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EQUIVARIANT BIVARIANT CYCLIC THEORY AND
EQUIVARIANT CHERN-CONNES CHARACTER

FATIMA M. AZMI

ABSTRACT. We construct an equivariant bivariant cyclic
theory, as a combination of equivariant cyclic and noncommu-
tative de Rham theories for unital G-Banach algebras, where
G is a compact Lie group. By incorporating the JLO formula
and the superconnection formalism of Quillen, an equivariant
bivariant Chern Connes character of Kasparov’s G-bimodule
is defined, with values in the bivariant cyclic theory.

1. Introduction. It is known, due to Connes [9] and an equivalent
but convenient version which is due to Jaffe, Lesniewski and Oster-
walder and known as a JLO formula [14], that the Chern character of
a θ summable Fredholm module (H, D) over a unital C∗ algebra A,
takes value in the entire cyclic cohomology of A. On the other hand,
bivariant Chern-Connes character of Kasparov’s kk bimodule, takes
values in the bivariant cyclic theory [27, 11, 21, 29, 30].

Explicit formula of an equivariant Chern-Connes character, associ-
ated to the invariant Dirac operator, in the presence of a countable
discrete group action on a smooth compact spin Riemannian mani-
fold, was given by Azmi, [1, 2]. Moreover, in [2] it was shown that
this equivariant cocycle is an element of the delocalized cohomology,
and it pairs with an equivariant K-theory idempotent. In the case G
is a compact Lie group, Chern and Hu [6] gave an explicit formula
of an equivariant Chern-Connes character, associated to G-equivariant
θ-summable Fredholm module.

In this paper we define an equivariant bivariant Chern-Connes char-
acter in the presence of a compact lie group, which acts by continuous
automorphism on certain algebras. As a first step, we construct an
equivariant bivariant cyclic theory. To motivate our construction, we
recall some equivariant and bivariant cyclic theories.
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There are several different approaches to the bivariant cyclic theory.
Jones and Kassel [15] introduced a bivariant cyclic theory for unital
algebras using the (b,B) bicomplex. Their approach uses differential
homological algebra. Another approach is due to Connes [7], the
bivariant groups in the category of cyclic modules are defined using
classical homological algebra. Using the fact that noncommutative
de Rham homology is an algebraic generalization of the de Rham
cohomology of smooth manifolds [8, 16], Lott [20] defined a bivariant
cyclic theory, as a combination of entire cyclic (co)homology and
noncommutative de Rham homology of graded differential algebra
(Ω, d). Similar construction was also carried out by Quillen [27],
where he presented a new approach to the algebraic formalism of cyclic
cohomology. He defined an Hom complex from differential graded
algebra to another algebra and established a bivariant character by
incorporating the JLO formula.

Twisted cyclic (co)homology arises in the studies of cyclic (co)homol-
ogy of crossed product of algebras. It involves an automorphism of the
algebra and differs from the ordinary cyclic (co)homology by the cyclic
and boundary operators which contains the action of automorphism.

In [23] Nistor defined certain twisted modules (quasi-cyclic object)
and computed its cyclic homology. The smooth G-action on the twisted
module and the isomorphism between the twisted module and the
crossed product algebra, enabled him to define the cyclic cohomology
of the crossed product by a compact Lie group G. Benameur’s quest to
construct cyclic Lefschetz formula for foliations [5] led him to define a
notion of Γ-equivariant cyclic cohomology which pairs with equivariant
K-theory. His equivariant cyclic cocycle is in fact the cyclic cocycle
on the discrete crossed product with certain twist assumption. In [4]
he constructed an equivariant cyclic cocycle out of closed Γ-invariant
current. This enabled him to prove a fixed point formula in the cyclic
homology of the smooth convolution algebra of the foliation.

Klimek, Kondracki and Lesniewski [18] defined an equivariant version
of the entire cyclic cohomology. For technical simplicity they dealt with
the case G is a finite group, cf. [13] for G a compact group. They
defined a complex Ln(A,F(G)), which consists of n linear mappings
from A×· · ·×A with values in the space F(G), of continuous functions
on G. As G acts by automorphism on A, the action extends to
Ln(A,F(G)). The G-equivariant complex Cn

G(A), with boundary
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operators b, B defined in a certain way, gives rise to equivariant entire
cyclic cohomology.

Our quest to define an equivariant bivariant cyclic theory of unital
G-Banach algebras and not of crossed product algebra, led us to adopt
the equivariant cyclic theory defined by the last authors, together with
the construction of the bivariant cyclic theory provided by Lott.

Let G be a compact Lie group, and let U and B be unital G-
Banach algebras. The action of G is extended to the differential
graded algebra (DGA) (Ω(B), d). Let CG

n (U) = {Cg
n(U)|g ∈ G} where

Cg
n(U) = Cn(U)/{Id − α∗

g} and Cn(U) = U ⊗ Ū⊗n, the symbol ⊗
means the completed projective tensor product. The b, B operators
defined on CG

n (U) are very similar to the one in [18]. An Hom complex
CEG(U, Ω(B)) with boundary operator ∂ is defined, which consists of
continuous linear maps with certain properties from (CEG

∗ (U), b + B)
to the space C(G, (Ω(B), d)), of continuous maps from G to Ω∗(B).
The homology of the complex (CEG(U, Ω(B)), ∂) is the equivariant
bivariant cyclic homology denoted by HEG

∗ (U, Ω(B)).

