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SHARPENING HÖLDER’S AND POPOVICIU’S
INEQUALITIES VIA FUNCTIONALS

S. ABRAMOVICH, J. PEČARIĆ AND S. VAROŠANEC

ABSTRACT. We prove some inequalities involving positive
isotonic linear functionals which generalize Hölder’s inequality
and its reverse version. We also sharpen Jensen’s inequalities
for positive isotonic linear functionals.

1. Introduction. In the articles [1] and [2] sharpenings of the inte-
gral versions of Hölder’s and Jensen’s inequalities were obtained. Here
we improve these results using a positive isotonic functional leading
to some new generalizations of Hölder’s and Popoviciu’s inequalities.
The new results sharpen Hölder’s and Popoviciu’s inequalities and their
reversed versions both in discrete and integral forms.

Let E be a nonempty set and L be a linear class of real-valued
functions f : E → R having the properties:

L1. f, g ∈ L ⇒ (af + bg) ∈ L for all a, b ∈ R;

L2. 1 ∈ L, i.e., if f(t) = 1 for all t ∈ E, then f ∈ L.

Let A be a positive isotonic linear functional on L. That is, we assume
that

A1. A(af + bg) = aA(f) + bA(g) for f, g ∈ L, a, b ∈ R (linearity);

A2. f ∈ L, f(t) ≥ 0 on E ⇒ A(f) ≥ 0 (positive isotonic).

Functional versions of well-known inequalities and related results
could be found in [10]. Here, we mention results related to Jensen’s
inequality.

Theorem A [10, p. 112] (Jensen’s inequality). Let L satisfy condi-
tions L1, L2 and A satisfy conditions A1 and A2. Suppose that k ∈ L
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with k ≥ 0 on E, A(k) > 0, and that φ is a continuous convex function
on an interval I ⊆ R. Then for an arbitrary function g : E → I such
that kg ∈ L, kφ(g) ∈ L and A(kg)/A(k) ∈ I, we have

(1.1) φ

(
A(kg)
A(k)

)
≤ A(kφ(g))

A(k)
.

If φ is a concave function, then the reverse inequality in (1.1) holds.

Also in [10, p. 124] and [9] the following related result is proved.

Theorem B. Let E, L, A be defined as in Theorem A and assume that
p ∈ L with p ≥ 0 on E and 0 < A(p) < u ∈ R, (ua−A(pg))/(u−A(p)) ∈
I, a ∈ I, pg ∈ L and pφ(g) ∈ L. If φ is convex continuous on an
interval I, then

(1.2) φ

(
ua − A(pg)
u − A(p)

)
≥ uφ(a) − A(pφ(g))

u − A(p)
.

If φ is a concave continuous function, then the reverse inequality in
(1.2) holds.

2. Generalized Hölder’s and Popoviciu’s inequality. Here we
present some inequalities involving isotonic linear functionals, and con-
vex and concave functions, which generalize Hölder’s and Popoviciu’s
inequalities. We extensively research the properties of the functions
Gi,j which are defined as follows:

Definition 1. Let fi, i = 1, 2, . . . , m − 1 be positive functions
on (0,∞) and let xi > 0, i = 1, . . . , m. For r ≤ s, r, s ∈
{1, 2, . . . , m − 1}, we denote

Gr,s(xr, xr+1, . . . , xs+1) = xrfr

(
xr+1

xr
fr+1

(
xr+2

xr+1
· · · fs

(
xs+1

xs

)))

and
Gs+1,s(x) = x.

If any of the xi = 0, then we define that Gr,s(xr, xr+1, . . . , xs+1) = 0.
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Definition 2. Denote S to be a set of positive convex functions on
(0,∞) and T a set of positive concave functions on (0,∞).

Theorem 1. Let L satisfy conditions L1, L2, and A satisfy condi-
tions A1 and A2. Let ai ∈ L, i = 1, . . . , m be positive functions on E,
A(ai) > 0, i = 1, . . . , m, and let fi ∈ S, i = 1, . . . , m − 1 be such that
f1, . . . , fm−2 are increasing. Suppose that Gi,m−1(ai, . . . , am) ∈ L.

