(t),

where k(t) ∈ Q[t] is a polynomial of degree four.

Top [12] analyzed Shanks’s polynomial D3(t) via the surface y2 =
x3 + 108D3(t). This has Q-sections with x = 6t and x = 6t − 8,
respectively. Making the change of variables t 	→ t

6 in the polynomial
108D3(t) yields the polynomial

(16) d3(t) =
9
4
t4 − 37t3 + 252t2 − 864t+ 1296.

The elliptic surface y2 = x3 + d3(t) thus has sections with x = t and
x = t− 4/3. Hence, we search for curves of the form (15) with similar
sections.

We first parametrize those elliptic curves with a rational section of
the form (t, a0t

2 + a1t + a2), where a0, a1, a2 ∈ Q. If (15) has such a
section, then the polynomial k(t) must be

(17) k(t) = a2
0 t

4 + (2a0a1 − 1)t3 + (2a0a2 + a2
1)t

2 + 2a1a2t+ a2
2,

where a0 �= 0.

Now we impose the additional condition that (15) has a section with
x = t+ b for some nonzero b ∈ Q. This will be true precisely when

(18) (t+ b)3 + k(t) =
a2
0t

4 + 2a0a1 t
3 + (2a0a2+a2

1+3b)t2 + (2a1a2+3b2)t+ (a2
2+b3)

is a square in C[t].
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We need the following lemma, whose proof involves only elementary
algebra.

Lemma 4.1. The polynomial

p(t) = αt4 + βt3 + γt2 + δt+ ε ∈ C[t]

is a square in C[t] if and only if the following relations on the coeffi-
cients are satisfied:

β3 − 4αβγ + 8α2δ = 0
and

εβ2 − αδ2 = 0

Applying Lemma 4.1 to the polynomial (18) we obtain the conditions
on the coefficients a0, a1, a2, b given by

(19) b2a2
0(9b

2 − 4a2
1 b+ 12a1a2) = 0,

and

(20) 24a3
0 b(a0b− a1) = 0.

Since a0 �= 0 and b �= 0, condition (20) implies that

(21) b =
a1

a0
.

Therefore, we can substitute for b into condition (19) to obtain the
relation on the ais given by

(22) 9
(
a1

a0

)2

− 4a2
1

a1

a0
+ 12a1a2 = 0.

Clearing denominators, we have

(23) −a1(4a2
1a0 − 9a1 − 12a2

0a2) = 0.
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Since a0 �= 0 and b �= 0, condition (24) implies that a1 �= 0. Therefore,
the conditions (19) and (20) taken together imply that

(24) a1 =
9 ± √

81 + 192a3
0 a2

8a0
.

Since a0, a1, a2 ∈ Q, condition (24) implies that 81 + 192a3
0 a2 ≡ 0

(mod Q∗2). Write

(25) 81 + 192a3
0 a2 = r2,

where r ∈ Q. Then

(26) a2 =
r2 − 81
192a2

0

,

and by substituting (24), choosing the positive square root, and (26)
into (17) we obtain a two-parameter family of polynomials given by

kr,a0(t) = a2
0 t

4 +
(
r + 5

4

)
t3 +

(
(5r + 9)(r + 9)

192a2
0

)
t2

(27)

+
(

(r + 9)2(r − 9)
768a4

0

)
t+

(
(r + 9)2(r − 9)2

36864a6
0

)
.

Now, the polynomial d3(t) must be a member of the family (27) for
an appropriate choice of a0 and r. By inspection we see that a0 = 3/2
and r = −153.

Because, as we saw in Section 2, the surface given by Shanks’s
polynomial has rank equal to three over Q(t), and therefore produces
interesting quadratic fields, let us fix r = −153 in (27) and study the
one-parameter family of polynomials

(28) k−153,a0(t) = a2
0t

4 − 37t3 +
567
a2
0

t2 − 4374
a4
0

t+
59049
4a6

0

.

By making the change of variables

(29) x 	−→ x

a2
0

, y 	−→ y

a3
0

, t 	−→ t

a2
0
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we have that the elliptic surface

(30) y2 = x3 + k−153,a0(t)

is isomorphic over Q to

(31) y2 = x3 + 64t4 − 2368t3 + 36288t2 − 279936t+ 944784.

The polynomial 64t4−2368t3 +36288t2−279936t+944784 is square-
free and irreducible with only positive outputs, therefore the polyno-
mials of the form (28) are likewise.