In the special case, when B = C the complex numbers, and G is a
finite group. The equivariant bivariant cyclic homology gets reduced
to the equivariant cyclic cohomology in [18].

There are several different approaches to bivariant Chern-Connes
character. Therefore, to extend the bivariant character to accommo-
date the equivariant case, and to motivate our framework, let us first
recall some of these approaches.

Nistor introduced bivariant Chern-Connes character for finitely sum-
mable Kasparov’s KK-modules, with values in Jones-Kassel bivariant
group [22]. Furthermore in [24], a new bivariant character with values
in Connes bivariant cyclic group was defined, and it was shown to be
compatible with the periodicity operator in cyclic (co)homology and
with Kasparov’s product.

Giving up the compatibility with the periodicity operator and Kas-
parov’s product, Wu [30] constructed a bivariant Chern-Connes charac-
ter Ch(M,D) for (a special class) of θ summable modules, by incorpo-
rating the JLO formula and the superconnection formalism of Quillen
[26]. His construction is influenced by the work of Connes, cf. [8, 11],
see also [27]; in fact, when (H, D) is the dual Dirac on a locally sym-
metric space, then Ch(M,D) is essentially the bivariant character of
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Connes, cf. [10, 11].

Wu’s bivariant character takes value in the bivariant cyclic theory
described by Lott [20, 21]. As our construction of equivariant bivariant
cyclic theory is influenced by Lott’s bivariant theory. Therefore, we
adopt Wu’s method and extend it to the equivariant case. Moreover,
it is convenient to deal with heat kernel, supercurvature and the JLO
formula.

We believe that there are other methods of extending bivariant
character to the equivariant case; we hope to exploit this fact in the
future.

We remark that in the case of families of Dirac operators, Azmi
[3] gave an explicit expression of the cyclic cocycle formula for such
families, by incorporating Wu’s bivariant Chern-Connes character and
Bismut’s superconnection. On the other hand, Perrot [25] gave a
simple formula expressing certain BRS cocycles (which are obtained by
transgression of the Chern character of an index bundle) as generalized
forms, involving a G-equivariant family of Dirac operators.

The paper is divided into two parts. The first part deals with defining
an equivariant bivariant cyclic theory, while the second part deals with
defining an equivariant bivariant Chern-Connes character.

Let A and B be G−C∗ algebras, and let (A,H, D) be a G-equivariant
θ-summable Fredholm module over A. Let A and B be dense ∗
subalgebras of A and B respectively which are Banach algebras under
a certain norm. Let U = A ⊗ B be the projective tensor product of
Banach algebras with the projective tensor product norm. There is
an obvious G action on U . Denote by M = H ⊗ B, the unbounded
G-bimodule as in [30]. Let A = ∇+D be a G-superconnection on M,
where ∇ is a flat G-invariant B connection and D = D⊗ I + L, with L
being a G invariant operator with certain properties.

The nth component of the equivariant bivariant Chern-Connes char-
acter Chn

G(M,D) is defined by

Chn
G(M,D)(u0, . . . , un)(g)

=
∫

∆n

Trs(ρ̃g u0e
−s0A

2

[A, u1] · · · [A, un]e−snA2

)ds0 · · · dsn,

where ui ∈ U and g ∈ G. The total equivariant bivariant character is
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denoted by Ch∗
G(M,D), and it is shown to be closed. Hence, it defines

a class in the equivariant bivariant cyclic homology HEG
ev(U, Ω(B)).

1. Equivariant bivariant cyclic theory. In the present chapter
we define the equivariant bivariant cyclic homology, as a combination of
equivariant (normalized) entire cyclic homology and noncommutative
de Rham theory for unital G-Banach algebras U and B, where G is a
compact lie group.

1.1 Equivariant cyclic homology. Let U be a unital Banach
algebra on which G acts by continuous automorphism. Thus, there is
a continuous map α : G → Aut (U), such that for each g ∈ G we have

|αg(u)| ≤ c |u|, where c is some constant.

Let Cn(U) = U ⊗ Ū⊗n, where Ū = U/C, thus Cn(U) is a (normal-
ized) complex. The symbol ⊗ means the completed projective tensor
product. Any u ∈ Cn(U) is of the form u = u0 ⊗ u1 ⊗ · · · ⊗ un and it
will be denoted by u = (u0, u1, . . . , un). The norm | · |π on Cn(U) is
the n-fold projective tensor product norm of the norm on U .

There is a G-action on Cn(U), given by

(1) α∗
h(u0, u1, . . . , un) = (α−1

h u0, α
−1
h u1, . . . , α−1

h un).

Note that α∗
h : Cn(U) → Cn(U) satisfies |α∗

h(u)|π ≤ C|u|π.

For each g ∈ G, we let Cg
n(U) be the quotient space of Cn(U) by the

closure of the images of the map Id − α∗
g. Thus

(2) Cg
n(U) = Cn(U)/{Id − α∗

g}.
Let CG

n (U) = {Cg
n(U)| g ∈ G} be a (normalized) equivariant complex.