Then

(2.1) A(G1,m−1(a1, . . . , am)) ≥ G1,m−1(A(a1), . . . , A(am)).

If fi ∈ T , i = 1, . . . , m − 1, and f1, . . . , fm−2 are increasing, then the
reverse of (2.1) holds.

Proof. Using m − 1 times Jensen’s inequality (1.1) for the convex
functions fi > 0, i = 1, . . . , m − 1, as f1, . . . , fm−2 are positive
increasing and as A is positive isotonic, we obtain

A(G1,m−1(a1, . . . , am))

= A

(
a1f1

(
G2,m−1(a2, . . . , am)

a1

))

≥ A(a1)f1

(
A(G2,m−1(a2, . . . , am)

A(a1)

)

≥ A(a1)f1

(
A(a2)
A(a1)

f2

(
A(G3,m−1(a3, . . . , am)

A(a2)

))

≥ · · ·
≥ A(a1)f1

(
A(a2)
A(a1)

f2

(
A(a3)
A(a2)

· · · fm−1

(
A(am)

A(am−1)

)))

= G1,m−1(A(a1), . . . , A(am)).

The proof of the second statement is similar and thus omitted.

The following are some examples of positive isotonic linear functionals
[10, p. 49], [6, p. 523], [15, p. 452]:

(a) The range of x is {1, 2, . . . , m} or {1, 2, . . . }, so that f(x) is a
(finite or infinite) sequence {a1, a2, . . . }, A(f) =

∑
ciai/

∑
ci where

ci ≥ 0, and 0 <
∑

ci < ∞.
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(b) E is the interval (0, 1), L is the class of all bounded functions on
E, A(f) is the Banach integral of f over (0, 1).

(c) E is a set of all real numbers, L the class of all uniformly almost
periodic functions, A(f) is the mean value of f .

(d) More generally, E is any group, L is the class of all functions
almost periodic on E, and A(f) is von Neumann’s mean value of f .

(e) L = {g : [0, 1] → R such that limx→1 g(x) is finite}, A : L → R,
A(g) = limx→1 g(x).

(f) Let (Ω, Σ, µ) be a space with positive finite measure. Let L =
L1(Ω, Σ, µ). For f ∈ L1 define

A(f) =
1

µ(Ω)

∫
Ω

f(x) dµ(x).

Remark 1. The domain of definition and the range of the functions fi

can be changed, i.e., Theorem 1 still holds if fi are defined on different
intervals Ii ⊆ R and if the positivity of the functions fi, i = 1, . . . , m−1
is omitted. In that case we must suppose a number of additional
assumptions as follows:

fi are continuous on Ii, i = 1, . . .m − 1,(*)

range
(

1
ai

Gi+1,m−1(ai+1, . . . , am)
)

⊆ Ii, i = 1, . . .m − 1,

range
(

A(ai+1)
A(ai)

fi+1

)
⊆ Ii, i = 1, 2, . . . , m − 2,

A(Gi+1,m−1(ai+1, · · · , am))
A(ai)

∈ Ii, i = 1, . . . , m − 1.

For simplicity, without loss of generality, all our following results will
be stated for positive functions fi, i = 1, . . . , m− 1, defined on (0,∞),
but their domain and range can be changed according to this remark.

Remark 2. Let A1, . . . , Am be functionals satisfying A1 and A2 and

A1(f) ≥ A2(f) ≥ · · · ≥ Am(f), for all f ∈ L.
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If ai, i = 1, . . . , m and fi, i = 1, . . . , m − 1 satisfy the assumptions of
Theorem 1 and if fm−1 is increasing, then the following holds

A1(G1,m−1(a1, . . . , am)) ≥ G1,m−1(A1(a1), . . . , Am(am)).

Remark 3. The conditions of convexity and monotonocity of the
functions f1, . . . , fm−1 can be changed. If f1, . . . , fm−1 satisfy (∗) and
if f1, . . . , fi−1 are convex increasing functions, fi is decreasing convex,
fi+1, . . . , fm−2 are increasing concave functions and fm−1 is concave,
then inequality (2.1) holds. Similarly, if f1, . . . , fm−1 satisfy (∗) and if
f1, . . . , fi−1 are concave increasing functions, fi is decreasing concave,
fi+1, . . . , fm−2 are increasing convex functions and fm−1 is convex,
then the reverse of (2.1) holds.

