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COMPACT MULTIPLICATION OPERATORS ON
WEIGHTED SPACES OF VECTOR-VALUED

CONTINUOUS FUNCTIONS

J.S. MANHAS

ABSTRACT. In this note we characterize the compact mul-
tiplication operators Mπ on the weighted locally convex spaces
CV0(X, E) of vector-valued continuous functions induced by
the operator-valued mappings π : X → B(E).

0. Introduction. Let L(X, E) be a vector space of functions from
a nonempty set X to a vector space E over the field C or R. Let T (E)
be a set of linear transformations from E to itself. If φ : X → X and
π : X → T (E) are mappings such that the weighted composite function
π.f ◦ φ belongs to L(X, E), whenever f ∈ L(X, E), then the mapping
taking f to π.f ◦φ is a linear transformation on L(X, E) and we denote
it by Wπ,φ. In case L(X, E) is a topological vector space and the
mapping Wπ,φ is continuous, we call Wπ,φ the weighted composition
operator on L(X, E) induced by the symbol (π, φ). In case φ is the
identity map, we call it the multiplication operator induced by π and
we denote it by Mπ. For details on these operators we refer to [11].

The compact weighted composition operators on spaces of contin-
uous functions have been studied extensively by many authors like
Kamowitz [5], Feldman [3], Singh and Summers [13], Jamison and
Rajagopalan [4], Takagi [14], Chan [2] and Singh and Manhas [12].
As we know, the class of weighted composition operators include the
class of multiplication operators and the class of composition opera-
tors. One natural question arises: is it possible to get the behavior of
the compact multiplication operators from the study of the compact
weighted composition operators? In general, it is not possible since the
conditions obtained earlier for a weighted composition operator to be
compact is not satisfied by the identity map φ. So it motivates us to

1991 AMS Mathematics Subject Classification. Primary 47B38, 47B07, Sec-
ondary 47A56, 46E10, 46E40.

Key words and phrases. Compact operators, multiplication operators, weighted
locally convex spaces, operator-valued mappings.

The research was partially supported by CSIR Grant No. 9/100/92-EMR-I.
Received by the editors on February 10, 1999.

Copyright c©2004 Rocky Mountain Mathematics Consortium

1047



1048 J.S. MANHAS

look for a separate study of the compact multiplication operators on
the weighted spaces of vector-valued continuous functions which include
many nice concrete spaces of continuous functions. Our main theorem
makes sure that there are nonzero compact multiplication operators on
these spaces of continuous functions whereas it is not the case with
Lp-spaces. In [9], Singh and Kumar have shown that zero operator is
the only compact multiplication operator on Lp-spaces (with nonatomic
measure). Moreover, in [15], Takagi has proved that there is no nonzero
compact weighted composition operator on Lp-spaces (with nonatomic
measure).

1. Preliminaries. Let C(X, E) be the vector space of all continuous
functions from a completely regular Hausdorff space X to a nonzero
locally convex Hausdorff space E. Let cs (E) be the set of all continuous
semi-norms on E, and let (B(E), u) be the locally convex space of all
continuous linear operators on E, where u denotes the topology of
uniform convergence on bounded subsets of E. Let V be a directed
upward set of nonnegative upper semi-continuous functions on X. Each
element of V is called a ‘weight’ on X. The weighted spaces of vector-
valued continuous functions associated with the system of weights V
are introduced as follows:

CV0(X, E) = {f ∈ C(X, E) : vf vanishes at infinity on
X for each v ∈ V },

and

CVb(X, E) = {f ∈ C(X, E) : vf(X) is bounded in E for each v ∈ V }.
Let v ∈ V and p ∈ cs (E). For f ∈ C(X, E), if we define

‖f‖v,p = sup{v(x)p(f(x)) : x ∈ X},
then ‖ ‖v,p can be regarded as a semi-norm on either CVb(X, E) or
CV0(X, E), and the family {‖ ‖v,p : v ∈ V, p ∈ cs (E)} of semi-norms
defines a Hausdorff locally convex topology on each of these spaces.
With this topology the vector spaces CV0(X, E) and CVb(X, E) are
called the weighted locally convex spaces of vector-valued continuous
functions. They have a basis of closed absolutely convex neighborhoods
of the origin of the form

Bv,p = {f ∈ CVb(X, E) resp. CV0(X, E) : ‖f‖v,p ≤ 1}.
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For details on these spaces, we refer to Bierstedt [1], Nachbin [6] and
Prolla [7].

