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SPACES OF OPERATORS, c0 AND l1

ELIZABETH M. BATOR AND PAUL W. LEWIS

ABSTRACT. If Y is a Banach space so that l1 embeds
isomorphically as a complemented subspace of the separable
space Y ∗ but c0 does not embed as a subspace of Y , then it
is shown that there is an infinite dimensional Banach space X
so that l1 embeds complementably in X ⊗γ Y ∗ but c0 does
not embed in L(X, Y ).

In a classic paper on the structure of Banach spaces [2], Bessaga and
Pelczynski established the following result.

Theorem 1. If c0 embeds isomorphically in the dual X∗ of the
Banach space X, then l∞ embeds in X∗ and l1 embeds complementably
in X.

The following complete generalization of Theorem 1 was established
in [7]. In this theorem (e∗n) denotes the canonical unit vector basis of l1

and X⊗γ Y ∗ denotes the greatest crossnorm tensor product completion
of X and Y ∗.

Theorem 2. If X is an infinite dimension Banach space and
c0 embeds in L(X, Y ), then l∞ embeds in L(X, Y ) and there is an
isomorphism J : l1 → X⊗γ Y ∗ so that J(l1) is complemented in X⊗Y ∗

and J(e∗n) is a finite rank tensor for each n.

Of course, the converse of Theorem 1 is immediate, i.e., if l1 embeds
complementably in X, then certainly l∞ (and thus c0) embeds in
X∗. The status of the converse of Theorem 2 is not clear at all.
There is an example on page 215 of [7] which purports to show that
the complementability of l1 in the greatest crossnorm tensor product
completion of X and Y ∗ does not imply that c0 embeds in the space
L(X, Y ) of all bounded linear transformations from X to Y . However,
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this example is based on an erroneous statement in [3]. Specifically, it
is asserted on page 249 of [3] that lp ⊗γ lp contains a complemented
copy of l1 if 1 < p < ∞. If this statement were true for p > 2, then
l1 would embed as a complemented subspace in the dual of L(lp, lp

′
),

where 1/p + 1/p′ = 1. However, it is well documented that this space
of operators is reflexive, e.g., see Kalton [5].

In this note we show that there is an isomorphism J : l1 → X ⊗γ Y ∗

so that J(e∗n) is finite rank for each n and J(l1) is complemented if and
only if c0 embeds in L(X, Y ∗∗). Further a celebrated result of James
[4] and a theorem of Bator [1] are used to construct a family of spaces
X ⊗γ Y ∗ so that l1 is complemented in each of these spaces but c0 does
not embed in L(X, Y ). This construction depends upon Theorem 2
above.

Theorem 3. If X and Y are arbitrary Banach spaces, then c0 embeds
isomorphically in L(X, Y ∗∗) if and only if there is an isomorphism
J : l1 → X ⊗γ Y ∗ so that J(e∗n) is a finite rank tensor for every n and
J(l1) is complemented in X ⊗γ Y ∗.

However, if Y is a Banach space so that l1 embeds isomorphically as a
complemented subspace of the separable space Y ∗ but c0 does not embed
as a subspace of Y , then there is an infinite dimensional Banach space
X and an isomorphism J : l1 → X⊗γ Y ∗ so that J(l1) is complemented
in X ⊗γ Y ∗, J(e∗n) is a finite rank tensor for each n and c0 does not
embed in L(X, Y ).

Proof. Since (X ⊗γ Y ∗)∗ is isometrically isomorphic to L(X, Y ∗∗), it
is clear from Theorem 2 (or the classical Bessaga-Pelczynski theorem)
that c0 embeds in L(X, Y ∗∗) if and only if l1 embeds as a complemented
subspace in X ⊗γ Y ∗. Thus, to finish the proof of the first assertion in
the theorem, it suffices to show that if c0 ↪→ L(X, Y ∗∗), then there is
an isomorphism J : l1 → X ⊗γ Y ∗ so that J(l1) is complemented and
J(e∗n) is finite rank for each n.

Suppose then that T : c0 → L(X, Y ∗∗) is an isomorphism, (xn) is
a bounded sequence in X and (y∗

n) is a bounded sequence in Y ∗ so
that 〈T (en)xn, y∗

n〉 = 1 for each n. The proof of Theorem 1 in [6] and
Theorem 1 in [7] shows that there is a sequence (un) of differences of
the rank one tensors (xn ⊗ y∗

n)∞n=1 so that (un) is equivalent to (e∗n)
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and [un] is complemented in X ⊗γ Y ∗.

Now suppose that Y satisfies the hypotheses of the second portion
of the theorem, e.g., see [4]. Use Theorem 4 of [1] and let X be an
infinite dimensional Banach space so that every member of L(X, Y ) is
compact, i.e., L(X, Y ) = K(X, Y ).

First we show that c0 does not embed isomorphically in L(X, Y ).
Suppose (to the contrary) that c0 ↪→ L(X, Y ). By Theorem 2 above,
l∞ ↪→ L(X, Y ). Since L(X, Y ) = K(X, Y ), a result of Kalton [5, p.
271], shows that l∞ ↪→ X∗ or l∞ ↪→ Y . The hypothesis that c0 does not
embed in Y precludes the second possibility. Therefore we assume that
l∞ ↪→ X∗. An application of Theorem 1 or Theorem 2 above ensures
that l1 embeds complementably in X. Theorem 5 of [1] produces the
desired contradiction. That is, if Z is any separable infinite dimensional
subspace of Y , then there is a bounded linear operator S from l1 onto
Z. Projecting X onto l1 and following this projection with S produces
a noncompact member of L(X, Y ).

To finish the argument, it suffices to show that l1 embeds appropri-
ately as a complemented subspace of X ⊗γ Y ∗. Suppose that W is a
subspace of Y ∗ so that W is isomorphic to l1 and P : Y ∗ → W is a
projection. Let x be any norm-1 element of X, and let Q : X → [x] be
a projection. Then [x] ⊗γ W is isomorphic to l1, e∗n is identified with
a rank one tensor with respect to this isomorphism, and Q ⊗ P is a
projection onto [x] ⊗γ W .
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