Remark 4. If E = {1, 2, . . . , n} and A(f) =
∑n

i=1 f(k) =
∑n

i=1 fk,
then inequality (2.1) transforms to inequality (2.1) from [3].

The next theorem is a consequence of Theorem 1 and it is a functional
version of Hölder’s inequality and its reverse.

Theorem 2. Let A and ai, i = 1, . . . , m satisfy the assumptions of
Theorem 1. If pi > 0, i = 1, . . . , m are such that

∑m
i=1 1/pi = 1, and∏m

i=1 a
1/pi

i ∈ L, then

(2.2) A

( m∏
i=1

a
1/pi

i

)
≤

m∏
i=1

A(ai)1/pi .

If p1 > 0 and pi < 0, i = 2, . . . , m are such that
∑m

i=1 1/pi = 1, then a
reverse of (2.2) holds.

Proof. Let pj , j = 1, . . . , m, m ≥ 2, be positive numbers that satisfy∑m
j=1 1/pj = 1. Let us define the numbers qj , j = 1, . . . , m − 1, as

(2.3)
1
q1

= 1 − 1
p1

,
1
qj

= 1 − q1q2 · · · qj−1

pj
, j = 2, . . . , m − 1.
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It is easy to check, by induction, that

1
q1q2 · · · qj

= 1 − 1
p1

− 1
p2

− · · · − 1
pj

,

and therefore, q1, q2, . . . , qm−1 are positive real numbers.

Let us define the functions fi as fi(x) = x1/qi , i = 1, . . . , m−1. Then
fi, i = 1, . . . , m − 1, are concave increasing functions and the reverse
of (2.1) holds, i.e.,

A

(
a1

(
a2

a1

(
a3

a2
· · ·

(
am

am−1

)1/qm−1
)1/q2

)1/q1
)

≤ A(a1)
(

A(a2)
A(a1)

(
A(a3)
A(a2)

· · ·
(

A(am)
A(am−1)

)1/qm−1
)1/q2

)1/q1

which, after a simple transformation, becomes (2.2). If p1 > 0 and
pi < 0, i = 2, . . . , m such that

∑m
i=1 1/pi = 1, then f1 is a decreasing

convex function and the other functions are increasing concave and the
reverse of (2.2) holds.

Remark 5. If A(f) =
∫

E
f dµ, where µ is a positive measure on E,

then (2.2) is the well-known integral Hölder’s inequality. The second
part of Theorem 2 gives us an integral version of a result which is given
in [13] and [14] by Pečarić and Vasić, see also [8, p. 102], and in [12]
by Sun.

The following theorem is a generalization of Popoviciu’s inequality
[11].

Theorem 3. Let E, L, A be defined as in Theorem 1. Let ci,
i = 1, 2, . . . , m, be positive real numbers, ai, i = 1, 2, . . . , m be positive
functions on E, A(ai) > 0, fi ∈ S, i = 1, . . . , m − 1 and f1, . . . , fm−2

are increasing. Furthermore, suppose that ci−1 − A(ai−1) > 0,
Gi,m−1(ai, . . . , am) ∈ L, i = 1, . . .m, and Gi+1,m−1(ci+1, . . . , cm) −
A(Gi+1,m−1(ai+1, . . . , am)) > 0, i = 1, . . . , m − 1. Then

(2.4) G1,m−1(c1 − A(a1), . . . , cm − A(am))
≥ G1,m−1(c1, . . . , cm) − A(G1,m−1(a1, . . . , am)).
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If fi ∈ T , i = 1, . . . , m − 1, then a reverse of (2.4) holds.

Proof. The proof is similar to the previous one, only instead of
Theorem A, we use Theorem B.