2. Compact multiplication operators. At the outset, we shall
record certain definitions and results which are needed to establish the
desired results.

An operator A ∈ B(E) is said to be compact if it maps bounded
subsets of E into relatively compact subsets of E. A completely regular
Hausdorff space X is called a KR-space, if a function f : X → R is
continuous if and only if f |K is continuous for each compact subset K of
X. Clearly all locally compact or metrizable spaces are KR-spaces. A
system of weights V is said to satisfy condition (∗) if for each compact
subset K of X, there exists v ∈ V such that inf {v(x) : x ∈ K} > 0
(which implies that the topology of CV0(X, E) is stronger than uniform
convergence on compact subsets of X). A completely regular Hausdorff
space X is said to be a VR-space with respect to a given system V
of weights on X if a function f : X → R is necessarily continuous
whenever, for each v ∈ V , the restriction of f to {x ∈ X : v(x) ≥ 1}
is continuous. Moreover, if V satisfies the condition (∗), then any KR-
space X is a-fortiori a VR-space. A subset H ⊆ C(X, E) is called
equicontinuous at x0 ∈ X if, for every neighborhood N of zero in E,
there exists a neighborhood G of x0 in X such that f(x)− f(x0) ∈ N ,
for all f ∈ H and x ∈ G. If H is equicontinuous at every point of
X, we say that H is equicontinuous on X. The assumption that, for
each x ∈ X, there exists f ∈ CV0(X) such that f(x) 	= 0 will be in
force throughout this section for completely regular Hausdorff spaces
X. The following compactness criterion can be found in [8].

Theorem 2.1. Let X be a completely regular Hausdorff VR-space,
and let E be a quasi-complete locally convex Hausdorff space. Then a
subset H ⊆ CV0(X, E) is relatively compact if and only if

(a) H is equicontinuous;

(b) H(x) = {f(x) : f ∈ H} is relatively compact in E for each x ∈ X;
and

(c) vH vanishes at infinity on X for each v ∈ V , i.e., given v ∈ V ,
p ∈ cs (E) and ε > 0, there exists a compact set K ⊆ X such that
v(x)p(f(x)) < ε for every x ∈ X \ K and f ∈ H.
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Corollary 2.2. Let V be a system of constant weights on X. Let X
be a locally compact Hausdorff space, and let E be a quasi-complete
locally convex Hausdorff space. Then a subset H ⊆ CV0(X, E) is
relatively compact if and only if

(a′) H is equicontinuous;

(b′) H(x) is relatively compact in E for each x ∈ X; and

(c′) H vanishes at infinity on X, i.e., given p ∈ cs (E), and ε > 0,
there exists a compact set K ⊆ X such that p(f(x)) < ε, for every
x ∈ X \ K and f ∈ H.

Theorem 2.3. Let X be a locally compact Hausdorff space, and let
E be a Banach space. Let V be a system of weights on X with condition
(∗). Let π : X → B(E) be an operator-valued mapping. Then Mπ is a
compact multiplication operator on CV0(X, E) if and only if

(i) π : X → B(E) is continuous in the uniform operator topology;

(ii) for every x ∈ X, πx is a compact operator on E;

(iii) π : X → B(E) vanishes at infinity uniformly, i.e., for every
ε > 0, there exists a compact set K ⊆ X such that ‖πx‖ < ε, for every
x ∈ X \ K;

(iv) for every bounded set F ⊆ CV0(X, E), x0 ∈ X and ε > 0, there
exists a neighborhood G of x0 such that

‖πx0(f(x) − f(x0))‖ < ε, for every x ∈ G and f ∈ F .

