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A SURVEY OF RESULTS INVOLVING
TRANSFORMS AND CONVOLUTIONS

IN FUNCTION SPACE

DAVID SKOUG AND DAVID STORVICK

ABSTRACT. In this paper we survey various results in-
volving Fourier-Wiener transforms, Fourier-Feynman trans-
forms, integral transforms and convolution products of func-
tionals over function space that have been established since
Cameron and Martin first introduced Fourier-Wiener trans-
forms in 1945.

1. Introduction. In a 1945 paper [7], Cameron defined a transform
of a function which was somewhat analogous to the Fourier transform
of a function. Since then, many results based on (or inspired by) this
definition have appeared in the literature. In fact, research based on
this definition is continuing at the present time; more than 55 years
later. Our goal in this survey article is to discuss those results, of
which we are aware, whose roots can be traced back to the pioneering
work of Cameron and Martin [7 10].

Let C0[0, T ] denote one-parameter Wiener space; that is, the space
of R-valued continuous functions x(t) on [0, T ] with x(0) = 0. Let M
denote the class of all Wiener measurable subsets of C0[0, T ], and let m
denote Wiener measure. (C0[0, T ],M, m) is a complete measure space,
and we denote the Wiener integral of a Wiener integrable functional F
by

E[F ] = Ex[F (x)] =
∫

C0[0,T ]

F (x)m(dx).

Let L2(C0[0, T ]) be the space of C-valued functionals F satisfying∫
C0[0,T ]

|F (x)|2m(dx) < ∞.

Let K = K0[0, T ] be the space of all C-valued continuous functions
defined on [0, T ] which vanish at t = 0.
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Remark 1.1. In their earlier papers involving Wiener measure,
Wiener, Cameron, Martin and others used the density function (πt)−1/2 ×
exp{−u2/t} to construct Wiener measure instead of the now stan-
dard normal density function (2πt)−1/2 exp{−u2/(2t)}. As a result,
in [7 10], the Gaussian process x(t) had mean zero and covariance
function

Ex[x(s)x(t)] =
∫

C0[0,T ]

x(s)x(t)m(dx) =
1
2

min{s, t},

whereas in the papers since 1955 or so, using the standard normal
density function to construct m, the Gaussian process x(t) has mean
zero and covariance function

Ex[x(s)x(t)] = min{s, t}.

We will always state all of the results for the Wiener space C0[0, T ],
although C0[0, 1] was used in [7 10, 36, 52], C0[a, b] was used in [3 5,
11, 14, 35], etc.

2. Fourier transforms. In this section we give a very brief
description of the Fourier transform of L2-functions. Recall that a
sequence {fn}∞n=1 of functions in L2(R) is said to converge to a function
f as a limit in the mean if

lim
n→∞

∫ ∞

−∞
|f(u) − fn(u)|2 du = 0,

and we write
f(u) = l. i. m.

n→∞ fn(u).

For f ∈ L2(R),

(2.1) F(f)(u) =
1√
2π

∫ ∞

−∞
eiuvf(v) dv

and

(2.2) F−1(f)(u) =
1√
2π

∫ ∞

−∞
e−iuvf(v) dv
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are called the Fourier transform and the inverse Fourier transform of f ,
respectively. Some authors write a factor (2π)−1 in front of the inverse
transform only, while others write 2πi in place of i in the exponent.
Also some authors define the Fourier transform with a minus sign in
the exponent and the inverse transform with a plus sign in the exponent.

It is well known that, for f ∈ L2(R),

F(f)(u) = l. i. m.
A→+∞

1√
2π

∫ A

−A

eiuvf(v) dv

exists and is an element of L2(R). In addition,

F−1(f)(u) = l. i. m.
A→+∞

1√
2π

∫ A

−A

e−iuvf(v) dv

exists and belongs to L2(R). In addition, the following properties hold

(2.3) F maps L2(R) onto L2(R),

(2.4) F(F(f))(u) = f(−u),

(2.5) F−1(F(f))(u) = f(u) = F(F−1(f))(u),

Plancherel’s relation holds in the form

(2.6)
∫ ∞

−∞
|f(u)|2 du =

∫ ∞

−∞
|F(f)(u)|2 du,

and Parseval’s relation holds in the form

(2.7)
∫ ∞

−∞
f(u)g(−u) du =

∫ ∞

−∞
F(f)(u)F(g)(u) du, f, g ∈ L2(R).

3. Fourier-Wiener transforms Cameron and Martin. In
1945, Cameron [7] introduced a transform of functionals defined on
K = K0[0, T ] which he called the Fourier-Wiener transform since it
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had many of the same properties as the Fourier transform of a function
on the real line.

Definition 3.1. Let F be a functional which is defined throughout
K and is such that F (x + iy) is Wiener integrable in x over C0[0, T ]
for each fixed y in K. Then the functional

(3.1) F(F )(y) =
∫

C0[0,T ]

F (x + iy)m(dx), y ∈ K

is called the Fourier-Wiener transform of F .

Remark 3.1. (i) The exponential corresponding to exp{iuv} in
formula (2.1) for the Fourier transform doesn’t appear in formula
(3.1) because it is supplied by the exponentials which are inherent in
the definition of the Wiener integral. (ii) Although Cameron didn’t
formally define the inverse Fourier-Wiener transform in [7], he used
the concept in obtaining a reciprocal relation [7, p. 485]; hence we state
the following definition.

Definition 3.2. Let F be a functional which is defined throughout
K and is such that F (x − iy) is Wiener integrable in x over C0[0, T ]
for each fixed y in K. Then the functional

(3.2) F−1(F )(y) =
∫

C0[0,T ]

F (x − iy)m(dx) = F(F )(−y), y ∈ K

is called the inverse Fourier-Wiener transform of F .