For each g ∈ G, we define some operators on CG
n (U).

The cyclic operator tgn : CG
n (U) → CG

n (U) is defined by

(3) tgn(u0, u1, . . . , un) = (α−1
g un, u0, . . . , un−1),

let T g
n = (−1)ntgn. One can show that (T g

n)n+1 = I which follows from
(2), since

(T g
n)n+1(u0, u1, . . . , un) = (−1)n(n+1)(α−1

g u0, α
−1
g u1, . . . , α−1

g un)
= (u0, u1, . . . , un).
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As G acts on CG
n (U), hence for any h ∈ G, we have T g

n α∗
h =

α∗
h Thgh−1

n . Moreover |T g
n(u0, . . . , un)|π ≤ C |(u0, . . . , un)|π for some

constant C.

The norm operator Ng
n : CG

n (U) → CG
n (U) is defined by Ng

n =∑n
j=0 (T g

n)j and it satisfies the relation

(4) (1 − T g
n)Ng

n = Ng
n(1 − T g

n) = 0.

Let (bg
n)′ : CG

n (U) → CG
n−1(U) be defined by

(bg
n)′(u0, u1, . . . , un) =

n−1∑
j=0

(−1)j(u0, u1, . . . , ujuj+1, . . . , un).

One can easily deduce the following relation

(5) (bg
n)′ ◦ (bg

n+1)
′ = 0.

The degree −1 boundary operator bg
n : CG

n (U) → CG
n−1(U) is given

by

(6) bg
n = (bg

n)′ + V g
n

where V g
n (u0, u1, . . . , un) = (−1)n((α−1

g un) u0, u1, . . . , un−1), and for
any h ∈ G, V g

n α∗
h = α∗

hV hgh−1

n . One can show that bg
n ◦bg

n+1 = 0, which
follows from (5).

The homotopy operator Sg
n : CG

n (U) → CG
n+1(U) is given by

(7) Sg
n(u0, u1, . . . , un) = (1, u0, u1, . . . , un)

and a degree +1 boundary operator Bg
n : CG

n (U) → CG
n+1(U) is defined

by

(8) Bg
n = (I − T g

n+1)S
g
n Ng

n .

Explicitly Bg
n is given by:

(9) Bg
n(u0, u1, . . . , un)

=
n∑

j=0

(−1)nj(1, α−1
g (uj), . . . , α−1

g (un), u0, . . . , uj−1).
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Proposition 1.1. With all the operators as mentioned above, the
following relations hold:

1. (bg
n+1)

′Sg
n + Sg

n−1(b
g
n)′ = I.

2. (bg
n)′(I − T g

n) = (I − T g
n−1) bn, and Ng

n−1 (bg
n)′ = bg

n Ng
n .

3. Bg
n+1 ◦ Bg

n = 0.

4. bg
n+1B

g
n + Bg

n−1 bg
n = 0.

Proof. Parts 1 and 2 follow by direct computations. Part 3 follows
from the definition and (4). As for part 4,

bg
n+1B

g
n + Bg

n−1 bg
n = bg

n+1(I − T g
n+1)S

g
n Ng

n + (I − T g
n)Sg

n−1 Ng
n−1 bg

n

= (I − T g
n) (bg

n+1)
′ Sg

n Ng
n + (I − T g

n)Sg
n−1 (bg

n)′ Ng
n

= (I − T g
n) ((bg

n+1)
′Sg

n + Sg
n−1(b

g
n)′) Ng

n = 0.

In the last step we have used part 1 and (4).

Given an equivariant mixed complex {(CG
∗ (U), bg, Bg)| g ∈ G}, one

can form the associated complex:

C̃G
n (U) = CG

n (U) ⊕ CG
n−2(U) ⊕ CG

n−4 ⊕ · · ·

with boundary operator (bg + Bg)n : C̃G
n (U) → C̃G

n−1(U) of degree −1.
Clearly (bg + Bg)2 = 0, which follows from (bg)2 = (Bg)2 = 0 and
bg Bg + Bg bg = 0.

The associated complex {(C̃G
n (U), bg + Bg)| g ∈ G} gives rise to the

equivariant cyclic complex.

1.2 The equivariant entire cyclic complex. Let CG(U) =
⊕n CG

n (U). For each r > 0, denote by CG
r,∗(U) the completion of CG(U)

with respect to the norm

||ū||r =
∑
n≥0

rn ||ūn||π
Γ(n/2)

, where ū = (ūn) ∈ ⊕n≥0C
G
n (U).

Let CEG
∗ (U) = ∪r>0C

G
r,∗(U). Thus CEG

∗ (U) is a Z2 graded Fréchet
space, and CEG

∗ (U) = CEG
ev(U) ⊕ CEG

odd(U) with boundary operator
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b+B of degree −1, where CEG
ev(U), respectively CEG

odd(U), denote the
even and odd spaces. The homology of the complex (CEG

∗ (U), b + B)
is the equivariant entire cyclic homology of U , denote it by HEG

∗ (U).

