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MONADS AND BUNDLES
ON RATIONAL SURFACES

NICHOLAS BUCHDAHL

ABSTRACT. A monad construction is presented for holo-
morphic bundles on an arbitrary blowup of P2 which have
semi-stable direct image on P2. Three illustrative applica-
tions to different moduli problems are given.

1. Introduction. A monad M on a complex manifold X is a
complex 0 → A

a→ B
b→ C → 0 of holomorphic vector bundles with

a(x) injective and b(x) surjective at each x ∈ X; the cohomology of M
is the vector bundle E(M) = Ker b/Im a. The utility of monads lies
in the fact that, under certain auspicious conditions, a vector bundle
(or family of such) can be described as the cohomology of a monad (or
family of such) of a particularly simple kind.

Horrocks [13] was the first to introduce monads and used them to
show that every holomorphic vector bundle on Pn can be described
by monads with A, B, C all projectively trivial, i.e., trivial twisted by
a line bundle. Barth [3] used this to classify stable bundles on P2

up to linear algebraic data, and this work was extensively generalized
and developed in the book [15]. The monad description of bundles
on P3 was used by Atiyah et al. [2] in their celebrated description of
instantons (self-dual solutions of the Yang-Mills equations) on S4, using
the Ward correspondence [17] between holomorphic bundles on P3 and
the instantons on S4. The close relationship between complex analytic
geometry and gauge theory has provided a rich source for applications
of monads, particularly in the context of computing moduli spaces.

Methods similar to those used for the ADHM construction were used
in [7] to describe the instantons on CP2; in this case, instantons cor-
respond to certain holomorphic vector bundles on the flag manifold
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F1,2(C3), and those bundles can again be described in terms of mon-
ads of a particularly simple nature (although in this instance, more
complicated than for P3). These methods were subsequently modified
in [8] to study moduli spaces of stable bundles on Hirzebruch surfaces,
and it is reasonably self-evident from these two papers how the methods
may be modified to deal with general flag manifolds, or more generally
manifolds which are fibered over flag manifolds by flag manifolds.

Apart from classifying all instantons on S4 up to linear algebraic data,
the highly explicit nature of the monad descriptions of instantons on
S4 and CP2 has had several interesting applications. In [4] it was used
to prove the SU(2) version of the Atiyah-Jones conjecture. In [10],
a local monad description was obtained to describe the behavior of a
degenerating sequence of instantons on an arbitrary 4-manifold. In [5]
the monad description was used to give a novel proof of Bott periodicity
for the unitary groups, generalized to other classical groups in [6].

The monad descriptions are most effective when the bundles A, B, C
are as simple as possible, projectively trivial or direct sums of such.
This tends to be the case for manifolds “close to” projective spaces, flag
manifolds and such like. In algebraic geometry, birationally equivalent
manifolds are often regarded as “close,” so there is some reason to ex-
pect that monad descriptions of vector bundles on manifolds which are
birational to projective spaces should exist. In particular, it is reason-
able to seek simple monad descriptions of bundles on rational surfaces.
After blowing up sufficiently many times, an arbitrary rational sur-
face is biholomorphic to a blowup of P2, so the classification problem
for bundles on such a surface becomes that of classifying bundles on
blowups of P2 subject to triviality constraints on certain components
of the exceptional divisor.

In this paper monad descriptions for a large class of vector bundles
on an arbitrary blowup of P2 will be presented, together with three
different applications of these descriptions. The construction of the
monads is loosely based on Atiyah’s presentation [1] for bundles on P3

corresponding to instantons.

The bundles in this paper for which monad descriptions are obtained
are those which have semi-stable direct image on P2. In Section 1
below, several such descriptions are presented, each having the desired
property that the three bundles appearing in a monad are reasonably
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simple. However, without some extra assumptions, the monads do
not enjoy all of the properties of similar such monads on Pn which
make the latter so useful for explicit calculations. The principal source
of the complications is the possible existence of multiple blowups, so
although the general theory will be presented without any simplifying
assumptions, the three examples illustrating the applications will all
assume the absence of multiple blowups.

In Section 2 of this paper the monad construction is used to find
an explicit description of moduli spaces Mn of stable holomorphic 2-
bundles with c1 = 0 and c2 = 2 on the blowup of P2 at n distinct
points. The result is that each point in P2 gives rise to a particular
plane in M0 and Mn is essentially the blowup of M0 along the n
planes corresponding to the points of P2 which have been blown up.

Holomorphic bundles on P2 which are trivial on the line at infinity
are certainly semi-stable, and a theorem of Donaldson [12], which
uses the ADHM construction, gives a correspondence between such
bundles trivialized on this line and instantons on S4 with a unitary
trivialization at the point at infinity (based instantons). The analogous
correspondence for instantons on CP2 and bundles on the blowup of
P2 at one point was proved by King [14], and this correspondence was
further generalized in [9] where it was shown that based instantons
on a connected sum of n copies of CP2 correspond to holomorphic
vector bundles on the blowup of P2 at n points trivialized on the line
at infinity.

In [5] Bryan and Sanders used King’s results to compute the topology
of the moduli spaces of rank-stable SU instantons on CP2, this being
the direct limit of the SU(r) moduli spaces under the inclusions
SU(r) ↪→ SU(r + 1). They found that for c2 = k, the moduli space
has the homotopy type of BU(k)×BU(k), and they used this for their
extraordinary proof of Bott periodicity. They conjectured that in the
case of the n-fold connected sum, the spaces should have the homotopy
type of the n-fold product BU(k)× · · · ×BU(k), but using the monad
description of Section 1 it will be shown here in Section 3 that the
conjecture is not true.

In Section 4 the monad construction is restricted to the case of the
blowup of P2 at a single point and to bundles which are trivial on a
neighborhood of the line at infinity. This facilitates a characterization
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of isomorphism classes of bundles in a neighborhood of an exceptional
line, which in turn can be used to provide a cut-and-paste description
of vector bundles on the blowup of an arbitrary complex surface, as in
[11].

In all three examples, many of the linear-algebraic details have been
suppressed in the interests of brevity, but it is hoped that sufficient
detail has been left for the interested reader to be able to reconstruct
these calculations. Each section of the paper concludes with one or
two open questions which such a reader may be tempted to tackle; the
questions vary in difficulty but all appear resolvable with a sufficiently
diligent analysis.

1. Construction of monads. Let π : P̃2 → P2 be a blowup
of P2 consisting of n blowups and let L∞ be a rational curve with
self-intersection +1 in P̃2 not meeting the exceptional divisor. For
each blowup, there is a corresponding embedded rational curve Ei with
negative self-intersection which is the proper transform in P̃2 of the line
introduced by the i-th blowup, and the classes {[L∞], [E1], . . . , [En]}
form a basis for H2(P̃2,Z).

The intersection form of P̃2 restricted to [L∞]⊥ is negative definite
and is isomorphic over Z to the standard negative definite form (−1)⊕
· · · ⊕ (−1). Let qij := [Ei] · [Ej ] so the matrix (qij) is unimodular
symmetric negative definite; the inverse matrix is denoted (qij).

Let {h, e1, . . . , en} be the dual basis so the Poincaré dual of [Ei] is
qijej , employing here and subsequently the summation convention on
repeated upper and lower indices. The smooth complex line bundle
on P̃2 with first Chern class ei restricts trivially to Ej for j �= i and
trivially to L∞ but restricts to the Hopf line bundle on Ei. Since
H1(P̃2,O) = 0 = H2(P̃2,O), the holomorphic line bundles on P̃2 are
classified by H2(P̃2,Z) so this line bundle has a unique holomorphic
structure; henceforth, it will be denoted by O(ei) while O(h) will
denote the pull-back of the Hopf line bundle on P2 to P̃2. Using (2.1)
of [11] it follows that H0(P̃2,O(ei)) = 0 and H0(P̃2,O(−ei)) = C.