In [8], Cameron and Martin defined three large classes of functionals
on K and showed that if F is a member of any of these classes, then
F(F ) exists and belongs to the same class. In addition, they showed
that

(3.3) F(F(F ))(y) = F (−y) for all y ∈ K,

and that

(3.4) F−1(F(F ))(y) = F (y) for all y ∈ K.
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Furthermore, they established the following form of Plancherel’s rela-
tion,

(3.5)
∫

C0[0,T ]

|F (x/
√

2 )|2m(dx) =
∫

C0[0,T ]

|F(F )(y/
√

2 )|2m(dy),

as well as the following form of Parseval’s relation,

(3.6)
∫ ·

C0[0,T ]

F1(x/
√

2 )F2(−x/
√

2 )m(dx)

=
∫

C0[0,T ]

F(F1)(y/
√

2 )F(F2)(y/
√

2 )m(dy).

Next, we briefly describe two of the three classes of functionals
considered in [8]. The first class Em is the class of functionals F :
K → C which are mean continuous, i.e., continuous in the Hilbert
topology, entire, and of mean exponential type. That is to say, Em is
the class of all functionals F : K → C satisfying the three conditions
(3.7)

‖zn − z‖2 → 0 =⇒ F (zn) → F (z) where ‖z‖2
2 =

∫ T

0

z(s)z̄(s) ds,

(3.8) F (z + λy) is an entire function of λ for all (z, y) ∈ K × K,

and there exist positive constants A and B only depending on F , such
that

(3.9) |F (z)| ≤ A exp{B‖z‖2} for all z ∈ K.

The second class E0 consists of functionals on K of the form

(3.10) F (x) = Φ
( ∫ T

0

α1(t) dx(t), . . . ,

∫ T

0

αn(t) dx(t)
)

where Φ(z1, . . . , zn) is an entire function of exponential type satisfying

|Φ(z1, . . . , zn)| ≤ AeB(|z1|+···+|zn|)
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and α1(t), . . . , αn(t) are n linearly independent R-valued functions of
bounded variation on [0, T ].

In [8], Cameron and Martin first showed that (3.3) (3.6) hold for
all functionals in E0. Then, using the fact that the elements of E0

are dense in Em, they proceeded to show that (3.3) (3.6) hold for all
functionals in Em.

In [10], using the Fourier-Hermite development from [9], Cameron
and Martin showed that the functionals in Em above are dense in
L2(C0[0, T ]). Then, in order to simplify Plancherel’s relation and
Parseval’s relation, they modified their definition of the Fourier-Wiener
transform slightly by letting

(3.11) F(F )(y) =
∫

C0[0,T ]

F (
√

2x + iy)m(dx), y ∈ K.

They proceeded to show that, for F ∈ L2(C0[0, T ]), the mod-
ified Fourier-Wiener transform F(F ) exists and is an element of
L2(C0[0, T ]). Furthermore, they showed that equations (3.3) and (3.4)
are valid provided that

F−1(F )(y) = F(F )(−y) =
∫

C0[0,T ]

F (
√

2 x − iy)m(dx).

In addition, they established Plancherel’s relation

(3.12)
∫

C0[0,T ]

|F (x)|2m(dx) =
∫

C0[0,T ]

|F(F )(y)|2m(dy),

and Parseval’s relation
(3.13)∫

C0[0,T ]

F1(x)F2(−x)m(dx) =
∫

C0[0,T ]

F(F1)(y)F(F2)(y)m(dy)

for all F, F1 and F2 in L2(C0[0, T ]).

In Theorem 2 of [51], Segal wrote down the expression

F (y) =
∫
H′

f(
√

2x + iy) dN(x)
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which is an abstraction to a Hilbert space setting of equation (3.11)
above. In fact, in footnote (5) [51, p. 120], Segal commented that
Theorem 2 as well as preliminary work on “integration over Hilbert
space” was an abstraction of work of Wiener and of Cameron and
Martin relating to Brownian motion, and a rigorization of work of
Feynman relating to quantum field theory. This seminal paper by Segal,
influenced by [10], was very influential in later work by Leonard Gross,
M. Ann Piech, Takeyuki Hida, Hui-Hsiung Kuo, Yuh-Jia Lee and many
others concerning integration over Hilbert spaces, stochastic processes,
abstract Wiener spaces, white noise and other related topics.

4. Further results involving the Fourier-Wiener transform.
In 1965, Yeh [52] defined the convolution product of two functionals,
F1 and F2, on K by the formula

(4.1) (F1 ∗ F2)(y) =
∫

C0[0,T ]

F1

(
x + y√

2

)
F2

(
x − y√

2

)
m(dx), y ∈ K

whenever it exists. Yeh showed that, if F1 and F2 were both in Em or
if F1 and F2 were both in E0, then (F1 ∗ F2)(y) exists for every y ∈ K
and satisfies the relationship

(4.2) F((F1 ∗ F2))(y) = F(F1)(y/
√

2 )F(F2)(−y/
√

2 )

for all y ∈ K. As far as we know, this was the first result connecting
the Fourier-Wiener transform and the convolution product in function
space.

In 1995, Yoo [53] extended Yeh’s results to abstract Wiener spaces.
He also obtained Plancheral’s relation and Parseval’s relation corre-
sponding to (3.5) and (3.6) for abstract Wiener spaces.

In his Ph.D. thesis [3], written under the direction of Cameron,
Bridgeman extended the results in [8] to larger classes of functionals.
In addition, for appropriate functionals F and G defined on K, he
established the formula

(4.3)
∫

C0[0,T ]

F

(
x + iy√

2

)
G

(
x + iy√

2

)
m(dx)

=
∫

C0[0,T ]

F(F )
(

y − x√
2

)
F(G)

(
y + x√

2

)
m(dx)
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for all y ∈ K, that is to say,

(4.4) F(F (·/
√

2 )G(·/
√

2 ))(y) = (F(F ) ∗ F(G))(y), y ∈ K

where the convolution product of the functionals F and G was defined
by the formula

(4.5) (F ∗ G)(y) =
∫

C0[0,T ]

F

(
y − x√

2

)
G

(
y + x√

2

)
m(dx), y ∈ K.

Note that, for the convolution product used by Bridgeman, (F ∗
G)(y) = (G ∗ F )(y), whereas for the convolution product used by Yeh
and Yoo, see equation (4.1), (F ∗ G)(y) = (G ∗ F )(−y).