1.3 Noncommutative de Rham homology. Let B be a unital
Banach algebra. Consider the graded differential algebra (Ω(B), d).
This means the following:

1. Ω0 = B, and Ωn for n ≥ 0 is a Banach space with norm ||.||n;

2. the multiplication map Ωp.Ωq → Ωn, where n = p + q, is
continuous, i.e., there is a constant C(p, q) such that

||ω1 ω2||n ≤ C(p, q) ||ω1||p ||ω2||q, ωi ∈ Ωki
.

3. The differential d : Ωn → Ωn+1 is continuous with d2 = 0 and
satisfies the derivation property in the graded sense:

d(ω1 ω2) = (dω1).ω2 + (−1)|ω1|ω1 (dω2),

where ωi ∈ Ωi and |ω1| is the degree of ω1.

Let Ω =
∏

n≥0 Ωn be endowed with the product topology. Also,
let [Ω, Ω]k = ⊕k

j=0[Ωj , Ωk−j ] be the closure of the subspace of the
commutators of degree k. Define Ω̂ :=

∏
n≥0(Ωn/[Ω, Ω]n). The

homology of the complex (Ω̂, d) is called the noncommutative de Rham
homology of (Ω, d), cf. [16].

One interesting example of DGA over B is the universal DGA of B,
it is obtained by completing the algebraic universal DGA of B.

Thus, Ωalg
0 = B and Ωalg

1 = ker(B⊗algB →m B) where m(b1⊗algb2) =
b1 b2, here ⊗alg is the algebraic tensor product. Let Ωalg

n = ⊗algΩ
alg
1 , n

times. As a vector space, Ωalg
n (B) is isomorphic to the algebraic tensor

product B ⊗alg (⊗n
alg(B/C)). The isomorphism is given by

b0db1 · · · dbn �→ b0 ⊗alg b1 · · · ⊗alg bn.

Under this isomorphism, the multiplication map and the derivation
d are continuous with respect to the projective tensor product norms
on B ⊗alg (⊗n

alg(B/C)). We endow Ωalg
n (B) with the projective tensor
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product topology induced from this identification. The completion is
denoted by Ωn(B).

Let Ω(B) =
∏

Ωn(B) be the topological product, then this is the uni-
versal DGA of the Banach algebra B. The noncommutative de Rham
homology of (Ω(B), d) is denoted by Hdr

∗ (B).

1.4 Equivariant bivariant cyclic homology. Let (Ω̂(B), d) be
the DGA over B, and let (CEG

∗ (U), bg + Bg|g ∈ G) be the equivariant
entire cyclic homology as defined above.

G acts on B by continuous automorphism, i.e., there is a continuous
map γ : G → Aut (B). We will assume that the map γg commutes with
the operator d. Any element ωk of Ωk(B) can be written as a finite
sum

∑
b0db1 · · · dbk. Therefore G acts on ωk with the obvious action

and γg : Ωk(B) → Ωk(B).

Let us recall the Hom complex, if (X, d1) and (Y, d2) are chain
complexes, then Hom (X, Y ) is the chain complex which in degree n
is given by

Hom (X, Y )n =
∏

p≥0 Hom (Xp, Yp+n) and the boundary operator ∂

is given by ∂f = d2 f + (−1)|f | f d1. Where |f | is the parity of the
homogeneous map f and the differential is then extended to general f
by linearity.

Consider the Z2 graded Hom complex CEG(U, Ω(B)), of continuous
linear maps from CEG

∗ (U) to C(G, Ω̂(B)), where C(G, Ω̂(B)) is the
space of all continuous maps from G to Ω̂(B). Thus

(10) CEG(U, Ω(B)) = Hom (CEG
∗ (U), C(G, Ω̂(B))

For φ ∈ CEG(U, Ω(B)) and for any n ≥ 0, let φn ∈ Hom(CEG
n (U),

C(G, Ω∗(B)). Thus, for Z = (u0, · · · , un) ∈ CG
n (U) and for each k ≥ 0,

the degree k component of φn is the continuous map φn
k (Z) : G →

Ωk(B), in the sense

(11) sup
g∈G

||φn
k (u0, . . . , un)(g)||k ≤ Ck||(u0, . . . , un)||π

and the norm of φn
k is equal to

(12) ||φn
k || = sup

g∈G
ui∈U

||φn
k (u0, . . . , un)(g)||k.
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Moreover, for any g, h ∈ G, we assume this holds

(13) φn
k (α∗

h(u0, . . . , un))(g) = φn
k (u0, . . . , un)(h g h−1).

For each k ≥ 0, φk has components

φk = {φ0
k, φ1

k, . . . , φn
k , . . . }.

If the constant Ck in (11) depends only on k and not on n, then we
have a continuous map φk : CG

∗ (U) → C(G, Ωk(B)), and the collection
of all such maps for k ≥ 0 will imply the continuity of the map
φ ∈ CEG(U, Ω(B)).