As we did with D3(t), we use Maple to obtain the 54 sections of
(31) of the form (A(t+ B), Ct2 +Dt + E). As before, we see that all
54 sections are defined over Q(

√−3). As in Section 3.2, combining
Lemma 2.3, Corollary 2.4 and Proposition 2.7, we have that all the
surfaces

(32) y2 = x3 + k−153,a0(t),

where a0 ∈ Q, have Q(t)-rank equal to three. By Theorem 2.6, for each
surface, all but finitely many specializations will yield elliptic curves
with Q-rank at least 3.

We would now like to apply the results from Propositions 2.9 and
2.10 to the elliptic curves we obtain through specialization to a pair
(a0, t0) ∈ Q × Z, in order to generate quadratic number fields with
high three-rank. Since the result of specializing k−153,a0(t) to such a
pair may not necessarily be an integer, we first generalize the results of
Propositions 2.9 and 2.10 to rational k.

Proposition 4.2. All statements in Propositions 2.9 and 2.10 of the
form vp(k) = n may be changed to vp(k) ≡ n (mod 6) without changing
the conclusions of the propositions.

Proof. The elliptic curve y2 = x3 + k is isomorphic to y2 = x3 + r6k
for any r ∈ Q. Clearly the fields Q(

√
k) and Q(

√
r6k) are the same.

Therefore, the results of the propositions are valid up to any change to
k by a sixth power in Q.
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Notice that Propositions 2.9 and 2.10 fail to cover some congruence
classes of k modulo 36 = 729. Some of these cases can be treated via
the isogenous curve, which is E′ : y2 = x3 − k/27 or E′ : y2 = x3 − 27k
according as 27|k or not, as will be seen below. The missing cases are
then k ≡ 6 (mod 9) and k ≡ 0, 81 (mod 243).

Now suppose we have a0 ∈ Q and t0 ∈ Z, and for notational
convenience denote by k = k−153,a0(t0). Recall that k > 0, and assume
that conditions (a) and (b) of Proposition 2.9 are satisfied. We obtain
estimates on r3(k) and r3(−3k) using the results of Satgé and this
section. The analysis breaks down into three cases, depending upon
the congruence class of k modulo 729.

In the first case, combining Proposition 2.9, Proposition 2.10 and
Proposition 4.2, we have

(33) dimF3
Sψ = r3(k), and dimF3

Sψ
′
= r3(k) + 1

if v3(k) = 0 and k ≡ 1, 2, 4, 8 (mod 9), or if v3(k) = 1 and k/3 ≡ 1
(mod 3), or if v3(k) = 2 and k/9 ≡ 2 (mod 3), or if v3(k) = 3 and
k/27 ≡ 2, 4 (mod 9).

In the second case,

(34) dimF3
Sψ ≤ r3(k), and dimF3

Sψ
′ ≤ r3(k) + 2

if v3(k) = 2 and k/9 ≡ 1 (mod 3).

In the third case, we use the isogenous curve and the results of Satgé
to obtain the bounds. If k ≡ 5, 7 (mod 9), then v3(−27k) = 3 and
−27k/27 ≡ 4, 2 (mod 9) respectively. Likewise, if k ≡ 27, 135, 189, 216
(mod 243), then v3(−k/27) = 0 and −k/27 ≡ 8, 4, 2, 1 (mod 9) re-
spectively. Finally, if k ≡ 162 (mod 243), then v3(−k/27) = 1 and
−k/81 ≡ 1 (mod 3). In all these cases, the results of Proposition 2.9
can be applied to the isogenous curve to obtain

(35) dimF3
Sψ ≤ r3(−3k), and dimF3

Sψ
′ ≤ r3(−3k)

All but finitely many of the elliptic curves y2 = x3 +k−153,a0(t0) have
Q-rank at least 3. Therefore, in (33) we have

(36) 3 ≤ 2r3(k) + 1.
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Since r3(k) must be an integer we have that r3(k) ≥ 1, and hence by
Scholz’s theorem r3(−3k) ≥ 1. In (34) we have

(37) 3 ≤ 2r3(k) + 2.

Here again r3(k) ≥ 1 and r3(−3k) ≥ 1. Lastly in (35) we have

(38) 3 ≤ 2r3(−3k).

Therefore, r3(−3k) ≥ 2, and by Scholz’s theorem r3(k) ≥ 1.

We have proved the following

Theorem 4.3. For a0 ∈ Qs and t0 ∈ Z, let k = k−153,a0(t0).
Suppose that the following three conditions on k are satisfied.

(a) If p �= 2, 3 is a prime such that vp(k) ≡ 2, 4 (mod 6), then p ≡ 1
(mod 3) and k/pvp(k) is not a square modulo p.

(b) If v2(k) ≡ 0, 2 (mod 6), then k/2v2(k) ≡ 3 (mod 4).

(c) k �≡ 6 (mod 9) and k �≡ 0, 81 (mod 243).