In [3], Bridgeman also obtained equations (3.3) through (3.6) for his
extended classes of functionals on K.

In his 1977 Ph.D. thesis at the University of Minnesota written
under the direction of Cameron and Storvick, Caldwell [5] worked
with the modified Fourier-Wiener transform [10] given by equation
(3.11) above and obtained several interesting results. He established
a translation formula for the Fourier-Wiener transform and used it to
solve a difference equation. He also obtained some results in which he
combined the concept of the “Fourier-Wiener transform of a functional”
with the concept of the “first variation of a functional” [6]. In addition,
Caldwell extended various results of [3, 8, 10] for functionals of several
Wiener variables. He also studied a class, Eu, of functionals based on
the uniform topology on Cn

0 [0, T ]; recall that Em, discussed in Section 3
above, was based on the Hilbert topology on C0[0, T ]. Bridgeman [3]
had earlier studied the class Eu for the case n = 1.

In Chapter 9 of [26], Hida gave an informative discussion of some
of the properties of the modified Fourier-Wiener transform given by
Cameron and Martin in [10]. He then used this transform to do Fourier
analysis on various Hilbert spaces of functionals.

In papers [41] and [42], Lee presented a number of applications of
the Fourier-Wiener transform to the study of differential equations on
infinite dimensional spaces. He defined the Fourier-Wiener transform
on the class of exponential type analytic functions in the setting of
abstract Wiener space and obtained theorems giving existence, unique-
ness and regularity of solutions for the Cauchy problem associated with
several equations.
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In a general setting Kuo [40] established several results involving the
Fourier-Wiener transform of Brownian functionals. He then used these
results to solve a differential equation. The basic idea, also used by
Lee [41, 42] is to take the Fourier-Wiener transform of the differential
equation and then solve the resulting equation.

5. Fourier-Feynman transforms through 1985. In his Ph.D.
thesis [4], written under the direction of Cameron, Brue introduced
the concept of an L1 analytic Fourier-Feynman transform. In [11],
Cameron and Storvick introduced an L2 analytic Fourier-Feynman
transform. In [35], Johnson and Skoug developed an Lp analytic
Fourier-Feynman transform theory for 1 ≤ p ≤ 2 which extended the
results in [4, 11] and gave various relationships between the L1 and
the L2 theories.

Because of the measurability problems, in [11] and in [35] all of the
functionals F on Wiener space and all of the functions f on Rn were
assumed to be Borel measurable. Unfortunately, one cannot avoid all
scale change pathologies by restricting attention to Borel measurable
functionals F . In [11, pp. 5 7], Cameron and Storvick exhibit two
Borel measurable functionals F and G which agree except on a Wiener
null set and yet their Fourier-Feynman transforms are unequal almost
everywhere on Wiener space. In [36, p. 170] (incidentally, much of
the motivation for writing the manuscript [36] was the measurability
problems encountered in [11, 35]), Johnson and Skoug pointed out that
the concept of scale-invariant measurability in Wiener space together
with Lebesgue measurability in Rn is precisely correct for the analytic
Fourier-Feynman transform theory. Thus, in this survey, we will phrase
the results of [11, 35] in the context of scale-invariant measurability.

A subset E of C0[0, T ] is said to be scale-invariant measurable, s.i.m.,
[36] provided ρE ∈ M for each ρ > 0, and an s.i.m. set N is said to
be scale-invariant null provided m(ρN) = 0 for each ρ > 0. A property
that holds except on a scale-invariant null set is said to hold scale-
invariant almost everywhere (s-a.s.). If two functionals F and G are
equal s-a.e., we write F ≈ G.

Let C,C+ and C∼
+ denote respectively the complex numbers, the

complex numbers with positive real part and the nonzero complex
numbers with nonnegative real part. Let F be a C-valued scale-
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invariant measurable functional on C0[0, T ] such that

J(λ) =
∫

C0[0,T ]

F (λ−1/2x)m(dx)

exists as a finite number for all λ > 0. If there exists a function J∗(λ)
analytic in C+ such that J∗(λ) = J(λ) for all λ > 0, then J∗(λ)
is defined to be the analytic Wiener integral of F over C0[0, T ] with
parameter λ and for λ ∈ C+ we write

∫ anwλ

C0[0,T ]

F (x)m(dx) = J∗(λ).

Let q 
= 0 be a real number, and let F be a functional such that

∫ anwλ

C0[0,T ]

F (x)m(dx)

exists for all λ ∈ C+. If the following limit exists, we call it the analytic
Feynman integral of F with parameter q and we write

∫ anfq

C0[0,T ]

F (x)m(dx) = lim
λ→−iq

∫ anwλ

C0[0,T ]

F (x)m(dx)

where λ → −iq through C+.

Notation. (i) For λ ∈ C+ and y ∈ C0[0, T ], let

(5.1) Tλ(F )(y) =
∫ anwλ

C0[0,T ]

F (x + y)m(dx).

(ii) Given a number p with 1 ≤ p ≤ +∞, p and p′ will always be
related by 1/p + 1/p′ = 1.

(iii) Let 1 < p ≤ 2, and let {Hn} and H be scale-invariant measurable
functionals such that, for each ρ > 0,

(5.2) lim
n→∞

∫
C0[0,T ]

|Hn(ρy) − H(ρy)|p′
m(dy) = 0.
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Then we write

(5.3) l. i. m.
n→∞ (wp′

s )(Hn) ≈ H

and we call H the scale invariant limit in the mean of order p′. A
similar definition is understood when n is replaced by the continuously
varying parameter λ. Next we state the definition of the Lp analytic
Fourier-Feynman transform [35].

Let q 
= 0 be a real number. For 1 < p ≤ 2 we define the Lp analytic
Fourier-Feynman transform T

(p)
q (F ) of F by the formula (λ ∈ C+)

(5.4) T (p)
q (F )(y) = l. i. m.