The Z2 degree of (a homogeneous) φ ∈ CEG(U, Ω(B)) is even,
respectively odd, if φ preserves, respectively reverses, the Z2 grading.
The boundary operator ∂ is given

(14) (∂φ)(Z)(g) = d(φ(Z)(g)) + (−1)|φ|φ((b + B)(Z))(g)

where φ((b + B)(Z))(g) is in fact φ((bg + Bg)(Z))(g). Here |φ| is the
degree of the map φ and the differential is extended to general φ by
linearity. One can easily show that ∂2 = 0 which follows from the above
properties of b, B and d.

Denote by HEG(U, Ω), the equivariant bivariant cyclic homology of
the complex (CEG

∗ (U, Ω(B)), ∂), i.e.,

HEG(U, Ω) = H(CEG(U, Ω), ∂).

Example 1.2. In the case B = C the complex numbers, the Hom
complex becomes Hom(CEG

∗ (U), C(G,C)). In addition, if G is a finite
group then we recover the equivariant entire cyclic cohomology in [18].

Example 1.3. Let G = {e} be the trivial group, so G acts
trivially on both U and B, and Hom (CEG

∗ (U), C(G, Ω(B))) becomes
Hom (CE∗(U), Ω(B)). Therefore HEG(U, Ω(B)) reduces to the bivari-
ant cyclic theory HE(U, Ω(B)) discussed in [30].

2. The equivariant bivariant Chern-Connes character. First
we recall the definition of the G-equivariant θ-summable Fredholm
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module over a unital C∗ algebra A, where G is a compact lie group, cf.
[19]. It is a triple (A,H, D) where the following condition holds:

1. A is a unital G − C∗ algebra; that is, G acts on A by continuous
automorphism α : G → Aut (A) such that αg is unitary for all g ∈ G.

2. H is a Z2 graded Hilbert space with grading operator γ, such
that γ2 = I and there is an even unitary representation of G on H;
ρ : G → L(H), ρ : g → ρg (here L(H) is the space of bounded operators
on H), moreover ρg commutes with γ. There is also the induced G-
action on L(H) given by ρg,∗ P = ρg P ρ−1

g .

3. H is a Z2 graded G-equivariant A module; there is a unital ∗
representation of A on H; µ : A → L(H) such that µ(αg a) = ρg,∗(µ(a)).

4. D is an unbounded odd self-adjoint operator which is densely
defined on H, and it is G-invariant, that is, D ρg = ρg D for all g ∈ G.

5. There is a dense subalgebra A ⊂ A, such that for any a ∈ A,
the graded commutator [D, µ(a)] is densely defined, extending to a
bounded operator on H and there is a constant N(D) such that

||µ(a)|| + ||[D, µ(a)]|| ≤ N(D) ||a||A.

6. tr (e−D2
) < ∞.

Let (A,H, D) be a G-equivariant θ-summable Fredholm module as
above. The dense subalgebra A is a Banach algebra with the norm

|µ(a)| := ||µ(a)|| + || [D, µ(a)] ||, ∀ a ∈ A.

Let B be a dense G invariant ∗ subalgebra of a G-C∗ algebra B, and
it is endowed with a Banach algebra norm which is greater than the
C∗ norm on B.

Let U = A⊗B be the projective tensor product of G-Banach algebras
A and B, with the projective tensor product norm. The continuous
action α̃ of G on U is as follows: for

(15) u = a ⊗ b, then α̃g(u) = αg(a) ⊗ γg(b).

Consider the (U −B) Kasparov bimodule M = H⊗B, where U acts
on the left of M by letting A act on H and B acts on B by multiplication
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from the left, while B acts on M by multiplication from the right. Also
there is a continuous B valued inner product on M which is G invariant.

There is an obvious continuous action ρ̃ of G on M, by letting G act
on H via ρ and on B via γ. Also there is an induced action ρ̃∗ of G on
L(H) ⊗ B. Hence, M is a G-equivariant (U − B) bimodule, such that
for g ∈ G and u = a ⊗ b ∈ U , the following holds:

(16) µ̃( α̃g(u)) = ρ̃g,∗µ̃(u).

Here µ̃ : U → EndB(M) and EndB(M) is the algebra of bounded
linear operators on M commuting with the right action of B and having
adjoint. We have the inclusions

L1(H) ⊗ B ⊂ L(H) ⊗ B ⊂ EndB(M).

Here L1(H) ⊂ L(H) is the ideal of trace class operators on H.

For p ≥ 1, let Ωp(M) := Lp(H)⊗̂Ω(B) be the space of ‘Schatten class’
forms on M, where ⊗̂ means the graded projective tensor product.
Lp(H) is the p-Schatten class on H with norm ||.||p. Let ||.||k be the
norm on Ωk. Denote by ||.||p,k the projective tensor product norm
of ||.||p and ||.||k on Lp(H)⊗̂Ωk(B). The topology on Ωp(M) is by
definition the product topology

Ωp(M) =
∏
k≥0

(Lp(H)⊗̂Ωk(B)).

The C valued graded supertrace on the ideal L1(H) extends to a
continuous graded supertrace linear map

Trs := trs ⊗ I : Ω1(M) → Ω̂∗(B),

where Ω̂ = Ω/[Ω, Ω] and trs : L1(H) → C. By graded supertrace we
mean that for any A, B ∈ Ω1(M) this holds

(17) Trs(A B) = (−1)|A||B|Trs(B A).