Then for a fixed a0, for all but finitely many t0 we have

r3(k) ≥ 1 and r3(−3k) ≥ 1.

Moreover, for certain congruence classes of k modulo 729, we can
achieve

r3(k) ≥ 1 and r3(−3k) ≥ 2.

Thus, we have achieved the stated goal of producing an infinite family
of polynomials, each with the property that it produces fields with
nontrivial three-rank for almost every integer input, and such that the
family contains Shanks’s polynomials as special cases. In Table 1 we
include some sample fields arising via this method.

Finally, we notice that the best case is when we achieve the inequality
(38). Here we obtain three-ranks of imaginary fields that are at least
2, which by the heuristic of Cohen and Lenstra [4] are somewhat rare.
For a given a0 ∈ Z not divisible by 3, we can restrict t to a specific
congruence class modulo 9 in order that k is always in this case, as seen
in the following proposition.
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TABLE 1. Three-ranks generated from k(t) when a0 = 1.

t k(t) ∆ r3(k(t)) r3(−3k(t))
1 2−2 × 32 × 23 × 211 23 × 211 1 1
2 2−2 × 32009 32009 2 2
3 2−2 × 33 × 863 3 × 863 1 1
4 2−2 × 3 × 5 × 72 × 23 3 × 5 × 23 0 0
5 2−2 × 12269 12269 1 2
6 2−2 × 33 × 331 3 × 331 1 1
7 2−2 × 3 × 37 × 59 3 × 37 × 59 1 1
8 2−2 × 47 × 103 47 × 103 1 1

Proposition 4.4. Suppose a0 and t are integers. If a0 ≡ 1, 8
(mod 9), then t ≡ 5 (mod 9) implies that k ≡ 5 (mod 9). If a0 ≡ 2, 7
(mod 9), then t ≡ 8 (mod 9) implies that k ≡ 5 (mod 9). If a0 ≡ 4, 5
(mod 9), then t ≡ 2 (mod 9) implies that k ≡ 5 (mod 9).

Proof. By obtaining a common denominator, we have

(39) k =
4a8

0 t
4 − 148a6

0 t
3 + 2268a4

0 t
2 − 17496a2

0 t+ 59049
4a6

0

.

Now, a6
0 ≡ 1 (mod 9) for a0 not divisible by 3. In addition, 4−1 ≡ 7

(mod 9). Therefore, k ≡ a8
0 t

4 − t3 (mod 9). The results of the
proposition are then easily verified by congruence arithmetic for the
various combinations of a0 and t modulo 9.

By making the change of variables t = 9x+ 5 in (27), we obtain

(40)

k̂1(x) = 6561a2
0 x

4 + (14580a2
0 − 26973)x3

+
(

12150a4
0 − 44955a2

0 + 45927
a2
0

)
x2

+
(

4500a6
0 − 24975a4

0 + 51030a2
0 − 39366

a4
0

)
x

+
(

2500a8
0 − 18500a6

0 + 56700a4
0 − 87480a2

0 + 59049
4a6

0

)
.
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Similarly, the substitution t = 9x+ 8 yields

(41)

k̂2(x) = 6561a2
0 x

4 + (23328a2
0 − 26973)x3

+
(

31104a4
0 − 71928a2

0 + 45927
a2
0

)
x2

+
(

18432a6
0 − 63936a4

0 + 81648a2
0 − 39366

a4
0

)
x

+
(

16384a8
0 − 75776a6

0 + 145152a4
0 − 139968a2

0 + 59049
4a6

0

)
.

Likewise t = 9x+ 2 yields

(42)

k̂4(x) = 6561a2
0 x

4 + (5832a2
0 − 26973)x3

+
(

1944a4
0 − 17982a2

0 + 45927
a2
0

)
x2

+
(

288a6
0 − 3996a4

0 + 20412a2
0 − 39366

a4
0

)
x

+
(

64a8
0 − 1184a6

0 + 9072a4
0 − 34992a2

0 + 59049
4a6

0

)
.

In the next lemma we show that condition (b) of Theorem 4.3 is
automatically satisfied by any k−153,a0(t0) when a0, t0 ∈ Z.

Lemma 4.5. For any a0, t0 ∈ Z, we have v2(k−153,a0(t0)) ≡ 4
(mod 6).

Proof. By writing k as in (39), we see that v2(k−153,a0(t0)) =
−2 − 6v2(a0). This is clearly congruent to 4 modulo 6.

We then have the following theorem.