λ→−iq
(wp′

s )(Tλ(F )(y))

whenever this limit exists. We define the L1 analytic Fourier-Feynman
transform T

(1)
q (F ) of F by the formula

(5.5) T (1)
q (F )(y) = lim

λ→−iq
(Tλ(F ))(y)

for s-a.e. y. We note that, for 1 ≤ p ≤ 2, T
(p)
q (F ) is defined only s-a.e.

We also note that if T
(p)
q (F1) exists and, if F1 ≈ F2, then T

(p)
q (F2)

exists and T
(p)
q (F2) ≈ T

(p)
q (F1).

Remarks. (i) In view of (5.4) it would seem natural and desirable to
define T

(1)
q (F ) by requiring that, for each ρ > 0,

(5.6) lim
λ→−iq

[
ess sup

y∈C0[0,T ]

|Tλ(F )(ρy) − T (1)
q (F )(ρy)|] = 0.

Unfortunately, (5.6) doesn’t even hold for any ρ > 0 for a functional as
simple as F (x) = χ[−1,1](x(T )).

(ii) T
(2)
q (F ) agrees with the L2 analytic Fourier-Feynman transform

as given by Cameron and Storvick in [11].

(iii) The definition of T
(1)
q (F ) given above by (5.5) is more restrictive

than that given by Brue in [4] in that (5.5) must hold s-a.e. rather than
just a.e. However all of Brue’s results actually hold in this stronger
sense.
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In [4] Brue showed the existence of T
(1)
q (F ) for F in several classes of

functionals on Wiener space. He also showed that T
(1)
−q (T (1)

q (F ))(y) =
F (y) for a.e. y in Wiener space. Actually he only considered the case
q = 1, but clearly his results are valid for all real q 
= 0. At the end of
his thesis, Brue includes a nice collection of examples.

In [11] Cameron and Storvick obtained the existence of T
(2)
q (F ) for

several large classes of functionals F on Wiener space. In particular,
they showed that if Φ(z) =

∑∞
n=0 anzn is an entire function of order

less than four and if

(5.7) F (x) = Φ
[ ∫ T

0

θ(s, x(s)) ds

]

s-a.e. with ‖θ(t, ·)‖2 ∈ L2[0, T ], then T
(2)
q (F ) exists and T

(2)
−q (T (2)

q (F )) ≈
F for all real q 
= 0. In particular, note that

F (x) = exp
{∫ T

0

θ(s, x(s)) ds

}

is of the desired form (5.7).

In [14] Cameron and Storvick used the definition of the sequential
Feynman integral [13] to define a sequential Fourier-Feynman trans-
form.

6. Fourier-Feynman transforms and convolution products
since 1990. Except for paper [44] which we will discuss in Section 7
below, we aren’t aware of any papers in the literature which mention
the Fourier-Feynman transform after paper [14] which appeared in 1985
and before paper [28] which was written in 1993 and appeared in 1995.

A major goal of the authors in [28] was to define a convolution
product of functionals on Wiener space in such a way that the Fourier-
Feynman transform of the convolution product was equal to the product
of the Fourier-Feynman transforms, i.e., to define (F ∗ G)q in such a
way that the equation

(6.1) T (p)
q ((F ∗ G)q)(y) = T (p)

q (F )(y/
√

2 )T (p)
q (G)(y/

√
2 )

would hold under reasonable restrictions on F and G.
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Another goal in [28], as well as in [29 31] was to find useful classes
of functionals satisfying equation (6.1). In particular, one needs to find
conditions on F and G guaranteeing the existence of both (F ∗G)q and
T

(p)
q ((F ∗G)q). Note that once one knows that equation (6.1) holds for

all functionals F and G in some class A, then equation (6.1) allows us
to find T

(p)
q ((F ∗G)q) for all F and G in A without actually calculating

(F ∗ G)q. In practice, T
(p)
q (F ) and T

(p)
q (G) are usually much easier to

calculate than (F ∗ G)q and T
(p)
q ((F ∗ G)q).

In [28], Huffman, Park and Skoug define the convolution product, if
it exists, of functionals F and G on C0[0, T ] for λ ∈ C∼

+ by the formulas

(6.2) (F ∗ G)λ(y) =
∫ anwλ

C0[0,T ]

F

(
y + x√

2

)
G

(
y − x√

2

)
m(dx)

for λ ∈ C+ and

(6.3)

(F ∗ G)q(y) ≡ (F ∗ G)−iq(y) =
∫ anfq

C0[0,T ]

F

(
y+x√

2

)
G

(
y−x√

2

)
m(dx)

for λ = −iq ∈ C∼
+. When λ = 1, this definition agrees with the

definition used by Bridgeman [3]. It is different than the definition
used by Yeh [52] and Yoo [53] where, for λ = 1, they let

(F ∗ G)(y) =
∫

C0[0,T ]

F

(
x + y√

2

)
F

(
x − y√

2

)
m(dx) = (G ∗ F )(−y).

Next we describe the class of functionals A
(p)
n studied in [28]. Let

{α1, . . . , αn} be an orthonormal set of functions in L2[0, T ]. For
1 ≤ p ≤ ∞, let A

(p)
n be the set of all functionals F on C0[0, T ] of

the form

(6.4) F (x) = f

( ∫ T

0

α1(s) dx(s), . . . ,

∫ T

0

αn(s) dx(s)
)

s-a.e. where f : Rn → R is in Lp(Rn). Let A
(∞)
n be the space of

all functionals of the form (6.4) with f ∈ C0(Rn), the space of all
bounded continuous functionals on Rn that vanish at infinity. Note
that F ∈ A

(p)
n implies that F is s.i.m..
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Following are some of the results established in [28]:

1. If F ∈ A
(p)
n , then T

(p)
−q (T (p)

q (F )) ≈ F for all real q 
= 0.

2. Let F and G be elements of ∪1≤p≤∞A
(p)
n . Then, for all λ ∈ C+,

see equation (5.1) above,

Tλ((F ∗ G)λ)(y) = Tλ(F )(y/
√

2 )Tλ(G)(y/
√

2 )
for s-a.e. y ∈ C0[0, T ].