Next, we define a flat G-invariant B connection as follows:

(18)
∇ : M → M⊗BΩ1(B), by

∇(ξ ⊗ b) = ξ ⊗ db, ∀ ξ ∈ H, b ∈ B
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where flatness means ∇2 = 0. Note that ∇ is not U -linear but for any
P ∈ L(H)⊗B, the commutator [∇, P ] ∈ L(H)⊗̂Ω1(B). The connection
∇ is G-invariant which means

(19) ρ̃g∇(ξ ⊗ b) = ρ̃g(ξ ⊗ db) = ρgξ ⊗ d γg(b) = ∇(ρ̃g(ξ ⊗ b)).

Moreover, the connection ∇ extends uniquely to an operator on M⊗Ω
satisfying

∇
(
ρ̃g((ξ ⊗ ω1)ω2)

)
= ρ̃g

(
∇(ξ ⊗ ω1))ω2 + (−1)|ω1|ξ ⊗ ω1(dω2)

)
,

for any homogeneous ω1 ∈ Ω.

The operator D on H is G invariant, and so is D⊗I on M. Mostly, we
will denote D⊗I by D and it will be clear from the context. Moreover,
for any u ∈ U we have

ρ̃g,∗ [D, µ(u)] = [D, ρ̃g,∗µ(u)].

Let V be the space

V := {A∈(L(H)⊗̂Ω)| A is an odd G-invariant, [D, A] ∈ L(H)⊗̂Ω(B)}.

Consider the operator of the form [30]

(20) D = D ⊗ I + A, where A ∈ V

and

(21) D2 = D2 ⊗ I + V, where V := [D, A] + A2,

It is clear that both D and D2 are G-invariant operators.

The heat operator e−tD2
for t > 0, is formally given by Duhamel’s

expansion

(22) e−tD2
:=

∑
n≥0

tn
∫

∆n

e−ts0D2
V e−ts1D2 · · ·V e−tsnD2

ds,



404 F.M. AZMI

where ∆n is the n simplex

∆n =
{

s = (s0, s1, . . . , sn) ∈ Rn+1
∣∣∣

n∑
i=0

si = 1, si ≥ 0, i = 0, 1, . . . , n
}
.

Convention. For any L ∈ L(H)⊗̂Ω(B), then as in Section 1.4, we let
(L)k ∈ L(H)⊗̂Ωk(B) denote the degree k component of the operator
L. Therefore

L = {(L)0, (L)1, . . . , (L)k, . . . } ∈ L(H)⊗̂Ω(B).

Lemma 2.1. For D as in (20), the series (22) defining the heat
operator e−tD2

is convergent in Ω1M and

sup
g∈G

||ρ̃g(e−tD2
)k)||t−1,k ≤ Cket(k+1)ck (Tr (e−D2

))t, for 0 < t ≤ 1,

where Ck > 0 and ck = sup0≤i≤k ||([D ⊗ I + A] + A2)i||∞,i, the norm
||.||∞ is the operator norm.

Proof. An easy extension of Lemma 1.3 in [30].

Consider the following superconnection on the module M

(23) A := ∇ + D

where D as in (20) and ∇ as in (18). Clearly A is a G-invariant
operator. The curvature of A is given by

(24) A2 = D2 + [∇,D] = D2 + [∇ + A].

One can define the heat operator e−tA2

by Duhamel’s expansion

(25) e−tA2

:=
∑
n≥0

tn
∫

∆n

e−ts0D2
[∇, A]e−ts1D2 · · · [∇, A]e−tsnD2

ds.
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Similarly as in Lemma 2.1, one can show that e−tA2

is convergent in
Ω1(M) and

(26) sup
g∈G

||ρ̃g(e−tA2

)k)||t−1,k ≤ Cketck (Tr (e−D2
))t, 0 < t ≤ 1.

Lemma 2.2. For any L ∈ Ω1(M) and for each g ∈ G, we have
d Trs(ρ̃g L) = Trs(ρ̃g[∇, D]), where [∇, D] ∈ Ω1(M) is the graded
commutator.

Proof. By continuity and linearity of the map Trs, it is enough to
check for operators L of the form L = T ⊗ ω, where T ∈ L1(H) and
ω ∈ Ωk. For each g ∈ G and for any ξ ⊗ ω1 ∈ H ⊗ Ω, we have

ρ̃g ∇(T ⊗ ω)(ξ ⊗ ω1)

= ρ̃g

(
∇(T (ξ) ⊗ ω ω1)

)
= ρgT (ξ) ⊗ γg d(ω ω1)

= ρgT (ξ) ⊗ (dγg ω)γgω1 + (−1)|ω|ρgT (ξ) ⊗ γgω (dγg ω1)

= (−1)|ω|ρ̃g(T ⊗ ω)∇(ξ ⊗ ω1) + ρ̃g(T ⊗ dω)(ξ ⊗ ω1).

Hence

(27) ρ̃g[∇, T ⊗ ω] = ρ̃g(T ⊗ dω)

and

Trs(ρ̃g[∇, T ⊗ ω]) = Trs(ρ̃g(T ⊗ dω)) = d Trs(ρ̃g(T ⊗ ω)).