Let E be a holomorphic vector bundle on P̃2 of rank r, first Chern
class ah + aiei and second Chern class kh2. For p, q1, . . . , qn ∈ Z,
set q := (q1, . . . , qn), and let E(p,q) be the tensor product of E with
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O(ph + qiei) = O(ph) ⊗ O(q1e1) ⊗ · · · ⊗ O(qnen). By the adjunction
formula, the first Chern class of P̃2 is c1(P̃2) = 3h + niei where
ni = 2 + qii. A straightforward calculation gives the Hirzebruch-
Riemann-Roch formula for E(p,q), namely

(1.1)

χ(E(p,q)) = −
[
k − 1

2
a(a + 3) − 1

2
qijai(aj + nj)

]
+

r

2

[
(p + 1)(p + 2) + qijqi(qj + nj)

]
+ [ap + qijaiqj ].

When there are no multiple blowups, this formula simplifies consider-
ably, as in this case qij = −δij and ni = 1; moreover, Ei is defined by
a section of O(0,−ei).

Assume now that π∗E is a normalized semi-stable torsion-free sheaf
on P2, where normalized means |a| < r. Then H0(P̃2, E(p,q)) = 0 =
H0(P̃2, E

∗(p,q)) for any q if p < 0 so, by Serre duality, H2(P̃2, E(p,q))
and H2(P̃2, E

∗(p,q)) also vanish for any q if p = −1,−2. The
dimensions of the groups H1(P̃2, E(p,q)) are therefore determined by
the Riemann-Roch formula for these values of p.

Let Bi := H1(Ei, E(−ei)). Extensions Q1 of the form

(1.2) 0 −→ E −→ Q1 −→ B1 −→ 0 for B1 :=
⊕n

i=1 Bi(1, ei)

are classified by H1(P̃2, Hom(B1, E))=
⊕

i Hom(Bi, H
1(P̃2,E(−1,−ei))).

The cokernel of the restriction map

H1(P̃2, E(−1,−ei)) → H1(Ei, E(−ei)) = Bi

is contained in H2(P̃2, E(−1,−ei − qijej)), a group which vanishes
by Serre duality and the semi-stability assumption. Therefore there
is an extension class in H1(P̃2, Hom(B1, E)) mapping to the identity
in Hom(Bi, Bi) under the composition of projection and restriction
H1(P̃2, Hom(B1, E)) → H1(Ei, Hom(Bi(ei), E)) = EndBi for all
i = 1, . . . , n.

Let Ai := H0(Ei, E(−ei)). Extensions X1 of the form

(1.3) 0 −→ A1 −→ X1 −→ E −→ 0 for A1 :=
⊕n

i=1 Ai(−1,−ei)
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are classified by H1(P̃2, Hom(E,A1)), and as above the vanishing of
H2(P̃2, E

∗(−1,−ei − qijej)) implies the existence of such an extension
mapping to the identity in EndAi for each i under the projection
and restriction H1(P̃2, Hom(E,A1)) → H1(Ei, Hom(E, Ai(−ei))) =
EndAi. Since H2(P̃2, Hom(B1,A1)) = 0, the map H1(P̃2, Hom(Q1,

A1)) → H1(P̃2, Hom(E,A1)) is surjective so for each extension X1

there is a compatible extension W1 of Q1 by A1. Compatibility of the
extensions implies that there is a commutative diagram of the form

(1.4)

0 0
↑ ↑

0 → E → Q1 → B1 → 0
↑ ↑ ||

0 → X1 → W1 → B1 → 0
↑ ↑
A1 = A1

↑ ↑
0 0

i.e., the display for a monad M : 0 → A1 → W1 → B1 → 0 on P̃2 with
cohomology E.

Restricting M ⊗O(−ei) to Ei and taking cohomology, it follows im-
mediately from the construction of Q1 and X1 that H0(Ei, W1(−ei)) =
0 = H1(Ei, W1(−ei)) so W1|Ei

is trivial for all i; this implies that W1

is the pull-back of a bundle from P2, namely π∗W1 [11, Lemma 2.2].
The Chern classes of W1 can be calculated in terms of the Chern classes
of E and the dimension of Ai using the Riemann-Roch formula.

From the display (1.4), the semi-stability of π∗E and the fact that
H0(P̃2,O(ei)) = 0 for all i it follows that H0(P2, π∗W1(−1)) = 0 =
H0(P2, π∗W ∗

1 (−1)), conditions which imply that π∗W1 is the cohomol-
ogy of a similar monad on P2: with L0 := H1(P̃2, W1(−1,0)) and
K0 := H1(P̃2, W

∗
1 (−1,0))∗, the same construction as above yields

a monad 0 → K0(−1) → W → L0(1) → 0 on P2 with cohomol-
ogy π∗W1 and with W trivial. (Triviality of W follows from the
fact that H∗(P2, W (−1)) = 0 = H∗(P2, W (−2)) so that W is triv-
ial on L∞ and a trivialization there extends to a trivialization over
P2.) Pulling this monad back to P̃2, the obstruction to lifting the
homomorphism A1 → W1 to a map A1 → ker (W → L0(1,0)) lies



MONADS AND BUNDLES 519

in H1(P̃2, Hom(A1, K0(−1,0))). This cohomology class defines an ex-
tension 0 → K0(−1,0) → A → A1 → 0 and, by construction, there
is an injection A → ker (W → L0(1,0)). Dually there is an exten-
sion 0 → B1 → B → L0(1,0) → 0 and an epimorphism W → B such
that composition A → W → B is 0 and such that the cohomology is
precisely E. To summarize:

Proposition 1.5. Let E be a holomorphic bundle on P̃2 such that
π∗E is normalized and semi-stable. Then E is the cohomology of a
monad M on P̃2 of the form

(1.6) M : 0 −→ A −→ W −→ B −→ 0

where W is trivial and A,B are respectively extensions of the form

0 −→ K0(−1,0) −→ A −→ ⊕n
i=1 Ai(−1,−ei) −→ 0,

0 −→ ⊕n
i=1 Bi(1, ei) −→ B −→ L0(1,0) −→ 0

(1.7)

for

Ai = H0(Ei, E(−1)), Bi = H1(Ei, E(−1)),

K0 = H1(P̃2, E
∗(−1,0))∗ ⊕

n⊕
i=1

Ai ⊗ H1(P̃2,O(0, ei))∗ ⊕
n⊕

i=1

Bi

⊗ H1(P̃2,O(−2,−ei))∗,

L0 = H1(P̃2, E(−1,0)) ⊕
n⊕

i=1

Ai ⊗ H1(P̃2,O(−2,−ei)) ⊕
n⊕

i=1

Bi

⊗ H1(P̃2,O(0, ei)).

As can be seen from the discussion, there is in some general some
choice involved in the construction of the monad M . Moreover, if
E′ is another normalized bundle on P̃2, with semi-stable direct image
on P2 and M ′ is a monad with cohomology E′ constructed as above,
a homomorphism E → E′ cannot necessarily be lifted to a monad
homomorphism M → M ′. However, if H1(P̃2,O(−1,−ei)) vanishes for
all i, which occurs if and only if P̃2 is constructed by never blowing up at
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the intersection of a pair of exceptional lines, an analysis as in the proof
of Lemma II-4.1.3 of [15] shows that every homomorphism E → E′

does lift to a monad homomorphism M → M ′. This lift need not be
unique as the kernel of the epimorphism Hom(M, M ′) → Hom(E, E′)
is readily identified as H1(P̃2, Hom(B,A′)), a group which need not
vanish.