3. Let F and G be elements of A
(1)
n . Then, for all real q 
= 0,

T (1)
q ((F ∗ G)q)(y) = T (1)

q (F )(y/
√

2 )T (1)
q (G)(y/

√
2 )

for s-a.e. y ∈ C0[0, T ].

4. Let F ∈ A
(1)
n and G ∈ A

(2)
n . Then, for all real q 
= 0,

T (2)
q ((F ∗ G)q)(y) = T (1)

q (F )(y/
√

2 )T (2)
q (G)(y/

√
2 )

for s-a.e. y ∈ C0[0, T ].

In [39], Kim, Chang and Yoo generalized the results in [28] to a class
of cylinder functionals on an abstract Wiener space.

Next we describe the class of functionals A = Apr that Huffman, Park
and Skoug worked with in [29]. For p ∈ [1, 2] and r ∈ ((2p/2p−1), +∞],
let Lpr([0, T ] × R) be the space of all C-valued Lebesgue measurable
functions f on [0, T ]×R such that f(t, ·) is in Lp(R) for almost all t ∈
[0, T ] and, as a function of t, ‖f(t, ·)‖p is in Lr([0, T ]). Then A = Lpr

is the class of all functionals F such that, for some f ∈ Lpr([0, T ]×R),

(6.5) F (x) = exp
{∫ T

0

f(t, x(t)) dt

}
,

for s-a.e. x in C0[0, T ]. Then F is defined s-a.e. and is s.i.m. .

The main result in [29] is that equation (6.1) holds for all functionals
F and G in Apr, a class of functionals which arise naturally in quantum
mechanics.
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In [30], Huffman, Park and Skoug considered functionals of the form

(6.6) F (x) = exp
{∫ T

0

∫ T

0

f(s, t, x(s), x(t)) ds dt

}
.

Feynman [25] obtained such functionals by formally integrating out
the oscillator coordinates in a system involving a harmonic oscillator
interacting with a particle moving in a potential. Moreover, functionals
similar to those in (6.6) but involving multiple integrals of more time
dimensions than two arise when more particles are involved. In [30], the
authors showed that equation (6.1) holds for such a class of functionals
where f : [0, T ]n × Rn → C is quadratic in the space variables.

The Banach algebra S of functionals on C0[0, T ], each of which is
a type of stochastic Fourier transform of a bounded C-valued Borel
measure, was introduced by Cameron and Storvick in [12]. The Banach
algebra S consists of functionals of the form

(6.7) F (x) =
∫

L2[0,T ]

exp{i〈v, x〉} df(v)

for s-a.e. x ∈ C0[0, T ], where f is an element of M(L2[0, T ]), the space
of C-valued countably additive Borel measures on L2[0, T ] and 〈v, x〉
denotes the Paley-Wiener-Zygmund stochastic integral

∫ T

0
v(s) dx(s).

Let L1∞([0, T ]2 × R2) be the space of all C-valued Lebesgue mea-
surable functions f on [0, T ]2 × R2 such that f(s, t, ·, ·) is in L1(R2)
for a.e. (s, t) ∈ [0, T ]2 and as a function of s, t, ‖f(s, t, ·, ·)‖1 is in
L∞([0, T ]2). We define A to be the class of all functionals F such that
for some f ∈ L1∞([0, T ]2 × R2), F (x) is given by equation (6.6) for
s-a.e. x ∈ C0[0, T ].

In Section 4 of [30], Huffman, Park and Skoug showed that equation
(6.1) holds for all F and G in A. In Section 3 they showed that (6.1)
holds for all F and G in S. In addition, they established Parseval’s
relation

(6.8)
∫ anf−q

C0[0,T ]

T (p)
q (F )(y/

√
2 )T (p)

q (G)(y/
√

2 )m(dy)

=
∫ anfq

C0[0,T ]

F (y/
√

2 )G(−y/
√

2 )m(dy).
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In [48], Park and Skoug for functionals on C0[0, T ] of the form

Fs(x) = exp
{∫ T

s

f(t, x(t)) dt

}
ϕ(x(T ))

established various relationships involving Fourier-Feynman transforms
and convolutions. In addition, they showed that the L1 analytic
Fourier-Feynman transform of Fs satisfies a Feynman integral equation
formally equivalent to the Schroedinger equation.

Let Q = {(s, t) : 0 ≤ s ≤ b, 0 ≤ t ≤ β} and let C2[Q], often called Yeh-
Wiener space, denote the Wiener space of functionals of two variables
over Q, that is to say,

C2[Q] = {x(s, t) : x(0, t) = x(s, 0) = 0 and x(s, t) is continuous on Q}.
In his Ph.D. thesis [27], written under the direction of Skoug, Huffman
defined an Lp analytic Yeh-Feynman-Fourier transform T p

q (F ) and a
convolution product (F ∗ G)q for s.i.m. functionals on C2[Q]. For
several large classes of functionals on C2[Q], Huffman showed that
T p

q (F ) exists, that Tλ̄(Tλ(F ))(y) → F (y) s-a.e. on C2[Q] as λ → −iq
through values in C+, that the Yeh-Feynman-Fourier transform of
the convolution product is the product of their Yeh-Feynman-Fourier
transforms and that Parseval’s relation holds in the form∫ anf−q

C2[Q]

T p
q (F )(x/

√
2 )T p

q (G)(−x/
√

2 )dm(x)

=
∫ anfq

C2[Q]

F (x/
√

2 )G(x/
√

2 )dm(x).

In [31], using ideas from [24], Huffman, Park and Skoug defined a
generalized Fourier-Feynman transform (also denoted by T

(p)
q (F )) and

a generalized convolution product by replacing equations (5.1) and (6.2)
above with the equations

(6.9) Tλ(F )(y) =
∫ anwλ

C0[0,T ]

F (y + z(x, ·))m(dx),

and

(6.10) (F ∗ G)λ(y) =
∫ anwλ

C0[0,T ]

F

(
y + z(x, ·)√

2

)
g

(
y − z(x, ·)√

2

)
m(dx),
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respectively, where, for h ∈ L2[0, T ], the Gaussian process

z(x, t) ≡
∫ t

0

h(s) dx(s)

has mean zero and covariance function a(min{s, t}) with

(6.11) a(t) ≡
∫ t

0

h2(u) du.