Theorem 4.6. For a0 ≡ ±i (mod 9) and x ∈ Z, where i ∈ {1, 2, 4},
let k = k̂i(x). Suppose that if p �= 2, 3 is a prime such that vp(k) ≡ 2, 4
(mod 6), then p ≡ 1 (mod 3) and k/pvp(k) is not a square modulo p.
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Also suppose that k �≡ 6 (mod 9) and k �≡ 0, 81 (mod 243). Then for
a fixed a0, for all but finitely many x we have

r3(k) ≥ 1 and r3(−3k) ≥ 2.

In Tables 2, 3 and 4, we include some examples of fields obtained
from these translated polynomials. In addition, a couple of fields
of particularly high three rank were found by the author using k̂1

when a0 = 1. For example, ∆ = 4k̂1(1087) = 36575780952596681,
which is prime, has associated fields with three ranks r3(∆) = 4 and
r3(−3∆) = 5. Similarly, ∆ = 4k̂1(1437) = 111759971248983881 =
173×977×661219441661 has associated fields with three ranks r3(∆) =
4 and r3(−3∆) = 5. By the heuristic of Cohen and Lenstra [4], the
probability of finding a quadratic field with r3(d) = 5 “at random” is
on the order of 10−12. The record for highest r3(d) seems to be six [5].

TABLE 2. Three-ranks generated from k̂1(x) when a0 = 1.

x k̂1(x) ∆ r3(k̂1(x)) r3(−3k̂1(x))
1 2−2×5×1237 5×1237 1 2
2 2−2×175061 175061 1 2
3 2−2×72×23801 23801 0 1
4 2−2×43×98999 43×98999 1 2
5 2−2×17×23×71×409 17×23×71×409 2 2
6 2−2×5×761×6569 5×761×6569 2 2
7 2−2×48346121 48346121 1 2
8 2−2×41×2078149 41×2078149 2 3
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TABLE 3. Three-ranks generated from k̂2(x) when a0 = 2.

x k̂2(x) ∆ r3(k̂2(x)) r3(−3k̂2(x))
1 2−8×48346121 43846121 1 2
2 2−8×5×64846741 5×64846741 2 3
3 2−8×1172590409 1172590409 2 2
4 2−8×131×271×87277 131×271×87277 1 2
5 2−8×211×32075699 211×32075699 1 2
6 2−8×131×229×433639 131×229×433639 2 2
7 2−8×5×72×93099781 5×93099781 0 1
8 2−8×37320079529 37320079529 1 2

TABLE 4. Three-ranks generated from k̂4(x) when a0 = 5.

x k̂4(x) ∆ r3(k̂4(x)) r3(−3k̂4(x))

1 2−2×5−6×4513×4423973 4513×4423973 1 2

2 2−2×5−6×232058311049 232058311049 2 2

3 2−2×5−6×72×373×57444137 373×57444137 0 1

4 2−2×5−6×3133163807849 3133163807849 2 3

5 2−2×5−6×7387521633749 7387521633749 1 2

6 2−2×5−6×397×37694480717 397×37694480717 1 2

7 2−2×5−6×1481×2437×7553617 1481×2437×7553617 1 2

8 2−2×5−6×367×2663×46990369 367×2663×46990369 2 3

5. Concluding remarks. One could try to play the same game
with the surface y2 = x3 + 16d(t) associated with Buell and Ennola’s
polynomial (14). This surface is isomorphic over Q to the surface y2 =
x3 + 16d(−t/8). This latter surface has sections (t, 1/16t2 + 9/2t− 28)
and (−t + 56, 1/16t2 − 23/2t + 420). Therefore, one could hope to
parametrize the surfaces with sections satisfying x = t and x = −t+ b
for some nonzero b ∈ Q. As in the previous section, one could then look
for an infinite family of polynomials that give rise to quadratic number
fields of high three-rank by determining a family of such surfaces that
have as the field of definition for E(C(t)) the field Q(

√−3).
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As a final note, we remark that Bremner [1] has classified those elliptic
surfaces of the form

(43) y2 = x3 + k(t)

for k(t) ∈ Q[t] of degree less than or equal to three according to their
rank over Q(t). If one could obtain a similar classification for k(t)
of degree 4, the methods of this paper show that the surfaces with
Q(t)-rank three would correspond to the polynomials that yield infinite
families of quadratic fields of high three-rank.

ENDNOTE

1. There is a misprint in Lemma 3.1 and a misprint in Proposition 3.2. In 3.1
where Satgé writes k/2v2(k) ≡ 3 (mod 8), he means k/2v2(k) ≡ 3 (mod 4), as can
be seen from the statement of his Lemma 1.13. In 3.2 where he writes k/9 ≡ 2
(mod 9), he means k/9 ≡ 2 (mod 3), as can be seen from the statement of his
Theorem 1.14.
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