The sequences (1.7) do not split in general: for any i such that Bi �= 0
and H1(P̃2,O(0, ei)) �= 0, the corresponding term in (1.7) cannot be
split from B. The groups H1(P̃2,O(0, ei)) all vanish if and only if there
are no multiple blowups, in which case the sequences (1.7) do have
unique splittings. Also in this case the group H1(P̃2, Hom(B,A′)) is
easily computed to be ⊕n

i=1Hom(Bi, A
′
i).

The simplifications resulting from the assumption that there are no
multiple blowups can be summarized as follows:

Corollary 1.8. Under the hypotheses of Proposition 1.5, assume P̃2

is the blowup of P2 at n distinct points. Then E is the cohomology of
a monad on P̃2 of the form
(1.9)

M : 0 −→
K0(−1,0)

⊕⊕n
i=1Ai(−1,−ei)

−→ W −→
L0(1,0)

⊕⊕n
i=1Bi(1, ei)

−→ 0 ,

(with Ai = H0(Ei, E(−1)), Bi = H1(Ei, E(−1)), K0 =
H1(P̃2, E

∗(−1, 0))∗ and L0 = H1(P̃2, E(−1, 0)) as before). If E′ is
another normalized bundle on P̃2 with semi-stable direct image on P2

and M ′ is a monad of the form (1.9) with E(M ′) � E′, there is an
exact sequence

0 → ⊕n
i=1Hom(Bi, A

′
i) → Γ(P̃2, Hom(M, M ′)) → Γ(P̃2, Hom(E, E′)) → 0.

Proposition 1.5 provides a useful monad description of a single bundle
E, but for purposes of describing families of bundles of the same
topological type, it has the drawback that the dimensions of the vector
spaces Ai and Bi can jump: only dimAi−dimBi = ai is constant. This
difficulty can be overcome by twisting the bundles under consideration
by appropriate powers of the line bundles O(ei): By Proposition 2.8
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of [11], a bound on the charge C(E) = [c2 − r−1
2r c2

1](E) gives bounds
on the splitting type of E over any curve Ei, so it is always possible
to find a line bundle L which is trivial off the exceptional divisor
such that H1(Ei, E ⊗ L) = 0 for any r-bundle E of specified charge
such that π∗E is semi-stable. When H1(P̃2,O(−1, ei)) vanishes for
every i, the hypotheses of Lemma II-4.1.3 of [15] are fulfilled so this
approach has the added advantage that isomorphism classes of such
bundles are in one-to-one correspondence with isomorphism classes of
the corresponding monads.

Unfortunately, except in cases of small charge, for explicit calculations
this approach can become quite unwieldy as the dimensions of the other
vector spaces in the monads grow rapidly. There is, however, a less
redundant description, at least when there are no multiple blowups.
In this case, H1(P̃2,O(−2,−2ei)) � C, so there is an extension
0 → O(−1,−ei) → W0 → O(1, ei) → 0 on P̃2 corresponding to 1 ∈ C,
and it is easy to verify that W0 is trivial. By adding this short exact
sequence to the complex (1.9), a new monad is obtained with the same
cohomology E but with Ai, Bi and W increased in dimension by 1,
1 and 2 respectively; more generally, any number of such short exact
sequences can be added to (1.9) without changing the cohomology of
the monad.

On taking cohomology, the sequence 0 → E(−1,0) → E(−1,−ei) →
E|Ei

(−1) → 0 gives the exact sequence 0 → Ai → H1(P̃2, E(−1,0)) →
H1(P̃2, E(−1,−ei)) → Bi → 0, with h1(P̃2, E(−1,0)) and
h1(P̃2, E(−1,−ei)) determined by the Riemann-Roch formula in terms
of the Chern classes of E. If Vi := ker H1(P̃2, E(−1,−ei)) → Bi,
the exact sequence 0 → Vi(−1,−ei) → Vi ⊗ W0 → Vi(1, ei) → 0
can be added to (1.9) to yield another monad with cohomology E.
Using (noncanonical) isomorphisms Vi ⊕ Ai � H1(P̃2, E(−1,0)) and
Bi ⊕ Vi � H1(P̃2, E(−1,−ei)), on setting e0 := 0, the following de-
scription is thus obtained:

Proposition 1.10. If P̃2 is the blowup of P2 at n distinct points, a
holomorphic bundle E on P̃2 with π∗E normalized and semi-stable is
the cohomology of a monad of the form

(1.11) M : 0 −→ ⊕n
i=0 Ki(−1,−ei) −→ W −→ ⊕n

i=0 Li(1, ei) −→ 0
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where W is trivial, K0 = H1(P̃2, E
∗(−1,0))∗, Ki = H1(P̃2, E(−1,0))

for i = 1, . . . , n and Li = H1(P̃2, E(−1,−ei)) for i = 0, 1, . . . , n.
If E′ is the cohomology of a monad M ′ of the same form, every
homomorphism E → E′ is induced by a homomorphism of monads
M → M ′, and the set of such monad homomorphisms inducing the
zero bundle homomorphism is isomorphic to ⊕n

i=1Hom(Li, K
′
i).

The dimensions of the vector spaces appearing in Proposition 1.10
are easily computed using the Riemann-Roch theorem: If E has rank r,
first and second Chern classes ah + aiei and kh2, respectively, K0 has
dimension k − (1/2)a(a− 1) + (1/2)

∑n
i=1 ai(ai − 1), L0 has dimension

l0 := k − (1/2)a(a + 1) + (1/2)
∑n

i=1 ai(ai + 1), and for i > 0, Ki has
dimension l0 and Li has dimension l0 − ai.

When n = 1, this description was given by King in [14] in the case of
bundles which are trivial on the line at infinity; it can also be deduced
without difficulty from the results of [8].

Some effort was spent attempting to find a construction of monads
whereby bundles on the blowup X̃ of a rational surface X at a single
point could be described in terms of monads on X, but no significant
progress was made. Such a description would lend itself to inductive
proofs and hopefully to be able to better analyze bundles in the case of
multiple blowups. It is also rather difficult to work with the line bundles
O(ei) in the presence of multiple blowups, and it would be useful to
have monad descriptions which make direct use of the line bundles with
first Chern classes of square −1 introduced with each blowup.

2. Stable 2-bundles with c1 = 0, c2 = 2. The first application
of the monad descriptions in the previous section is that of the con-
struction of moduli spaces for stable 2-bundles with c1 = 0 and c2 = 2.
As mentioned in the introduction, for simplicity it will be assumed
throughout that there are no multiple blowups, so P̃2 is the blowup of
P2 at a finite set of points {p1, . . . , pn}. This case is already sufficiently
complicated to serve the purposes of illustration.

Stability on P̃2 is with respect to a metric of the form ωεα =
π∗ω + εαiρi where ω denotes 1/2π times the Fubini-study metric on
P2, ρi is a closed (1, 1)-form restricting to 1/2π times the Fubini-study
metric on Ei = π−1(pi), αi is a positive constant and ε > 0 is sufficiently
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small that ωεα is positive on P̃2. According to Proposition 3.5 of [11],
for each fixed α = (α1, . . . , αn), the moduli space of ωεα-stable bundles
of fixed topological type is independent of ε for ε sufficiently small
where “sufficiently small” can be specified precisely in terms of α and
the Chern classes of E. In particular, if ‖α‖2 :=

∑
i(α

i)2 < 1/(k + 1),
a 2-bundle E with c1(E) = 0 and c2(E) = k > 0 which is ωα-stable is
ωεα-stable for all ε such that 0 < ε‖α‖ < 1/

√
1 + k, and moreover π∗E

is semi-stable.

Assume henceforth that α as above is fixed with ‖α‖2 < 1/3. If E is
a stable 2-bundle on P̃2 with c1(E) = 0 and c2(E) = 2, the stability
condition implies H0(P̃2, E) = 0 = H0(P̃2, E(0, ei − ej)) for any i, j
such that αi ≥ αj . Conversely, it is straightforward to check that these
conditions imply that E is ωα-stable.