For any Ai ∈ L(H)⊗̂Ω∗(B), i = 1, . . . , n and g ∈ G, we define

(28) 〈〈A0, A1, . . . , An〉〉(g)

:=
∫

∆n

Trs(ρ̃g A0e
−s0A

2

A1 e−s1A
2 · · ·Ane−snA2

) ds0 · · · dsn.

Thus for each g ∈ G, 〈〈A0, A1, . . . , An〉〉(g) ∈ Ω(B). The next lemma
is a generalization of Lemma 2.2 in [12] to an equivariant case.
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Lemma 2.3. Let Aj ∈ L(H)⊗̂Ω(B) for j = 0, 1, . . . , n. Let
εj = (|A0| + |A1| + · · · + |Aj−1|)(|Aj | + · · · + |An|). Then for each
g ∈ G the following holds:

(29) 1 - 〈〈A0, A1, . . . , Aj , . . . , An−1, An〉〉(g)
= (−1)εj 〈〈ρ̃−1

g,∗Aj , ρ̃
−1
g,∗Aj+1, . . . , ρ̃−1

g,∗An,

A0, A1, A2, . . . , Aj−1〉〉(g).

(30) 2 - 〈〈A0, A1, A2, . . . , An−1, An〉〉(g)

=
n∑

j=0

(−1)εj 〈〈1, ρ̃−1
g,∗Aj , ρ̃

−1
g,∗Aj+1, . . . ,

ρ̃−1
g,∗An, A0, A1, . . . , Aj−1〉〉(g).

(31) 3 - d(〈〈A0, A1, . . . , An〉〉(g))

= −
n∑

j=0

(−1)|A0|+|A1|+···+|Aj−1|

〈〈A0, A1, . . . , [A, Aj ], Aj+1, . . . , An〉〉(g).

4 (i) for j = 0, . . . , n − 1;

(32) 〈〈A0, A1, . . . , [A2, Aj ], . . . , An〉〉(g)
= 〈〈A0, . . . , Aj−1Aj , . . . , An〉〉(g)

− 〈〈A0, . . . , AjAj+1, . . . , An〉〉(g)

(ii) for j = n;

〈〈A0, A1, . . . , [A2, An]〉〉(g)
= 〈〈A0, . . . , An−1An〉〉(g)

− 〈〈(ρ̃−1
g,∗An) A0, . . . , An−1〉〉(g).

Proof. The equivariant cyclic symmetry in part 1 follows from

〈〈A0, A1, . . . , An〉〉(g)

=
∫

∆n

Trs(ρ̃g A0e
−s0A

2

A1 · · ·Ane−snA2

) ds

=
∫

∆n

(−1)εnTrs(Ane−snA2

ρ̃gA0e
−s0A

2

A1e
−s1A

2 · · ·An−1e
−sn−1A

2

)ds

= (−1)εn〈〈ρ̃−1
g,∗An, A0, . . . , An−1〉〉.
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To prove part 2, first note that by similar computation as in [12] we
get

(33) 〈〈A0, A1, . . . , An〉〉(g) =
n∑

j=0

〈〈A0, . . . , Aj , 1, Aj+1, . . . , An〉〉(g);

then applying part 1 to each term in (33) will give the desired result.

As A = ∇ + D, and by [12] we have

n∑
j=0

(−1)|A0|+···+|Aj−1|〈〈A0, . . . , [D, Aj ], . . . , An〉〉(g) = 0.

Thus, part 3 becomes

d(〈〈A0, . . . , An〉〉(g))

= −
n∑

j=0

(−1)|A0|+···+|Aj−1|〈〈A0, . . . , [∇, Aj ], . . . , An〉〉(g).

and the result follows from Lemma 2.2.

Part 4 (i) is a similar computation as in [12]. The case j = n follows
by first applying the cyclic symmetry as in part 1, and then part 4(i)
will give the result.

For any u ∈ U , then [A, µ̃(u)] ∈ L(H)⊗̂Ω∗(B). Furthermore, for any
k ≥ 0,

(34) ||([A, µ̃(u)])k||∞,k = ||([∇ + D, u])k||∞,k ≤ Ck ||u||π, ∀u ∈ U,

where as before, ([A, µ̃(u)])k ∈ L(H)⊗̂Ωk(B) denotes the degree k
component of [A, u] and ||.||∞ is the operator norm.

Definition 2.4. The nth component of the equivariant bivariant
Chern-Connes character of the module (M,D) is defined by

Chn
G(M,D)(u0, . . . , un)(g) := 〈〈u0, [A, u1], . . . , [A, un]〉〉(g) ∈ Ω∗(B),
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where ui ∈ U and g ∈ G, for simplicity of notation we write µ̃(ui) as
ui. And the total equivariant bivariant Chern-Connes character is

Ch∗
G(M,D) := {Ch0

G(M,D), Ch1
G(M,D), . . . , Chn

G(M,D), . . . }.

The character Ch∗
G(M,D) is a linear map

Ch∗
G(M,D) : ⊕n≥0C

G
n (U) → C(G, Ω̂(B)).