Then for two classes of functionals on C0[0, T ], they showed that
the generalized transform of the generalized convolution product is a
product of their generalized transforms. In addition, they obtained
Parseval’s relation∫ anf−q

C0[0,T ]

T (p)
q (F )

(
z(x, ·)√

2

)
T (p)

q (G)
(

z(x, ·)√
2

)
m(dx)

=
∫ anfq

C0[0,T ]

F

(
z(x, ·)√

2

)
G

(−z(x, ·)√
2

)
m(dx).

In [33], Huffman, Skoug and Storvick, using a general Fubini theorem
from [32], established several Feynman integration formulas involving
Fourier-Feynman transforms. The conditions they put on each func-
tional F are very minimal; namely, that

(i) F : C0[0, T ] → C is defined s-a.e. and is s.i.m.,

(ii)
∫

C0[0,T ]
|F (ρx)|m(dx) < ∞ for each ρ > 0, and that

(iii)
∫ anfq

C0[0,T ]
F (x)m(dx) exists for all real q 
= 0.

Following are some special cases of results from [33] (q1 + q2 
= 0):
∫ anfq1

C0[0,T ]

T (1)
q2

(F )(y)m(dy) =
∫ anfq2

C0[0,T ]

T (1)
q1

(F )y(m)(dy),

T (1)
q2

(T (1)
q1

(F ))(y) = T
(1)
q1q2/q1+q2

(F )(y)

= T (1)
q1

(T (1)
q1

(F ))(y) s-a.e.,

T (1)
q (T (1)

q (F ))(y) = T
(1)
q/2(F )(y)

=
∫ anfq

C0[0,T ]

F (y +
√

2x)m(dx) s-a.e.,
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and, under the additional assumption that F is a continuous functional,

T
(1)
−q (T (1)

q (F ))(y) = F (y) s-a.e.

In [1], Ahn defined the L1 analytic Fourier-Feynman transform for
functionals in the Fresnel class F (B) of an abstract Wiener space B
and, for these functionals established equation (6.1) in the case p = 1.
In [16], Chang, Kim and Yoo generalized the results of [1, 27] to a
larger class of functionals than the Fresnel class F (B).

On pages 609 637 of [34], Johnson and Lapidus give a detailed dis-
cussion of the Fresnel integral and various Fresnel classes of functionals.
In particular, their discussion includes many references.

7. Integral transforms. We begin this section with a very brief
description of an abstract Wiener space.

Let H be a real separable infinite-dimensional Hilbert space with
inner product 〈·, ·〉 and norm ‖ · ‖. Let ‖| · |‖ be a measurable norm on
H with respect to the Gaussian cylinder set measure σ on H, i.e.,

σ(E) = (2π)−n/2

∫
E

exp
{
− |x|2

2

}
dx.

Let B denote the completion of H with respect to ‖| · |‖. Let i
denote the natural injection from H into B. The adjoint operator
i∗ of i is one-to-one and maps B∗ continuously onto a dense subset of
H∗. By identifying H with H∗ and B∗ with i∗B∗, we have a triple
B∗ ⊂ H∗ ≡ H ⊂ B and 〈y, x〉 = (y, x) for all y ∈ H and x in B∗

where (·, ·) denotes the natural dual pairing between B and B∗. It
is well known that σ ◦ i−1 has a unique countably additive extension
v to the Borel σ-algebra B(B) of B. The triple (H, B, v) is called an
abstract Wiener space and the Hilbert space H is called the generator of
(H, B, v). For more detail, see [1, 16 18, 23, 34, 39 44, 53] and the
references in these papers which specifically refer to abstract Wiener
spaces.

In a unifying paper [43], Lee defined an integral transform Fα,β of
analytic functionals on abstract Wiener spaces. For certain values of
the parameters α and β and for certain classes of functionals, the



RESULTS INVOLVING TRANSFORMS AND CONVOLUTIONS 1165

Fourier-Wiener transform, the Fourier-Feynman transform and the
Gauss transform are special cases of Lee’s integral transform Fα,β .

Let (H, B, v) be an abstract Wiener space. Let Ea be the class of
functionals F defined on the complexification [B] of B with

(7.1) |F (z)| ≤ c exp{d
√
|Re z|2 + |Im z|2 }

for some positive constants c and d only depending on F , and

(7.2) F (x + λy) is an entire function of λ throughout
C for all (x, y) ∈ [B] × [B].

Then, for each pair of nonzero complex numbers α and β, Lee defines
his integral transform Fα,β on [B] by

(7.3) Fα,βF (y) =
∫

B

F (αx + βy)v(dx), y ∈ [B]

if it exists. When α = i and β = 1, Fi,1F is the Gauss transform of
F . When B = C0[0, T ], α = 1 and β = i, F1,iF is the Fourier-Wiener
transform [8] given by equation (3.1) above, F√

2,iF is the modified
Fourier-Wiener transform [10] given by equation (3.11) above and,
when α = (−iq)−1/2, q > 0 and β = 1, Fα,βF is the Fourier-Feynman
transform T

(2)
q (F ) [11].

Among several results in [43], Lee showed that Fα,β(Ea) = Ea and
that

(7.4) Fα′,β′(Fα,βF )(z) = F (z)

for all F in Ea if and only if

(7.5) ββ′ = 1 and (βα′)2 + α2 = 0.

In [53], Yoo defined a convolution product for the case β = i, β′ = −i
and α = 1 = α′, see equation (4.1) above, for functionals on [B] and
showed that, for y ∈ [B],

(7.6) F1,i(F ∗ G)(y) = F1,iF (2/
√

2 )F1,iG(−y/
√

2 ).
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In [16], Chang, Kim and Yoo using the integral transform (7.3) and
the convolution product, see equation (4.5) above, defined for y ∈ [B]
by the formula

(7.7) (F ∗ G)α(y) =
∫

B

F

(
y + αx√

2

)
G

(
y − αx√

2

)
v(dx),

generalized the results of Yeh [52] and Yoo [53]. In particular, for F
and G in Ea, they showed that

(7.8) Fα,β(F ∗ G)α(y) = Fα,βF (y/
√

2 )Fα,βG(y/
√

2 ), y ∈ [B].