Since π∗E is semi-stable, the monad descriptions provided by Corol-
lary 1.8 and Proposition 1.10 are applicable. Although the monad
(1.11) has a pleasing symmetry not enjoyed by (1.6), for detailed cal-
culations it turns out to be easier to work with the description furnished
by Proposition 1.5 using the method described in the remark following
the statement of that proposition.

Since H0(P̃2, E) = 0 = H2(P̃2, E), the Riemann-Roch formula shows
that H1(P̃2, E) also vanishes. This implies that H1(Ei, E) = 0 for each
i, so E can split on Ei only as O⊕O or O(−1)⊕O(1). The same applies
to any rational curve of degree ≤ 2 in P̃2 for similar reasons and, indeed,
by the theorem of Grauert and Mülich [15, p. 206], the restriction of E
to the generic linearly embedded line is trivial. Setting 1 := (1, . . . , 1)
and applying Proposition 1.5 to E(0,1), the vector spaces Bi are all
0, the spaces Ai are all 2-dimensional as is K0 and L0 has dimension
2n + 2. Since E has rank 2, W has dimension 4n + 6 and, with K
denoting a fixed 2-dimensional complex vector space, Proposition 1.5
implies that E(0,1) is described as the cohomology of a monad on P̃2

of the form

(2.1) M : 0 −→ ⊕n
i=0 K(−1,−ei) A−→ W

B−→ L(1,0) −→ 0.

where K, W and L are respectively vector spaces of dimension 2, 4n+6
and 2n + 2 and where e0 := 0.

The moduli space of ωεα-stable bundles is thus identified with
the space of maps (A, B) satisfying the monad condition BA = 0,
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the nonsingularity criteria (i.e., A(x) is injective and B(x) is onto
at each x ∈ P̃2) and the conditions implying E(M) is stable, all
modulo the group of monad automorphisms which in this case is
G = Aut (⊕n

i=0K(−1,−ei)) × GL(W ) × GL(L) which acts freely mod-
ulo the scalar multiples of the identity via (gA, gW , gL) · (A, B) =
(gW Ag−1

A , gLBg−1
W ). Since H0(P̃2,O(ei − ej)) = 0 for i �= j, the auto-

morphisms gA have the form

(2.2) gA =

⎡
⎢⎢⎢⎢⎣

λ0g00 0 0 · · · 0
λ1g10 g11 0 · · · 0
λ2g20 0 g22 · · · 0

...
...

...
. . .

...
λngn0 0 0 · · · gnn

⎤
⎥⎥⎥⎥⎦

for some gii ∈ GL(K) and gi0 ∈ End (K), where λi ∈ Γ(P̃2,O(−ei)) is
a fixed section defining Ei.

Fix homogeneous coordinates za = (z0, z1, z2) in P2 such that L∞ =
{z2 = 0}, and let pi have inhomogeneous coordinates pa

i = (pA
i , 1),

A = 0, 1. Thus zA−pA

i z2 = λiw
A

i for some uniquely determined sections
wA

i in H0(P̃2,O(h+ei)), these restricting to homogeneous coordinates
on Ei. In the sequel it is useful to write wi0 := −w1

i and wi1 := w0
i , so

wA

i wiA ≡ 0.

More generally, this convention will be adopted for any pair of
objects such as matrices or vectors; for example, if mA (A = 0, 1) are
endomorphisms of some vector space V , mAmA = m0m1 − m1m0. In
the same vein it is sometimes convenient to denote by VA the vector
space V ⊕V so that, for example, (m0, m1) : V → V ⊕V can be written
as mA : V → VA. This notation, which is essentially Penrose’s “abstract
index notation,” greatly facilitates and makes transparent many of the
linear-algebraic calculations required to refine the monad descriptions.
The convention that summation over repeated upper and lower indices
is assumed remains in force so, for example, the map V ⊕V → V given
by (v0, v1) → m0v0 + m1v1 would be written mA : VA → V . In this
framework a vector p ∈ C3 is identified with its three components pa,
a = 0, 1, 2, and it is consistent to write, for example, p = pa ∈ Ca.
Further details can be found in Chapter 2 of [16].

As noted earlier, if D ⊂ P2 is a line not meeting any of the
points pi, the restriction of E to (the proper transform of) D satisfies
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H1(D, E) = 0; in particular, H1(L∞, E) = 0. If the map B of (2.1) has
the form B(z) = Baza for some Ba ∈ Hom(W, L), the condition that
H1(L∞, E) = 0 is then equivalent to the condition that BA : W → LA

be surjective.

For simplicity assume from now on that E is trivial on L∞; since E
is trivial on the generic line in P2 not meeting any point pi, this is not
a great restriction and can easily be removed later. Using the monad
condition together with this assumption, it is then straightforward to
deduce that bases can be found for L and W so that L = ⊕n

i=0K,

W =
⊕n

i=0KA

⊕
K

and in terms of these decompositions the maps A and

B have the forms

A(z) =

⎡
⎢⎢⎢⎢⎢⎢⎣

zA + a00Az2 0 0 · · · 0
a10Az2 w1A 0 · · · 0
a20Az2 0 w2A · · · 0

...
...

...
. . .

...
an0Az2 0 0 · · · wnA

bz2 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.3a)

B(z) =

⎡
⎢⎢⎢⎢⎣

zA + aA
00z2 0 0 · · · 0 d0z2

aA
10z2 zA − pA

1 z2 0 · · · 0 d1z2

aA
20z2 0 zA − pA

2 z2 · · · 0 d2z2

...
...

...
. . .

...
...

aA
n0z2 0 0 · · · zA − pA

nz2 dnz2

⎤
⎥⎥⎥⎥⎦ .

(2.3b)

Using the fact that (zA − z2pA

i )wiA = λiw
A

i wiA = 0, the condition
BA ≡ 0 is rapidly found to be equivalent to

(2.4) aA

00a00A + d0b = 0, aA

i0(a00A + piA1K) + dib = 0 for i > 0.

The elements of G which preserve this form themselves have the form
(2.5)

(
gA,

[
gLδA

B 0
0 gK

]
, gL

)
, for gL =

⎡
⎢⎢⎢⎢⎣

g00 0 0 · · · 0
g10 g11 0 · · · 0
g20 0 g22 · · · 0
...

...
...

. . .
...

gn0 0 0 · · · gnn

⎤
⎥⎥⎥⎥⎦
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with gA as in (2.2), with the action given explicitly by

a00A −→ g00a00Ag−1
00 , b −→ gKbg−1

00 , d0 −→ g00d0g
−1
K ,

ai0A −→ gii(ai0A + g−1
ii gi0a00A)g−1

00 ,
(2.6)

di −→ gii(di + g−1
ii gi0d0)g−1

K (i > 0).

By direct calculation from the display for the monad (2.1), the
condition that H0(P̃2, E) should vanish is equivalent to the condition
that d0 in (2.3b) should be an isomorphism. Hence, by choosing gi0 in
(2.6) appropriately, the map B can be placed in the form (2.3b) with
di = 0 for i > 0 and with d0 = 1K ; once this has been achieved, the
automorphisms of (2.5) must satisfy g00 = gK and gi0 = 0 for i > 0
and b in (2.3a) is given by b = −aA

00a00A.

Determining the conditions under which H0(P̃2, E(0, ei − ej)) �= 0 is
considerably more difficult to read directly from the display for M . An
element of this group is a section in H0(P̃2, E(0,−ej)) which vanishes
on Ei and, by chasing the display for the monad, H0(P̃2, E(0,−ej)) is
identified with the kernel of aA

00 + pA

j 1K : K → KA. Further diagram
chasing then reveals that the section of E(0,−ej) corresponding to an
element k0 in this kernel vanishes on Ei if and only if aA

i0k0 = 0.