The next lemma shows that the above character extends continuously
to a map Ch∗

G(M,D) : CEG
∗ (U) → C(G, Ω̂(B)).

For each n, the degree k-component of Chn
G(M,D) is denoted by

Chn
G,k(M,D). Thus for each k ≥ 0, we have a linear map

Chn
G,k(M,D) : CG

n (U) → C(G, Ωk(B)).

Lemma 2.5 [30]. For each k ≥ 0, there exists C, c such that for all
ui ∈ U and i = 1, . . . , n

sup
g∈G

||Chn
G,k(u0, u1, . . . , un)(g)||k ≤ Ck(k+1)n

n!
eck Tr (e−D2

)
n∏

i=0

||ui||,

where C and c are constants depending on k only and not on n.

Proof. For each g ∈ G and ui ∈ U , we have

(35) Chn
G,k(M,D)(u0, . . . , un)(g)

=
∫

∆n

Trs

(
ρ̃g u0e

−s0A
2

[A, u1] e−s1A
2 · · · [A, un] e−snA2

)
k

ds0 · · · dsn.

Therefore,

(36) ||(ρ̃g u0e
−s0A

2

[A, u1] e−s1A
2 · · · [A, un] e−snA2

)k||1,k

≤ C1

∑
k0+···+kn=k

||(u0e
−s0A

2

)k0 ||s−1,k0

n∏
i=1

||[A, ui] e−siA
2

)ki
||s−1

i
,ki

≤ C(k + 1)neckTr (e−D2
)

n∏
i=0

||ui||;
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the last step follows from (26) and the constant depends only on k.
Finally, integrating the above over the simplex ∆n will give the result.

The discussion in Section 1.4 implies that Ch∗
G(M,D)∈CEG(U, Ω(B)).

Theorem 2.6. The equivariant bivariant Chern-Connes charac-
ter Ch∗

G(M,D) is closed. Hence, it defines a homology class in
HEG

ev(U, Ω(B)), i.e., for any n ≥ 0, ui ∈ U and g ∈ G, then
(
Chn−1

G bg + Chn+1
G Bg

)
(u0, . . . , un)(g) + d

(
Chn

G(u0, . . . , un)(g)
)

= 0

Proof. We apply Lemma 2.3 part 3 with A0 = u0 and Ai = [A, ui]
for i = 1, . . . , n. This gives the following:

d
(
Chn

G(M,D)(u0, . . . , un)(g)
)

= d
(
〈〈u0, [A, u1], . . . , [A, un−1], [A, un]〉〉(g)

)
(37) = −〈〈[A, u0], [A, u1], . . . , [A, un]〉〉(g)

(38) −
n∑

j=1

(−1)j−1〈〈u0, [A, u1], . . . , [A2, uj ], . . . , [A, un]〉〉(g).

Applying Lemma 2.3 part 2 to (37), we get (the notation as in (16))

〈〈[A, u0], . . . , [A, un]〉〉(g)

=
n∑

j=0

(−1)εj 〈〈1, [A, α̃−1
g uj ], . . ., [A, α̃−1

g un], [A, u0], . . ., [A, uj−1]〉〉(g),

which is just (Chn+1
G Bg(u0, . . . , un))(g).

Lemma 2.3 part 4 implies that (38) is equal to (Chn−1
G bg(u0,. . ., un))(g).

Indeed, for each 0 < j ≤ n − 1, and by Lemma 2.3 part 4(i) we have

(−1)j−1〈〈u0, [A, u1], . . . , [A2, uj ], . . . , [A, un]〉〉(g)
= (−1)j−1〈〈u0, [A, u1], . . . , [A, uj−1] uj , . . . , [A, un]〉〉(g)

+ (−1)j〈〈u0, [A, u1], . . . , uj [A, uj+1], . . . , [A, un]〉〉(g)
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while for j = n, we have

(−1)n−1〈〈u0, [A, u1], . . . , [A, un−1], [A2, un]〉〉(g)
= (−1)n−1〈〈u0, [A, u1], . . . , [A, un−1]un〉〉(g)

+ (−1)n 〈〈(α̃−1
g un) u0, [A, u1], . . . , [A, un−1]〉〉(g)

Summing up over all j and using the fact

[A, uj uj+1] = [A, uj ]uj+1 + uj [A, uj+1],

Therefore, what is left after the cancellation is

n−1∑
j=1

(−1)j−1〈〈u0, [A, u1], . . . , [A, uj uj+1], . . . , [A, un]〉〉(g)

+ (−1)n〈〈(α̃−1
g un)u0, [A, u1], . . . , [A, un−1]〉〉(g)

which is (Chn−1
G bg(u0, . . . , un))(g).

Example 2.7. With the hypotheses of Example 1.2, then M is the
Hilbert space H. And as there is no flat B-connection, the operator
A reduces to D. Moreover, if G is a finite group then the equivariant
bivariant Chern-Connes character reduces to the one in [19].

Example 2.8. With the hypotheses of Example 1.3, the G-
equivariant θ-summable Fredholm module over the C∗ algebra A, re-
duces to θ-summable Fredholm module over A. And we recover the
bivariant Chern-Connes character in [30].
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