Among several results in [44], Lee showed that Plancherel’s relation

∫
B

|Fα,βF (y)|2v(dy) =
∫

B

|F (y)|2v(dy)

holds if and only if α2 + β2 = 1 and |β| = 1.

In [37], Kim and Skoug obtained a necessary and sufficient condition
that a functional F in L2(C0[0, T ]) has an integral transform

Fα,βF (y) =
∫

C0[0,T ]

F (αx + βy)m(dx)

also belonging to L2(C0[0, T ]).

We finish this section by noting that the conditions placed on F are
quite different in [43, 52] and [53] than they are in papers [11, 28,
29] and [35]. In the notation of [11, 28, 29, 35], Lee [43], Yeh [52]
and Yoo [53] require F (x + λy) to be an entire function of λ over C
for each x and y in C0[0, T ], whereas in [11, 28, 29, 35], F isn’t even
required to be a continuous function. But, on the other hand, in the
Fourier-Feynman theory, [11, 28, 29, 35], the expression

∫
C0[0,T ]

F (λ−1/2x + y)m(dx)

is required to be an analytic function of λ over C+. Thus, in both
approaches, an analyticity condition is required.
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8. Transforms, convolutions and first variations. In Sections
8 and 9 we will simplify matters somewhat by writing Tq(F ) in place
of T

(p)
q (F ), T

(2)
q (F ) and T

(1)
q (F ) for all q ∈ R − {0}. Also, all of the

functionals involved are assumed to be s.i.m. and all of the formulas
involving y are assumed to hold for s-a.e. y ∈ C0[0, T ].

We first give the definition of the first variation of a functional on
Wiener space [6, 15]. Let F be a Wiener measurable functional on
C0[0, T ] and let w ∈ C0[0, T ]. Then

(8.1) δF (x|w) =
∂

∂h
F (x + hw)|h=0,

if it exists, is called the first variation of F (x). Also let

(8.2) A = {w ∈ C0[0, T ] : w is absolutely continuous on [0, T ]
with w′ ∈ L2[0, T ]}.

In [50], for the space S, see equation (6.7) above, Park, Skoug
and Storvick examined the various relationships that occur among
the first variation δF (x|w), the Fourier-Feynman transform Tq(F ) and
the convolution product (F ∗ G)q. In Section 3 they studied the
various relationships involving exactly two of the three concepts of
transform, convolution and first variation. In Section 4 they examined
the relationship involving all three concepts but where each concept is
used exactly once. These are more than six possibilities since one can
take the transform, and the convolution with respect to either the first
or the second argument of the variation. It turns out that there are
nine distinct possibilities. below we give three of the many formulas
from [50]. For w ∈ A,

Tq(δF (·|w))(y) = δTq(F )(y|w),(8.3)

(8.4) Tq((δF (·|w) ∗ δG(·|w))q)(y) =δTq(F )(y/
√

2 |w)δTq(G)(y/
√

2 |w),

and

Tq((δF (y|·) ∗ δG(y|·))q)(w) = δF (y|w/
√

2 )δG(y|w
√

2 ).
(8.5)
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Included among the results of [45] is the following integration by
parts formula for Fourier-Feynman transforms:

∫ anfq

C0[0,T ]

[Tq(F )(x)δTq(G)(x|w) + δTq(F )(x|w)Tq(G)(x)]m(dx)

= −iq

∫ anfq

C0[0,T ]

Tq(F )(x)Tq(G)(x)〈w′, x〉m(dx)

for w ∈ A and appropriate F and G.

In [49], the authors found formulas for Tq(Fn) where

Fn(x) = F (x)
n∏

j=1

〈w′
j , x〉

where F ∈ S and where w1, . . . , wn are elements of A. In [23], Chang,
Song and Yoo generalized the results of [49] to the Fresnel class F (B)
on an abstract Wiener space (H, B, v). In [22], Chang and Skoug
extended these results to a very general function space Ca,b[0, T ] and
Banach algebra S(L2

a,b[0, T ]).

In [38], Kim, Ko, Park and Skoug studied the relationships that occur
among transforms, convolutions and first variations for functionals on
C0[0, T ] of the form

(8.6) F (x) = f(〈α1, x〉, . . . , 〈αn, x〉)

for s-a.e. x ∈ C0[0, T ] where {α1, . . . , αn} is an orthonormal set of
functionals in L2[0, T ]. While some of the results in [38] are quite
similar to those in [50], many are quite different. For example, for F ,
and G, of the form (8.6) with appropriate f , and g,

δF (x|w) =
n∑

j=1

〈αj , w〉fj(〈α1, x〉, . . . , 〈αn, x〉), w ∈ A,

δ3F (·|w1)(·|w2)(x|w3) =
n∑

j1=1

n∑
j2=1

n∑
j3=1

[ 3∏
k=1

〈αjk, wk〉
]

fj1,j2,j3(〈α1, x〉, . . . , 〈αn, x〉), wk ∈ A,
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and
T (r)

q ((F ∗ G)q)(y) = T (p1)
q (F )(y/

√
2 )T (p2)

q (G)(y/
√

2 )

where 1/r = 1/p1 + 1/p2 − 1.

In [21], Chang and Skoug examined the effects that a “drift b(t)” has
on the various relationships that occur among the Fourier-Feynman
transform, the convolution product and the first variation for various
functionals on Wiener space.

Let b = b(t) be an R-valued function on [0, T ], and let h ∈ L2[0, T ]
with ‖h‖2 > 0. Let Xb : C0[0, T ]× [0, T ] → R be the Gaussian process

Xb(x, t) = Z(x, t) + b(t)

with Z(x, t) given by equation (6.9) above. Note that the Wiener
process W (x, t) = x(t) is free of drift and is stationary in time, the
process Z(x, t) is free of drift and is nonstationary in time, while the
process Xb(x, t) is subject to the drift b and is nonstationary in time.
Of course, if h(t) ≡ 1 and b(t) ≡ 0, then

Xb(x, t) = Z(x, t) = W (x, t) = x(t).