To determine the nonsingularity conditions for M , note first that A
and B are automatically injective and surjective respectively at each
point of L∞. Moreover, by inspection B(z) : W → L ⊗ O(1, 0)z

is onto at any point z /∈ {p1, . . . , pn} and has nontrivial cokernel at
z = (pA

i , 1) if and only if aA
i0 : KA → K is not onto. The nonsingularity

criteria for the map A are equally straightforward to determine and
the result is that A(x) is not injective if π(x) = z �= pi for all i and
zA1K + z2aA

00 : K → KA has a nontrivial kernel or, if z = pi and
(pA

i 1KK + aA
00)k0 = 0 = wiAaA

i0k0 for some nonzero k0 ∈ K and some
nonzero wiA ∈ CA.

Writing aA
i := aA

i0 and gi := gii for i ≥ 0, the results so far are
summarized as follows.

Proposition 2.7. For ‖α‖2 < 1/3, the moduli space Mn =
M(P̃2, r = 2, c1 = 0, c2 = 2) of ωα-stable 2-bundles on P̃2 with c1 = 0
and c2 = 2 with trivial restriction to L∞ is identified with the set of
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(n + 1)-tuples (aA
0 , . . . , aA

n) ∈ ⊕n
i=0C

A ⊗ End (K) satisfying the monad
condition

(2.8) aA

i (a0A
+ piA1K) = 0, i = 1, . . . , n,

the stability condition

(2.9) [aA

0 + pA

j 1K aA

i ] : K → KA ⊕ KA is injective for

0 < i, j ≤ n such that αi ≥ αj and i �= j

and the nonsingularity conditions

aA

i : KA → K is onto for all i > 0;(2.10a)
z2aA

0 + zA1K : K → KA is injective for zA �= pA

i z2(2.10b)
and all i > 0;

[aA

0 + pA

i 1K wAaA

i ] : K → KA ⊕ K is injective(2.10c)
for all i > 0 and wA ∈ CA \ {0}

modulo the action of ×n
i=0GL(K) given by

(2.11) aA

i −→ gia
A

i g−1
0 for gi ∈ GL(K), i = 0, . . . , n.

When n = 0 it is well known (see, e.g., [15, pp. 349 354]) that the
moduli space of stable 2-bundles on P2 with c1 = 0 and c2 = 2 is
canonically identified with the projectivized space of symmetric 3 × 3
matrices P(C(ab)) minus the hypersurface consisting of the singular
such matrices; (the parentheses around the indices here indicate sym-
metrization). The bundle associated with a symmetric matrix Aab is
nontrivial on the line qaza = 0 if and only if Aabqaqb = 0 so, in par-
ticular, the subset consisting of those which are trivial on L∞ can be
identified with pairs (AAB, AA) ∈ C(AB) ⊕ CA, where AA = AA2 and
A22 = 1. The description provided by Proposition 2.7 is related to this
via aA

0 −→ (det (a0)AB, (1/2)tr aA
0 ), where the determinant of a pair of

k × k matrices a0, a1 is by definition the (coefficients of the) degree k
polynomial in z0, z1 given by det (aAzA). The nonsingularity condition
(2.10b) is equivalent to the condition that a0

0 and a1
0 should have no

common eigenvector, and this in turn is equivalent to the condition
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(det (a0)AB − (1/4)traA
0 tr aB

0 )(det (a0)AB − (1/4)tra0A
tr a0B

) �= 0, this
expression being twice the determinant of the corresponding symmetric
3 × 3 matrix.

With aA
0 , . . . , aA

n as in Proposition 2.7, a direct calculation reveals
that equation (2.8) implies det (a0)AB + tr a

(A

0 p
B)
i (= det (a0 − pi1)AB)

is a scalar multiple of det (ai)AB when the latter is nonzero. A lengthy
analysis along the lines of that presented in Section 4 of [8] and which
will be omitted here shows that the map

(aA

0 , . . . , aA

n) −→ (det (a0)AB, tr aA

0 , [det (a1)AB], . . . , [det (an)AB])

realizes the moduli space of stable 2-bundles on P̃2 with c1 = 0, c2 = 2
which are trivial on L∞ as a blowup of the corresponding moduli space
for P2.

It is a simple matter now to remove the assumption of triviality on
L∞. The final result is that the moduli space of all stable 2-bundles on
P̃2 with c1 = 0 and c2 = 0 has the following complete description:

Proposition 2.12. Let M0 := P(C(ab)), S0 := {[vab] ∈ M0 |
det (vab) = 0} and, for va ∈ Ca \ {0}, let P (va) be the 2-plane
in M0 given by P (va) := {[v(awb)] | wb ∈ Cb \ {0}} ⊂ S0. If
α1 ≥ α2 ≥ · · · ≥ αn > 0, for all ε > 0 sufficiently small the
moduli space of ωεα-stable 2-bundles with c1 = 0 and c2 = 2 on P̃2

is isomorphic to Mn \ (Sn ∪ Tn) where Mn
πn→ Mn−1 is the blowup

of Mn−1 along the proper transform P̃ (pa
n) of P (pa

n) in Mn−1, Sn

is the proper transform of Sn−1 and Tn is the proper transform of
∪i:αi=αn P̃ (pa

i ) ∩ P̃ (pa
n).

(The points of Tn correspond to the extensions 0 → O(ei − en) →
E → O(en − ei) → 0.)

The explicit construction of the moduli space of 2-bundles E on P̃2

with π∗E semi-stable, c1(E) = −h and c2(E) = 2h2 can be approached
along similar lines to those described above; the problem is in some
respects simpler since any such bundle is automatically ωεα-stable for
all ε sufficiently small, regardless of α.

It would be very interesting to have an explicit description akin to
that above in the case of stable 2-bundles with c2 = 2h2 and c1 = −h
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or 0 when there are multiple blowups. These would be expected to be
limiting cases of the descriptions in the absence of multiple blowups.

3. Bundles trivialized on L∞. According to the results of [9],
for a certain class of metrics on nCP2 (the n-fold connected sum
of CP2) with itself, the moduli spaces of self-dual solutions of the
Yang-Mills equations (instantons) on a U(r) bundle over this space
with a fixed unitary trivialization at some point x0 are in one-to-
one correspondence with holomorphic r-bundles E on P̃2 with a fixed
holomorphic trivialization on L∞. For n = 0, this was proved by
Donaldson [12] using the ADHM description of instantons on S4 [2]
and, for n = 1 it was proved by King [14] using the analogous
construction for instantons on CP2 [7]. The moduli spaces are all
smooth spaces of real dimension 4rC(E) where C(E) = c2(E) −
((r − 1)/2r)c1(E)2.

In this section the monads of Proposition 1.10 will be used to obtain
a reasonably simple description of holomorphic bundles trivialized on
L∞, and using this description it will be possible to show that the
conjecture of Bryan and Sanders mentioned in the introduction cannot
be correct in its current form.

Let P̃2 be the blowup of P2 at n distinct points, none of these points
lying on L∞. Let E be a holomorphic r-bundle on P̃2 with c1(E) = aiei

which is trivial on L∞ and which has a given trivialization on that line.
By Proposition 1.10, there are vector spaces Ki, W, Li such that E is
described as the cohomology of a monad of the form

(3.1) M : 0 −→ ⊕n
i=0 Ki(−1,−ei) A−→ W

B−→ ⊕n
i=0 Li(1, ei) −→ 0

where K0 has dimension k + (1/2)
∑n

i=1 ai(ai − 1), L0 has dimension
l0 = k+(1/2)

∑n
i=1 ai(ai+1), and for i > 0, Ki and Li have dimensions

l0 and l0 − ai, respectively.