Remark 6. If the functions fi are defined as in the proof of Theorem 2
and satisfy the assumptions of Theorem 3, then if pi > 0, i = 1, . . . , m,∑m

i=1 1/pi = 1, the Popoviciu inequality in a functional form holds, i.e.,

(2.5) c
1/p1
1 c

1/p2
2 · · · c1/pm

m −A(a1/p1
1 a

1/p2
2 · · · a1/pm

m ) ≥
m∏

i=1

(ci−A(ai))1/pi

and we can easily derive its integral version

(2.6)

c
1/p1
1 c

1/p2
2 · · · c1/pm

m −
∫

E

a
1/p1
1 a

1/p2
2 · · · a1/pm

m dµ ≥
m∏

i=1

(
ci−

∫
E

ai dµ

)1/pi

.

The functional form (2.5) of the Popoviciu inequality was derived by
Pečarić in [9]. The discrete version of inequality (2.6) was proved by
Losonczi and Páles in [5].

But, if p1 > 0 and pi < 0, i = 2, . . . , m with
∑m

i=1 1/pi = 1, then we
get the reverse inequalities of (2.5) and (2.6). These are new inequalities
of Popoviciu’s type.

Theorem 4. If f1, . . . , fm−2 are positive convex (concave) increasing
functions and fm−1 is a positive convex (concave) function on (0,∞),
then G1,m−1 is a positively homogeneous convex (concave) function.

Proof. Suppose that f1, . . . , fm−1 are convex and let α and β be
nonnegative real numbers, α + β = 1, ai = (ai,1, ai,2), ai,1, ai,2 ≥ 0,
i = 1, 2, . . . , m.

Define the functional A on L = (0,∞)2 as

A(f) = αf1 + βf2, if f = (f1, f2).
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Then using Theorem 1 we have

G1,m−1(αa1,1 + βa1,2, . . . , αam,1 + βam,2)
= G1,m−1(A(a1), . . . , A(am)) ≤ A(G1,m−1(a1, . . . , am))
= αG1,m−1(a1, . . . , am)1 + βG1,m−1(a1, . . . , am)2
= αG1,m−1(a1,1, . . . , am,1) + βG1,m−1(a1,1, . . . , am,2),

i.e., G1,m−1 is a convex function.

The proof of the concave case is similar. Finally, the homogeneity
statement is obvious according to Definition 1, and thus the proof is
complete.

3. Sharpening inequalities via functionals.

Theorem 5. Let E and F be functionals on L satisfying A1, and let
D be a positive isotonic linear functional such that F − E = D.

If fi ∈ S, i = 1, . . . , m − 1, f1, . . . , fm−2 are increasing functions
and ai > 0, i = 1, . . . , m, then for s = 1, . . . , m

(3.1)
D(G1,m−1(a1, . . . , am))

≥ G1,s−1(F (a1), . . . , F (as−1), F (Gs,m−1(as, . . . , am)))
− G1,s−1(E(a1), . . . , E(as−1), E(Gs,m−1(as, . . . , am)))

and the function

ϕ : s 	→ G1,s−1(D(a1), . . . , D(as−1), D(Gs,m−1(as, . . . , am)))

is decreasing.

If fi ∈ T , i = 1, . . . , m − 1 and f1, . . . , fm−2 are increasing, then a
reversed inequality holds in (3.1) and the function ϕ is increasing. (We
assume that all above-mentioned terms are well-defined.)

Proof. Let us prove (3.1). First, we consider 2 ≤ s ≤ m − 1. Denote

z = Gs,m−1(as, . . . , am).

Using Theorem 1 we get

(3.2)
D(G1,m−1(a1, . . . , am)) = D(G1,s−1(a1, . . . , as−1, z))

≥ G1,s−1(D(a1), . . . , D(as−1), D(z)).
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As fi, i = 1, . . . , m−2, are increasing using discrete Jensen’s inequality
several times, we get

G1,s−1(D(a1), . . . , D(as−1), D(z)) + G1,s−1(E(a1), . . . , E(as−1), E(z))

(3.3)

= D(a1)f1

(
G2,s−1(D(a2), . . . , D(z))

D(a1)

)

+ E(a1)f1

(
G2,s−1(E(a2), . . . , E(z))

E(a1)

)

≥ F (a1)f1

(
G2,s−1(D(a2), . . . , D(z)) + G2,s−1(E(a2), . . . , E(z))

F (a1)

)

≥F (a1)f1

(
F (a2)
F (a1)

f2

(
G3,s−1(D(a3),. . ., D(z))+G3,s−1(E(a3),. . ., E(z))

F (a2)

))

≥ · · · ≥ G1,s−1(F (a1), . . . , F (as−1), F (z)).