Proof. Firstly, we show that these conditions are necessary for Mπ

to be a compact multiplication operator on CV0(X, E). To establish
condition (i), we fix x0 ∈ X and ε > 0. Consider the set B = {y ∈
E : ‖y‖ ≤ 1}. Let K0 be a neighborhood of x0 in X such that K0

is compact. According to [6, p. 69], there exists h ∈ CV0(X) such
that h(K0) = 1. For each y ∈ B, we define the function gy : X → E
as gy(x) = h(x)y for every x ∈ X. Then the set S = {gy : y ∈ B} is
bounded in CV0(X, E). Thus, according to Theorem 2.1, the set Mπ(S)
is equicontinuous on X. This implies that there exists a neighborhood
G of x0 such that

‖πx(gy(x)) − πx0(gy(x0))‖ < ε, for every x ∈ G and y ∈ B.
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Further, it implies that ‖πx − πx0‖ < ε, for every x ∈ G ∩ K0. This
proves that π : X → B(E) is continuous in the uniform operator
topology. To establish condition (ii), we fix x0 ∈ X and consider a
bounded set B ⊆ E. Choose f ∈ CV0(X) such that f(x0) = 1. For
each y ∈ B, we define the function gy : X → E as gy(x) = f(x)y, for
every x ∈ X. Clearly the set S = {gy : y ∈ B} is bounded in CV0(X, E)
and hence the set Mπ(S) is relatively compact in CV0(X, E). Again
in view of Theorem 2.1, the set Mπ(S)(x0) = {πx0(y) : y ∈ B} is
relatively compact in E. This proves that πx0 is a compact operator
on E. Now we shall establish condition (iii). Let ε > 0 and let
B = {y ∈ E : ‖y‖ ≤ 1}. For x0 ∈ X, we choose f ∈ CV0(X) such
that f(x0) 	= 0. Again, we may select v ∈ V such that v(x0) ≥ 1. Now
there exists λv > 0 such that v(x)|f(x)| ≤ λv, for every x ∈ X. For
each y ∈ B, if we define the function gy : X → E as gy(x) = f(x)y, for
every x ∈ X, then the set F = {gy : y ∈ B} is bounded in CV0(X, E).
Since the set Mπ(F ) is relatively compact in CV0(X, E), it follows
from Theorem 2.1 that the set v.Mπ(F ) vanishes at infinity. Thus
there exists a compact set K of X such that ‖v(x)πx(gy(x))‖ < ελv,
for every x ∈ X \ K and y ∈ B. That is, for each x ∈ X \ K, we
have ‖πx(v(x)f(x)y)‖ < ελv, for every y ∈ B. Now it readily follows
that ‖πx‖ < ε, for every x ∈ X \ K. Finally, to establish condition
(iv), let F ⊆ CV0(X, E) be any nonzero bounded set. Fix x0 ∈ X
and ε > 0. Let K0 be a neighborhood of x0 such that K0 is compact.
Then there exists v ∈ V such that β = inf {v(x) : x ∈ K0} > 0. Let
B = {v(x)f(x) : x ∈ X, f ∈ F}. Then B is bounded and there exists
m > 0 such that ‖v(x)f(x)‖ ≤ m for every x ∈ X and f ∈ F . Since
π : X → B(E) is continuous, there exists a neighborhood G1 of x0 such
that ‖(πx − πx0)(y)‖ < (εβ/2m), for every x ∈ G1 and for all y ∈ E
such that ‖y‖ ≤ 1. Further, it implies that

(∗) ‖πx(f(x)) − πx0(f(x))‖ <
ε

2
,

for every x ∈ G1 ∩ K0 and f ∈ F . Again, since the set Mπ(F ) is rela-
tively compact in CV0(X, E) and by Theorem 2.1, it is equicontinuous
on X. Thus there exists a neighborhood G2 of x0 such that