Using the condition that E is trivialized on L∞ and employing the
same notation as in the previous section, a basis can be chosen for W
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so that W =

⊕n
i=0 LiA

⊕
Cr

and B has the form

B =

⎡
⎢⎢⎢⎢⎣

zA + bA
00z

2 bA
01z

2 bA
02z

2 · · · bA
0nz2 dz2

0 w1A 0 · · · 0 0
0 0 w2A · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · wnA 0

⎤
⎥⎥⎥⎥⎦

for some bA
0i ∈ Hom(Li, L0) and d ∈ Hom(Cr, L0). The map A of (3.1)

must then have the form

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

a00zA + a00Az2 a01w1A a02w2A · · · a0nwnA

a10λ1w1A a11w1A 0 · · · 0
a20λ2w2A 0 a22w2A · · · 0

...
...

...
. . .

...
an0λnwnA 0 · · · · · · annwnA

cB
0 zB + cz2 cB

1 w1B cB
2 w2B · · · cB

n wnB

⎤
⎥⎥⎥⎥⎥⎥⎦

for some aij ∈ Hom(Ki, Lj), a0iA ∈ Hom(K0, Li), cB
i ∈ Hom(Ki,Cr),

c ∈ Hom(K0,Cr). The monad condition BA = 0 is then

(3.2a) − aA
00 + bA

00a00 +
n∑

i=1

bA
0iai0 + dcA

0 = 0

(pA
i + bA

00)a0i + bA
0iaii + dcA

i = 0 for i > 0(3.2b)

bA
00a00A −

n∑
i=1

bA
0iai0piA + dc = 0.(3.2c)

The condition that E be trivial on L∞ is equivalent to the condition
that the matrix

a =

⎡
⎢⎢⎢⎢⎣

a00 a01 a02 · · · a0n

a10 a11 0 · · · 0
a20 0 a22 · · · 0
...

...
...

. . .
...

an0 0 0 · · · ann

⎤
⎥⎥⎥⎥⎦ :

K0 L0

⊕ ⊕
... → ...
⊕ ⊕
Kn Ln
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should be nonsingular and, given this condition, replacing A and B

by gW A and Bg−1
W respectively for gW =

[
δA

B 0

−cAa−1 δA
B

]
where cA :=

[cA
0 cA

1 · · · cA
n ] replaces cA

i by 0 in (3.2) for i ≥ 0.

Let a0∗ and a∗0 denote the first row and column of a, respectively,
and let aA := [aA

00 0 · · · 0], bA := [bA
00 bA

01 · · · bA
0n] and pA :=

diag [0, pA
1 , . . . , pA

n ]. Equations (3.2a) and (3.2b) can be written in
matrix form as bAa+a0∗pA = aA so bA = (aA−a0∗pA)a−1 is determined
by a and aA

00. Equation (3.2c) can be written as bA
00a00A − bApAa∗0 +

dc = 0, or

(3.3) bA
00a00A + a0∗pAa−1pAa∗0 − aAa−1pAa∗0 + dc = 0.

By calculating the commutator of pA and a and substituting for bA
00, it

is easily found that (3.3) can be written in the relatively simple form

(3.4) (qAa−1qA)00 + dc = 0

where

qA =

⎡
⎢⎢⎢⎢⎣

−aA
00 pA

1 a01 pA
2 a02 · · · pA

n a0n

pA
1 a10 pA

1 a11 0 · · · 0
pA
2 a20 0 pA

2 a22 · · · 0
...

...
...

. . .
...

pA
n an0 0 0 · · · pA

n ann

⎤
⎥⎥⎥⎥⎦

and the subscripts 00 indicate the 00 entry.

The data for the monad M is determined by (a, qA, c, d) satisfying
(3.4) and the requirements that M be nonsingular. If M ′ is another
monad of the same form as (3.1) determined by (a′, q′A, c′, d′) and
E′ is its cohomology, there is an isomorphism E → E′ preserving
trivializations on L∞ if and only if there are matrices

g =

⎡
⎢⎢⎢⎢⎣

g00 g01 g02 · · · g0n

0 g11 0 · · · 0
0 0 g22 · · · 0
...

...
...

. . .
...

0 0 0 · · · gnn

⎤
⎥⎥⎥⎥⎦ ∈ Aut

⎛
⎜⎜⎜⎜⎝

L0

⊕
...
⊕
Ln

⎞
⎟⎟⎟⎟⎠ ,

h =

⎡
⎢⎢⎢⎢⎣

h00 0 0 · · · 0
h10 h11 0 · · · 0
h20 0 h22 · · · 0
...

...
...

. . .
...

hn0 0 0 · · · hnn

⎤
⎥⎥⎥⎥⎦ ∈ Aut

⎛
⎜⎜⎜⎜⎝

K0

⊕
...
⊕
Kn

⎞
⎟⎟⎟⎟⎠
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such that

(a′, q′A, c′, d′) = (g, h) · (a, qA, c, d) := (gah, gqAh, ch00, g00d).

Explicitly, this action on (a, aA
00) is given by

(3.5)

a00 −→ g00a00h00 +
n∑

i=1

(g0iai0h00 + g00a0ihi0 + g0iaiihi0)

aii −→ giiaiihii, a0i −→ g00a0ihii + g0iaiihii,

ai0 −→ giiai0h00 + giiaiihi0, i > 0

aA
00 −→ g00a

A
00h00 −

n∑
i=1

(g0iai0h00 + g00a0ihi0 + g0iaiihi0)pA
i .

The set of pairs (g, h) fixing (a, qA, c, d) are those of the form

(3.6) g = 1 + am, h = (1 + ma)−1 for

m =

⎡
⎢⎢⎢⎢⎣

0 0 0 · · · 0
0 m11 0 · · · 0
0 0 m22 · · · 0
...

...
...

. . .
...

0 0 0 · · · mnn

⎤
⎥⎥⎥⎥⎦ ∈ Hom

⎛
⎜⎜⎜⎜⎝

L0 K0

⊕ ⊕
... ,

...
⊕ ⊕
Ln Kn

⎞
⎟⎟⎟⎟⎠ .

Since a is nonsingular, after fixing isomorphisms Ki � L0, it is
possible to choose g, h as above so that a0i = 1 for i > 0. To preserve
this form, h must then be of the above form with hii = (g00 + g0iaii)−1

for each such i. With a of this form, every such matrix g, with
g00 + g0iaii nonsingular, can be factored as g = D(1 + am) where
D is “diagonal” and m is as in (3.6) so the moduli space can now
be identified with the set of nonsingular matrices of the form of a
with a0i = 1 for i > 0 together with aA

00, c, d all satisfying the monad
condition (3.4), modulo the free action of the group of nonsingular
matrices g = diag [g00, . . . , gnn] and h with hii = g−1

00 for i > 0. This
action is now explicitly described by
(3.7)

a00 −→ g00

(
a00 +

n∑
i=1

hi0h
−1
00

)
h00

aii −→ giiaiig
−1
00 , ai0 −→ gii(ai0 + aiihi0h

−1
00 )h00, i > 0

aA
00 −→ g00

(
aA
00 −

n∑
i=1

hi0h
−1
00 pA

i

)
h00, c −→ ch00, d −→ g00d.
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For n = 0, a = a00 is nonsingular, so after choosing h00 appropriately,
it can be assumed that a00 = 1. Then the moduli space is identified
with the triples (aA

00, c, d) satisfying the nonsingularity conditions to-
gether with the identity aA

00a00A +dc = 0 modulo the action of GL(K0)
given by (aA

00, c, d) → (gaA
00g

−1, cg−1, gd) for g ∈ GL(K0).