The analytic Fourier-Feynman transform of F with drift b, bTq(F ),
is defined by simply replacing equation (5.1) with

bTλ(F )(y) =
∫ anwλ

C0[0,T ]

F (y + Xb(x, ·))m(dx),

and the convolution product with drift b is defined by the formula

b(F ∗ G)q(y) =
∫ anfq

C0[0,T ]

F

(
y + Xb(x, ·)√

2

)
G

(
y − Xb(x, ·)√

2

)
m(dx).

Below for F and G in S, b and w in A and h ∈ L∞[0, T ], we list a
few of the formulas from [20] relating the first variation, the transform
with drift and the convolution product with drift. Note that all of the
transforms and convolutions that appear on the lefthand sides of the
equations below involve the drift, b, while all of the transforms which
appear on the righthand sides are transforms without drift:

bTq(F )(y) = Tq(F )(y + b),

bTq(b(F ∗ G)q)(y) = Tq(F )
(

y + 2b√
2

)
Tq(G)

(
y√
2

)
,
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b(bTq(F ) ∗b Tq(G))−q(y)

= Tq

(
F

( ·√
2

+
(
1 +

1√
2

)
b
)
G

( ·√
2

+
(
1 − 1√

2

)
b
))

(y),

bTq(δF (·|w))(y) = δTq(F )(y + b|w),

and

bTq

(
b(δF (·|w)∗δG(·|w))−q

)
(y) =δTq(F )

(
y+2b√

2

∣∣∣ w

)
δTq(G)

(
y√
2

∣∣∣ w

)
.

On page 636 of [34], Johnson and Lapidus give a brief discussion of
the Fourier-Feynman transform, the convolution product and the first
variation for functionals in the space S; see equation (6.7) above.

9. Conditional transforms and convolutions. In [47], Park and
Skoug, using the conditioning function

(9.1) X(x) = Z(x, T ) =
∫ T

0

h(s) dx(x), h ∈ L2[0, T ],

and using ideas from [24, 46] and [31], defined the concept of a general-
ized (see equations (6.9) and (6.10) above) conditional Fourier-Feynman
transform Tq(F |X)(y, η), and the concept of a generalized conditional
convolution product ((F ∗ G)q|X)(y, η). Then, under appropriate con-
ditions on F and G, they showed that

Tq

(
((F ∗ G)q|X)(·, η1)|X

)
(y, η2)

= Tq(F |X)
(

y√
2
,
η1 + η2√

2

)
Tq(G|X)

(
y√
2
,
η2 − η1√

2

)
.

Furthermore, they showed that if {η1, η2, η3, η} is in the solution set of
the system {

η −√
2 η1 − η3 = 0

η −√
2 η2 + η3 = 0,
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then
(
(Tq(F |X)(·, η1) ∗ Tq(G|X)(·, η2))−q|X

)
(y, η3)

= Tq

(
F

( ·√
2

)
G

( ·√
2

)∣∣X)
(y, η).

In [19], Chang, Park and Skoug using ideas from [47] and using the
conditioning function (9.1), obtained the following translation formula
for generalized conditional Fourier-Feynman transforms

Tq(F |X)(y + x0, η)

= exp
{

iq
〈 g

h2
, y

〉
+

iq

q
‖g/h‖2

2 +
iqx0(T )
a(T )

(
η +

x0(T )
2

)}

× Tq(F ∗|X)(y, η + x0(T ))

for appropriate h ∈ L∞[0, T ] and g ∈ L2[0, T ] where x0(t) =
∫ t

0
g(s) ds,

F ∗(z(x, ·)) = exp{−iq
∫ T

0
(g(s)/h2(s)) dz(x, s)}F (z(x, ·)) and where

a(t) is given by equation (6.11) above.

In Section 3 of [21], Chang and Skoug obtained 20 formulas listing
all of the effects that a drift b = b(t) has on conditional Fourier-
Feynman transforms, on conditional convolution products and on the
conditional Fourier-Feynman transform of the conditional convolution
product. For example, for b ∈ A given by equation (8.2) above and for
the conditioning functions X(x) = Z(x, T ) and Xb(x) = Z(x, T )+b(T ),
they showed that

bTq(F |Xb)(y, η) = Tq(F |X)(y + b, η − b(T )),

and that

bTq((b(F ∗ G)q|Xb)(·, η1)|Xb)(y, η2)

= Tq(F |X)
(

y + 2b√
2

,
η2 + η1 − 2b(T )√

2

)
Tq(G|X)

(
y√
2
,
η2 − η1√

2

)
.

In Section 4 of [21], Chang and Skoug studied the effects that a
drift b = b(t) has on the conditional convolution product of conditional
transforms. Note that the expression

(
b(bTq(F |Xb)(·, η1) ∗b Tq(G|Xb)(·, η2))−q|Xb

)
(y, η3)
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involves the drift b = b(t) in six different places. In each place where a
“b” occurs, one could either include it or not. Thus there are 26 = 64
possible cases of which 63 include the drift b. Below we list 2 of these
63 formulas:

(
b(bTq(F |Xb)(·, η1) ∗b Tq(G|Xb)(·, η2))−q|Xb

)
(y, η3)

=
(
(Tq(F |X)(· + b +

√
2 b, η1 − b(T )) ∗ Tq((G|X)

× (· − b +
√

2 b, η2 − b(T )))−q|X
)
(y, η3 − b(T ))

and

(
b(bTq(F |X)(·, η1) ∗b Tq(G|X)(·, η2))−q|Xb

)
(y, η3)

=
(
(Tq(F |X)(· + b +

√
2 b, η1) ∗ Tq(G|X)

× (· − b +
√

2 b, η2))−q|X
)
(y, η3 − b(T )).
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