(∗∗) ‖πx(f(x)) − πx0(f(x0))‖ <
ε

2
for every x ∈ G2 and f ∈ F . Let G = G1 ∩ G2 ∩ K0. Then from (∗)
and (∗∗), it follows that ‖πx0(f(x) − f(x0))‖ < ε, for every x ∈ G and
f ∈ F . With this the proof of the necessary part is complete.
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Now we shall show that these conditions are sufficient for the com-
pactness of Mπ on CV0(X, E). Condition (iii) implies that there exists
λ > 0 such that ‖πx‖ ≤ λ for every x ∈ X. Let v ∈ V . Then
there exists u ∈ V such that λv ≤ u. Now it is easy to see that
v(x)‖πx(y)‖ ≤ u(x)‖y‖, for every x ∈ X and y ∈ E. Therefore, ac-
cording to [10, Theorem 2.1], it follows that Mπ is a multiplication
operator on CV0(X, E). Now we shall show that Mπ is a compact
operator on CV0(X, E). Let F ⊆ CV0(X, E) be a bounded set. We
shall show that the set Mπ(F ) satisfies all the conditions of Theo-
rem 2.1. Fix x0 ∈ X and ε > 0. Let K0 be a neighborhood of
x0 such that K0 is compact. Then there exists v ∈ V such that
∝= inf {v(x) : x ∈ K0} > 0. Let B = {v(x)f(x) : x ∈ X, f ∈ F}.
Then there exists k > 0 such that ‖v(x)f(x)‖ ≤ k for every x ∈ X and
f ∈ F . Since π : X → B(E) is continuous, there exists a neighborhood
G1 of x0 such that ‖(πx − πx0)‖ < (εα/2k) for every x ∈ G1. Further,
it implies that

(1) ‖πx(f(x)) − πx0(f(x))‖ <
ε

2
,

for all x ∈ G1 ∩K0 and f ∈ F . Again, by condition (iv), there exists a
neighborhood G2 of x0 such that

(2) ‖πx0(f(x) − f(x0))‖ <
ε

2

for every x ∈ G2 and f ∈ F . Let G = G1 ∩ G2 ∩ K0. Then, using (1)
and (2), we have ‖πx(f(x)) − πx0(f(x0))‖ < ε, for every x ∈ G and
f ∈ F . This proves that the set Mπ(F ) is equicontinuous on X. Also,
for each x ∈ X, the set Mπ(F )(x) is relatively compact in E since πx

is a compact operator on E, and the set {f(x) : f ∈ F} is bounded in
E. Finally we show that, for each v ∈ V , the set v.Mπ(F ) vanishes at
infinity. Fix v ∈ V and ε > 0. Let B = {v(x)f(x) : x ∈ X, f ∈ F}.
Then there exists λ > 0 such that ‖v(x)f(x)‖ ≤ λ, for every x ∈ X and
f ∈ F . According to condition (iii), there exists a compact set K ⊆ X
such that ‖πx‖ < ε/λ for every x ∈ X \ K. That is, ‖πx(y)‖ < ε/λ,
for every x ∈ X \ K and y ∈ E such that ‖y‖ ≤ 1. Further, it readily
follows that v(x)‖πx(f(x))‖ < ε for every x ∈ X \ K and f ∈ F . This
proves that the set v.Mπ(F ) vanishes at infinity on X. Thus all the
conditions of Theorem 2.1 are satisfied by the set Mπ(F ). Hence Mπ is
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a compact multiplication operator on CV0(X, E). With this the proof
of the theorem is complete.

In case V is a system of constant weights, we can extend the above
result to the locally convex Hausdorff space E. This we shall prove in
the following theorem.