For n = 1, by choosing h10 appropriately, it can be assumed that
a00 = 0 and then the nonsingularity of a is equivalent to the con-
dition that a10 : K0 → L1 be an isomorphism. After having fixed
once and for all an isomorphism between K0 and L1, by then choos-
ing g11 appropriately it can be assumed that a10 = 1. The space
of monad data is thus identified with the quadruples (aA

00, a11, c, d)
satisfying the nonsingularity conditions and aA

00a11a00A + dc = 0
modulo the action of GL(K0) × GL(K1) given by (aA

00, a11, c, d) →
(gaA

00h, h−1a11g
−1, ch, gd).

For n > 1, the simplest possible case is that for which c1(E) = 0
and c2(E) = 1. Then the monad condition is simply dc = 0 and the
nonsingularity conditions are easily found to be c �= 0 �= d. The moduli
space has the homotopy type of a fibration over the flag manifold F1,r−1

of 1-planes in r − 1 planes in Cr, where the fiber is an open subset of
the n-fold cartesian product P1 × · · · × P1; for n = 2 this subset is
the complement of the diagonal and therefore has the homotopy type
of P1. Under the direct limit induced by the inclusions Cr ↪→ Cr+1,
the rank stable moduli space for n = 2 has the homotopy type of a P1

bundle over P∞ ×P∞, so the conjecture of Bryan and Sanders cannot
hold.

The obvious open problem at this point is to determine precisely the
homotopy type of the rank stable moduli spaces, for which the monad
descriptions provide a direct method of attack.

Note added in proof: Two recent preprints of J.P. Santos are also
directly related to this question, and also demonstrate the invalidity
of the conjecture of Bryan and Sanders: see math.AG/0212176 and
math.AG/0301158.

4. Bundles trivial on a neighborhood of L∞. The third and
final application of the monad descriptions is to vector bundles on the
blowup of P2 which are trivial on a neighborhood of L∞. As discussed
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at the end of Section 2 of [11], vector bundles on the blowup of a
complex surface at a point can be described in terms of bundles on the
surface glued to bundles on a neighborhood of the exceptional line, for
which the gluing operation requires a choice of trivialization for the
latter bundle away from the exceptional line. By gluing such objects
to the trivial bundle on P2, an effective description of them is obtained
by classifying the holomorphic bundles on the blowup of P2 which are
trivialized on a neighborhood of L∞; this is the objective of this section.

Let x0 be a point in P2 not on L∞, let P̃2 be the blowup of P2 at x0,
and let L0 ⊂ P̃2 be the exceptional line. In the notation of previous
sections, n = 1, x0 = p1 and L0 = E1. Let e := e1, so L0 is defined
by a section of O(−e) = O(0,−1). For ease of calculation, x0 will be
taken to have homogeneous coordinates (0, 0, 1).

Let E be a holomorphic r-bundle on P̃2 with c1(E) = ae and
c2(E) = kh2. If E is trivial on L∞ it has semi-stable direct image on
P2 so Propositions 1.5 and 1.10 are applicable. The latter proposition
shows that E is the cohomology of a monad of the form
(4.1)

M : 0 −→
K0(−1, 0)

⊕
K1(−1,−1)

Aaza

−→
BAwA

W
CAwA

−→
Daza

K0(1, 1)
⊕

K1(1, 0)
−→ 0

where wA ∈ Γ(P̃2,O(1, 1)) restrict to homogeneous coordinates on L0,
so zAwA = 0 for (w0, w1) = (−w1, w0) as before. Here K0, K1 and W
are vector spaces of dimensions k+(1/2)a(a−1), k+(1/2)a(a+1) and
r + 4k + 2a2, respectively.

Using the fact that E is trivial on L∞, it is quickly found in the usual
way that M is isomorphic to a monad of the form

(4.2)

KA
0

K0(−1, 0)
⊕

K0(1, 1)
0 −→ ⊕ −→ KA

1 −→ ⊕ −→ 0
K1(−1,−1)

⊕
K1(1, 0)

R

where R is an r-dimensional vector space and the two maps of this
monad have the form

(4.3)

⎡
⎣ zA − caAz2 0

aAz2 wA

a2z
2 0

⎤
⎦ ,

[
wA cwA 0

aAz2 zA d2z
2

]
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for some aA ∈ Hom(K0, K1), c ∈ Hom(K1, K0), a2 ∈ Hom(K0, R),
d2 ∈ Hom(R, K1). The monad condition on these maps is that they
must satisfy

(4.4) aAcaA = d2a2,

together with nondegeneracy conditions to ensure that the first map of
(4.3) is injective and the second is surjective at each point of P̃2. The
only freedom in this description is (aA, c, a2, d2) → (g1a

Ag−1
0 , g0cg

−1
1 ,

gRa2g
−1
0 , g1d2g

−1
R ) for some g0 ∈ GL(K0), g1 ∈ GL(K1), gR ∈ GL(R).

A trivialization for E on L∞ is determined by a choice of basis for R,
so if this is fixed the automorphism gR must be the identity.

A line L in P2 not passing through x0 is given by an equation
of the form z2 = αAzA for some αA ∈ C2, and the bundle E

is trivial on this line if and only if
[

1 c

αAaA 1

]
∈ End

(
K0

⊕
K1

)
is an

isomorphism; equivalently, if and only if χα := 1 − αAaAc ∈ End (K1)
(or 1 − αAcaA ∈ End (K0)) is an isomorphism. Thus, E is trivial on
all lines not passing through x0 if and only if αAcaA is nilpotent for
any αA ∈ C2. Note that this condition implies that the monad is
nonsingular at each point in P̃2 \ L0.

If E is trivial on a line Lα �= L∞ in P2 not meeting x0, a trivialization
on L∞ determines a trivialization on Lα by propagating from the point
L∞ ∩ Lα; for any isomorphism τ : Cr → R, the corresponding r-

dimensional subspace of W is the image of
[ −αAcχ−1

α d2τ

αAχ−1
α d2τ

τ

]
. For α, β ∈

C2, Lα ∩ Lβ does not lie on L∞ if and only if β · α := βBαB = −α · β
is nonzero; i.e., if and only if α, β are linearly independent. If E is
trivialized along both Lα and Lβ by propagating from L∞ ∩ Lα and
L∞ ∩ Lβ respectively, the two trivializations agree at Lα ∩ Lβ if and
only if there exists κ0 ∈ Hom(Cr, K0), κ1 ∈ Hom(Cr, K1) such that

⎡
⎣−αAcχ−1

α d2τ
αAχ−1

α d2τ
τ

⎤
⎦ −

⎡
⎣−βAcχ−1

β d2τ

βAχ−1
β d2τ
τ

⎤
⎦

=

⎡
⎣ αA − βA − β · αcaA 0

β · αaA αA − βA

β · αa2 0

⎤
⎦[

κ0

κ1

]
.
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Nonsingularity of the monad implies that κ0 and κ1 are uniquely
determined, and the system is equivalent to the pair of equations

(4.5)
−β · αaAcκ1 + (αA − βA)κ1 = αAχ−1

α d2τ − βAχ−1
β d2τ

a2cκ1 = 0.

Since αAχ−1
α −βAχ−1

β = χ−1
α (αA−βA−β ·αaAc)χ−1

β , the first of these
equations is equivalent to

(4.6) (αA−βA)(κ1−χ−1
α

χ−1
β d2τ )−β ·α(aAcκ1−χ−1

α aAcχ−1
β d2τ ) = 0.

Since α, β are linearly independent, (4.6) is equivalent to the pair of
equations obtained by contracting with α and β in turn, namely,

β · αχα[κ1 − χ−1
α

χ−1
β d2τ ] = 0 = β · αχβ[κ1 − χ−1

β
χ−1

α d2τ ],

and these in turn are equivalent to the condition that χ−1
α , χ−1

β should
commute on the image of d2. Thus the trivializations agree if and only
if χ−1

α
χ−1

β d2 = χ−1
β

χ−1
α d2 and a2cχ

−1
α

χ−1
β d2 = 0.

