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INFINITESIMAL NEIGHBORHOODS OF
INFINITE-DIMENSIONAL

COMPLEX PROJECTIVE SPACES

E. BALLICO

ABSTRACT. Let V be an infinite dimensional complex
Banach space and Y a complex Banach manifold containing
X := P(V ) as a codimension r closed split submanifold.
Assume that X admits smooth partitions of unity and that
there is OY (1) ∈ Pic (Y ) such that OY (1)|X ∼= OX(1). Fix an
integer n ≥ 1 and a finite rank holomorphic vector bundle E
on the order n infinitesimal neighborhood X(n) of X in V . Set
s := rank (E). Then H1(X(n), E) = 0 and there are uniquely
determined integers ai, 1 ≤ i ≤ s, such that a1 ≥ · · · ≥ as

and E ∼= OX(n)(a1) ⊕ · · · ⊕ OX(n)(as).

1. Introduction. Let V be a complex Banach space and P(V ) the
projective space of all its one-dimensional subspaces. We assume that
P(V ) admits smooth partitions of unity. For instance this is the case if
V is a separable Hilbert space. Set X := P(V ) and let Y be a complex
Banach manifold containing X as a closed split submanifold; we recall
that X is a split submanifold of Y if for every P ∈ X there is an open
neighborhood U of P in Y and a holomorphic submersion f : U →W ,
W open neighborhood of 0 in Cr such that U ∩ X = f−1(0). The
integer r is the codimension of X in Y . For every integer n ≥ 0 let
X(n) be the infinitesimal neighborhood of order n of X in Y , i.e., the
unreduced complex analytic subspace of Y with In+1

X as ideal sheaf; in
the chart (U, f) with f = (z1, . . . , zr) the complex space U ∩ X(n) is
defined by all monomials of degree n+1 in the variables z1, . . . , zr. We
prove the following result.

Theorem 1. Let V be an infinite dimensional complex Banach
space such that X := P(V ) admits smooth partitions of unity and Y
a complex Banach manifold containing X as a codimension r closed
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split submanifold. Assume the existence of OY (1) ∈ Pic (Y ) such
that OY (1)|X ∼= OX(1). Fix an integer n ≥ 1 and a holomorphic
vector bundle E on X(n) with finite rank. Set s := rank (E). Then
H1(X(n), E) = 0 and there are uniquely determined integers ai, 1 ≤
i ≤ s, such that a1 ≥ · · · ≥ as and E ∼= OX(n)(a1) ⊕ · · · ⊕ OX(n)(as).

2. The proof. For any Banach space V the projective space P(V ) is
metrizable (use the Fubini-Study metric) and hence it is paracompact.
P(V ) is covered by charts biholomorphic to closed hyperplanes, H, of
V . Thus P(V ) admits smooth partitions of unity if H admits smooth
partitions of unity. For instance this is the case if V is a separable
Hilbert space. For many more examples, see [2, Section 8].

Lemma 1. Fix V , X, Y and n as in the statement of Theorem 1. For
every holomorphic line bundle L on X(n) there is a unique integer t such
that L is the unique line bundle whose restriction to X is isomorphic
to the degree t line bundle OX(t); set L := OX(n)(t). Conversely, for
every integer t there is a holomorphic line bundle L on X(n) such that
L|X ∼= OX(t).

Proof. We will follow [3, Section 8]. For any complex space T (even
not reduced) the group Pic (T ) of isomorphism classes of holomorphic
line bundles on T is isomorphic toH1(T,O∗

T ). For any reduced complex
space B there is an exponential sequence

(1) 0 −→ Z −→ OB → O∗
B −→ 0

induced by the exponential sequence of abelian groups

(2) 0 −→ Z −→ C −→ C∗ −→ 0

For every integer i ≥ 0 we have an exact sequence ([1], p. 446):

(3) 0 −→ Si(N∗) −→ O∗
X(i+1) −→ O∗

X(i) −→ 0

Since H1(X,Si(N∗)) = 0 for every i ≥ 0, [1, Remark 5], we obtain that
for all integers i ≥ 0 the restriction map ρ : Pic (X(i+1)) → Pic (X(i))
is injective. Our assumption on Y gives the surjectivity of ρ.
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Proof of Theorem 1. Since X is a split closed submanifold of
codimension r of Y , the normal bundle N of X in Y is a rank r
holomorphic vector bundle on X. For every integer i ≥ 1 we have
Ii

X/Ii+1
X

∼= Si(N∗) (symmetric product). Hence for every integer i
with 0 ≤ i < n we have an exact sequence of sheaves with X as support:

(4) 0 −→ Si(N∗) −→ OX(i+1) −→ OX(i) −→ 0

In (4) the term Si(N∗) may be seen as a holomorphic vector bundle
with finite rank on X. For every integer i with 0 ≤ i ≤ n set
Ei := E|X(i). By tensoring (4) with E we obtain the following exact
sequence of sheaves with X as support:

(5) 0 −→ Si(N∗) ⊗ E0 −→ Ei+1 −→ Ei −→ 0.

The sheaf Si(N∗) ⊗ E0 is a holomorphic vector bundle on X with
finite rank. By [1, Remark 5], for every holomorphic vector bundle
A on X with finite rank we have H1(X,A) = 0. Hence from (5) for
i = 0 we obtain H1(X(n), E) = 0 when n = 1. Now assume n ≥ 2
and that this vanishing is true for the integer n − 1. By [1, Remark
5], we have H1(X,Si(N∗) ⊗ E0) = 0. Apply the exact sequence (5)
for the integer n − 1 and the inductive assumption. After n steps we
obtain H1(X(n), E) = 0. By [4, Theorems 8.5 and 7.1], there exist
uniquely determined integers ai, 1 ≤ i ≤ s such that a1 ≥ · · · ≥ as and
E|X ∼= OX(a1)⊕ · · · ⊕OX(as). Set F := OX(n)(a1)⊕ · · · ⊕OX(n)(as).
For all integers i with 0 ≤ i ≤ n set Ei : E|X(i) and Fi : F |X(i).
By assumption there is an isomorphism ψ0 : E0 → F0. Notice that
Hom (Ei, Fi) ∼= Hom (E,F )|X(i). By [1, Remark 5], for all integers
i with 0 ≤ i < n we have H1(X,Hom(E0, F0) ⊗ Si(N∗)) = 0.
Hence inductively for each integer i such that 0 ≤ i < n we find
ψi+1 : Ei+1 → Fi+1 such that ψi+1|X(i) = ψi, use (5). In particular we
have ψn|X = ψ0. Thus ψn is an isomorphism (Nakayama’s Lemma),
concluding the proof.

Remark 1. By the proof of Theorem 1 we have Hx(X(n), E) = 0 for
some x > 0 for any Banach space V such that Hx(P(V ),OP(V )(t)) = 0
for all integers t (sheaf cohomology or Čech cohomology). It would be
important to prove [4, Theorem 7.3], for sheaf cohomology (not just
Dolbeaut cohomology) at least if V is a separable Hilbert space.
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