Theorem 2.4. Let X be a locally compact Hausdorff space, and let E
be a quasi-complete locally convex Hausdorff space. Let V be a system
of constant weights on X. Then Mπ : CV0(X, E) → CV0(X, E) is a
compact multiplication operator if and only if

(i) π : X → B(E) is continuous in the topology of uniform conver-
gence on bounded subsets of E;

(ii) for every p ∈ cs (E), there exists q ∈ cs (E) such that p(πx(y)) ≤
q(y), for every x ∈ X and for every y ∈ E;

(iii) for every x ∈ X, πx is a compact operator on E;

(iv) π : X → B(E) vanishes at infinity uniformly, i.e., for every
p ∈ cs (E), bounded set B ⊆ E and ε > 0, there exists a compact
set K ⊆ X such that ‖πx‖p,B < ε, for every x ∈ X \ K (where
‖πx‖p,B = sup{p(πx(y)) : y ∈ B},

(v) for every bounded set F ⊆ CV0(X, E), x0 ∈ X, p ∈ cs (E) and
ε > 0, there exists a neighborhood G of x0 such that

p(πx0(f(x) − f(x0))) < ε for every x ∈ G and f ∈ F.

Proof. Assume that conditions (i) through (v) hold. According to [10,
Theorem 2.1], conditions (i) and (ii) imply that Mπ is a multiplication
operator on CV0(X, E). Let F ⊆ CV0(X, E) be a bounded set. In order
to show that Mπ is a compact operator, it is enough to prove that the
set Mπ(F ) satisfies all the conditions of Corollary 2.2. Fix x0 ∈ X,
p ∈ cs (E) and ε > 0. Consider the set B = {f(x) : x ∈ X, f ∈ F}.
Obviously the set B is bounded in E. By condition (i), there exists a
neighborhood G1 of x0 such that ‖πx−πx0‖p,B < ε/2 for every x ∈ G1.
Further it implies that

(a) p(πx(f(x)) − πx0(f(x))) <
ε

2
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for every x ∈ G1 and f ∈ F . Again, by condition (v), there exists a
neighborhood G2 of x0 such that

(b) p(πx0(f(x)) − πx0(f(x0))) <
ε

2

for every x ∈ G2 and f ∈ F . Let G = G1 ∩ G2. Then, from (a) and
(b), it follows that p(πx(f(x)) − πx0(f(x0))) < ε for every x ∈ G and
f ∈ F . This proves that the set Mπ(F ) is equicontinuous on X. Let
x0 ∈ X. Then clearly the set Mπ(F )(x0) = {πx0(f(x0)) : f ∈ F} is
relatively compact in E since πx0 is a compact operator on E and the
set {f(x0) : f ∈ F} is bounded in E. Finally we show that the set
Mπ(F ) vanishes at infinity on X. For this, we fix p ∈ cs (E) and ε > 0.
Since the set B = {f(x) : x ∈ X, f ∈ F} is bounded in E, according to
condition (iv) there exists a compact set K ⊆ X such that ‖πx‖p,B < ε
for every x ∈ X \K. Further, it implies that p(πx(f(x))) < ε for every
x ∈ X \ K and f ∈ F . This proves that the set Mπ(F ) vanishes at
infinity uniformly on X. With this the proof of the sufficient part is
complete.

Now we shall show that conditions (i) through (v) are necessary
for Mπ to be a compact multiplication operator on CV0(X, E). Let
x0 ∈ X. Fix p ∈ cs (E), bounded set B ⊆ E and ε > 0. Let
G1 be a neighborhood of x0 in X such that G1 is compact. Choose
f ∈ CV0(X) such that f(G1) = 1. For each y ∈ B, we define the
function gy : X → E as gy(x) = f(x)y, for every x ∈ X. Clearly
the set S = {gy : y ∈ B} is bounded in CV0(X, E). According to
Corollary 2.2, the set Mπ(S) is equicontinuous on X. Thus there exists
a neighborhood G2 of x0 such that