Suppose now that E is trivial on a neighborhood of L∞. Since χα =
1−α ·ac with α ·ac nilpotent, χ−1

α = 1+α ·ac+(α ·ac)2 + · · ·+(α ·ac)k1

and the condition that a2cχ
−1
α

χ−1
β d2 = 0 for all α, β ∈ C2 is equivalent

to the vanishing of a2ca
(A1c · · · aAm)ca(B1c · · · aBn) cd2 for all m, n =

0, 1, . . . , where the parentheses indicate symmetrization. Using (4.4) it
follows easily that this is equivalent to the condition

(4.7) a2cd2 = 0 = a2ca
A1c · · · aAm cd2, m = 1, 2, . . . .

Thus E is trivial on a neighborhood of L∞ if and only if both (4.4) and
(4.7) hold, subject to the constraints that the monad be nonsingular at
each point of the exceptional line.

At this point the analysis is considerably simplified if it is assumed
that H0(L0, E(−1)) = 0 from now on. By Lemma 2.2 (a) of [11],
this implies that π∗E is locally free and therefore a trivial bundle on
P2 since it is trivial off x0. Thus H0(P̃2, E) → H0(L∞, E) = R is
an isomorphism. The exact sequence 0 → O(−1, 0) → O(−1,−1) →
OL0(−1) → 0 induces the exact sequence 0 → H0(L0, E(−1)) → K1 →
K0 → H1(L0, E(−1)) → 0, and the map K1 → K0 is easily seen to be
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the map c. Moreover, H0(P̃2, E) = ker d2 : R → K1 so the assumption
that H0(L0, E(−1)) = 0 implies that c : K1 → K0 is injective and
that d2 ≡ 0. Hence the conditions on the monad are now simply that
(aA, a2, c) should satisfy

(4.8) aAcaA = 0, c : K1 → K0 is injective.

Thus caA ∈ End K0 (and also aAc ∈ EndK1) for = 0, 1 are commuting
nilpotent endomorphisms. The nonsingularity criterion is automati-
cally satisfied at every point of P̃2 \ L0, and at points of L0 it reduces
to

(4.9)
(aA, a2) : K0 → KA

1 ⊕ R is injective;
wAaA : K0 → K1 is surjective ∀wA ∈ C2 \ {0}.

The former of these conditions is straightforward to verify, and the
latter follows by using the fact that since E has r sections which
are independent at each point off the exceptional line, H1(L, E(−1))
must vanish for any line L which is a fiber of the canonical projection
p : P̃2 → L0.

A pair of monads M, M ′ of this form defined by (aA, c, a2), (a′A, c′, a′
2)

have isomorphic cohomologies E, E′ if and only if there are automor-
phisms g0 ∈ Aut (K0), g1 ∈ Aut (K1) and gR ∈ Aut (R) satisfying

(4.10) a′A = g1a
Ag−1

0 , c′ = g0cg
−1
1 , a′

2 = gRa2g
−1
0

and if trivializations are fixed on L∞, gR must be the identity.

If (4.9) is satisfied, aA defines the data for a bundle A on P1 with
rank (A) = −a, c1(A) = −k0 and H0(P1, A) = 0, given by the exact

sequence 0 → A → K0(−1) aAwA→ K1 → 0, where wA are now
homogeneous coordinates on P1. An isomorphic bundle is obtained
under the first transformation of (4.10).

A quick diagram chase reveals that the vanishing of aAcaA implies
that the map c : H1(P1, A) → H1(P1, A(−1)) is induced by a map
A → A(−1), also denoted by c for convenience. The homomorphism
c is injective on H1 and the second transformation of (4.10) is the
appropriate rule determined by the first transformation. Another
diagram chase shows that the kernel of A → A(−1) is U(−1), where
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U ⊂ K0 is the joint kernel of aA : K0 → KA
1 , so from the first statement

of (4.9), it follows that there is an exact sequence

(4.11) 0 −→ A
a2−→
c

R(−1)
⊕

A(−1)
−→ Q −→ 0

where a2 ∈ H0(P1, Hom(A, R(−1))) = Hom(K0, R) is as above and Q
is the r-bundle on P1 defined by the sequence.

It is straightforward to identify the bundles A and Q in terms of E: if
p : P̃2 → P1 is the projection which identifies P̃2 as the projectivization
of O ⊕ O(−1) over P1, p∗O(1) = O(1, 1) and the fibers of p are the
proper transforms of the lines in P2 passing through x0. For any such
fiber L = p−1(y), O(1, 0)|L = OL(1) and O(0, 1)|L = OL(−1). The
second statement of (4.9) is equivalent to H1(L, E(−1, 0)) = 0 for every
fiber L of p, so p∗E(−1, 0) is a bundle of rank −a on P1; this is A.
The vanishing of H1(L, E(−1, 0)) implies that of H1(L, E(−1,−1)) so
p∗E(−1,−1) is a bundle of rank r − a on P1. Taking direct images of
the sequence

0 −→ E(−2,−1) z2−→ E(−1,−1) −→ E(−1,−1)|L∞ −→ 0

gives the exact sequence

0 −→ A(−1) −→ p∗E(−1,−1) −→ R(−1) −→ 0,

here identifying E|L∞ with the trivial r-bundle R. The obstruction to
splitting this sequence is a class in H1(P1, Hom(R, A)) = Hom(R, K1),
and it is easily checked that, up to a sign, this is just the homomorphism
d2 above; thus, the sequence splits uniquely, and direct images of the
sequence

0 −→ E(−1, 0) λ−→ E(−1,−1) −→ E(−1,−1)|L0 −→ 0

(where λ ∈ H0(P̃2,O(0,−1)) defines L0) gives the sequence (4.11),
identifying Q with E|L0(−1).

Conversely, the bundle E on P̃2 can be recovered from the sequence

(4.12) 0 −→ (p∗A)(0, 1) a2z2

−→
λ1−z2c

R
⊕

p∗A
−→ E −→ 0
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where the map R → E is given by the extension of the trivialization
on L∞ to P̃2 and the map p∗A → E is z2 times the canonical map
p∗A = p∗p∗E(−1, 0) → E(−1, 0). Thus r-bundles E on P̃2 trivialized
on a neighborhood of L∞ and satisfying H0(L0, E(−1)) = 0 are
classified by (isomorphism classes of) short exact sequences on P1 of
the form (4.11), where Q(1) = E|L0 . To summarize:

Proposition 4.13. Let P̃2 be the blowup of P2 at x0 ∈ P2 \ L∞,
and let L0 be the exceptional line. There is a one-to-one correspondence
between isomorphism classes of holomorphic r-bundles E on P̃2 with
c1(E) = ae, c2(E) = kh2 which are trivialized in a neighborhood of L∞
and satisfy H0(L0, E) = 0 and isomorphism classes of triples (A, c, a2)
where A is a holomorphic vector bundle on L0 of rank −a and first
Chern class −(k + (1/2)a(a− 1)), c ∈ Γ(L0, Hom(A, A(−1)) and a2 ∈
Γ(L0, Hom(A,Or(−1))) with these maps satisfying c : H1(L0, A) →
H1(L0, A(−1)) is injective and Ker c(x)∩Kera2(x) = 0 at each x ∈ L0.

Again there are several directions worthy of further exploration in the
context of this example. Although the characterization of bundles on a
neighborhood of a blown-up point in terms of bundles on P1 equipped
with certain homomorphisms provides an easy way to construct the
former such bundles with prescribed numerical invariants, a clear
picture of the spaces of these bundles nevertheless remains somewhat
elusive. The same remains true for individual strata of the moduli space
determined by the splitting types of the bundles on L0. For bundles of
rank 2, there are some simplifications which enable further analysis; in
this case at least there is some evidence to believe that an effective and
useful description will emerge.
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