p(πx(gy((x)) − πx0(gy(x0))) < ε,

for every x ∈ G2 and y ∈ B. Further, it implies that

‖πx − πx0‖p,B < ε,

for every x ∈ G1 ∩ G2. This establishes condition (i). The proof of
condition (ii) follows from [10, Theorem 2.1]. Again, let x0 ∈ X and
B ⊆ E be a bounded set. Select f ∈ CV0(X) such that f(x0) = 1.
For each y ∈ B, define the function gy(x) = f(x)y for every x ∈ X.
Let S = {gy : y ∈ B}. Then the set Mπ(S) is relatively compact in
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CV0(X, E). By Corollary 2.2, the set Mπ(S)(x0) = πx0(B) is relatively
compact in E. This proves that πx0 is a compact operator on E. To
prove condition (iv), we suppose that π : X → B(E) does not vanish
at infinity on X. This implies that there exists q ∈ cs (E), bounded
set B ⊆ E and ε > 0 such that for every compact set K ⊆ X, there
exists xk ∈ X \ K for which ‖πxk

‖q,B ≥ ε. Further, it implies that
there exists yk ∈ B such that q(πxk

(yk)) ≥ ε. In this fashion, for each
compact set K ⊆ X, we select fk ∈ CV0(X) such that 0 ≤ fk ≤ 1
and fk(xk) = 1. For each compact set K ⊆ X, we define the function
gk : X → E as gk(x) = fk(x)yk for every x ∈ X. It is easy to see that
the set S = {gk : K ⊆ X, a compact set} is bounded in CV0(X, E).
Again, since the set Mπ(S) is relatively compact in CV0(X, E), by
Corollary 2.2, the set Mπ(S) vanishes at infinity on X. Thus there
exists a compact set K0 ⊆ X such that q(πx(gk(x))) < ε/2, for every
x ∈ X \ K0 and for every compact set K ⊆ X. From this, it follows
that q(πx(fk0(x)yk0)) < ε/2, for every x ∈ X \ K0. In particular, for
x = xk0 , we have

ε ≤ q(πxk0
(yk0)) <

ε

2
,

which is a contradiction. This proves that π : X → B(E) vanishes
at infinity on X. Finally we shall establish condition (v). Let F ⊆
CV0(X, E) be a bounded set. Fix x0 ∈ X, p ∈ cs (E) and ε > 0. If we
consider the set B = {f(x) : x ∈ X, f ∈ F} ⊆ E, then there exists a
neighborhood G1 of x0 such that ‖πx−πx0‖p,B < ε/2 for every x ∈ G1.
Thus we get

(∗) p(πx(f(x)) − πx0(f(x))) <
ε

2
,

for every x ∈ G1 and f ∈ F . Again, since the set Mπ(F ) is relatively
compact in CV0(X, E), according to Corollary 2.2, the set Mπ(F ) is
equicontinuous on X. Thus there exists a neighborhood G2 of x0 such
that

(∗∗) p(πx(f(x)) − πx0(f(x0))) <
ε

2
,

for every x ∈ G2 and f ∈ F . Let G = G1 ∩ G2. Then, from (∗) and
(∗∗) we have

p(πx0(f(x)) − πx0(f(x0))) < ε,
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for every x ∈ G and f ∈ F . This proves condition (v). With this the
proof of the theorem is complete.

Example 2.5. Let X = N, the set of natural numbers with
discrete topology, and let V = K+(N), the set of positive constant
functions on N. Let E = Cb(R) be a Banach space of bounded
continuous complex-valued functions on R, the set of reals with the
usual topology. For each n ∈ N, let φn : R → R be the map
defined by φn(t) = n, for every t ∈ R. Then each φn induces the
compact composition operator Cφn

on Cb(R), where Cφn
is defined as

Cφn
(f) = f ◦φn, for every f ∈ Cb(R). Now, if we define π : N → B(E)

as π(n) = (1/n)Cφn
, for every n ∈ N, then, in view of Theorem 2.3, it

follows that Mπ is a compact multiplication operator on C0(N, E). In
case we take E = C(R), with compact-open topology, then in view of
Theorem 2.4, the mapping π : N → B(E), defined as above does not
induce the compact multiplication operator Mπ on C0(N, E). But if
π : N → B(E) is defined as π(n) = (1/n)A, for every n ∈ N, where
A is any nonzero compact homomorphism on C(R), then it turns out
that Mπ is a compact multiplication operator on C0(N, E).
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