From (3.2) and (3.3) we obtain (3.1), for 2 ≤ s ≤ m − 1.

The result follows also easily for s = m. For s = 1 we get in (3.1)
equalities by using Definition 1. In this case G1,s−1(F (a1), . . . , F (as−1),
F (Gs,m−1(as, . . . , am))) becomes G1,m−1(a1, . . . , am) and G1,s−1(E(a1),
. . . , E(as−1), E(Gs,m−1(as, . . . , am))) becomes G1,m−1(a1, . . . , am) too.

To prove the second statement, denote

z = Gs+1,m−1(as+1, . . . , am).

fs is a convex function; therefore, applying Jensen’s inequality we get

D(Gs,m−1(as, . . . , am)) = D

(
asfs

(
z

as

))
≥ D(as)fs

(
D(z)
D(as)

)
.

Each of fi, i = 1, . . . , m − 2 is increasing; therefore, we have the
following

(3.4) G1,s−1(D(a1), . . . , D(as−1), D(Gs,m−1(as, . . . , am)))

= D(a1)f1

(
D(a2)
D(a1)

· · · fs−1

(
D(Gs,m−1(as, . . . , am))

D(as−1)

)
· · ·

)

≥ D(a1)f1

(
D(a2)
D(a1)

· · · fs−1

(
D(as)

D(as−1)
fs

(
D(z)
D(as)

))
· · ·

)

= G1,s(D(a1), . . . , D(as), D(z)).
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The proof of the statement for the concave case is completely similar
and thus omitted.

Theorem 6. Let P and Q be positive isotonic linear functionals. If
fi ∈ S, i = 1, . . . , m − 1 and ai, i = 1, . . . , m satisfy the assumptions
of Theorem 5, then
(3.5)

G1,s−1(R(a1), . . . , R(as−1), R(Gs,m−1(as, . . . , am)))
≤ P (G1,m−1(a1, . . . , am))

+ G1,s−1(Q(a1), . . . , Q(as−1), Q(Gs,m−1(as, . . . , am)))
≤ R(G1,m−1(a1, . . . , am)),

where R = P +Q. If fi ∈ T , i = 1, . . . , m−1, then a reverse inequality
of (3.5) holds.

Proof. Let 0 be a null-functional. Inserting in Theorem 5 D = R−P ,
F = Q and E = 0, we have the second inequality in (3.5). Applying
Theorem 5 with D = P , F = R and E = Q we get the first inequality
of (3.5).

When s = m and fi ∈ S, i = 1, . . . , m − 1, inequality (3.5) becomes

(3.6)
G1,m−1(R(a1), . . . , R(am)) ≤ P (G1,m−1(a1, . . . , am))

+ G1,m−1(Q(a1), . . . , Q(am))
≤ R(G1,m−1(a1, . . . , am)),

which is a sharpening of inequality (2.1). If fi ∈ T , i = 1, . . . , m − 1
we get the reverse signs of inequalities in (3.6).

In the next section we show how applications of Theorems 5 and 6
give some known and some new results.

4. Sharpening of Hölder’s and Jensen’s and its reverse
inequalities. The next theorem is a result of an application of
Theorem 6 to some special functions.
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Theorem 7. Let P and Q be positive isotonic linear functionals and
R = P + Q. If pi > 0, i = 1, . . . , m are such that

∑m
i=1 1/pi = 1,

ai ∈ L, i = 1, . . . , m are positive functions such that
∏m

i=1 a
1/pi

i ∈ L,
then

(4.1) R

( m∏
i=1

a
1/pi

i

)
≤ P

( m∏
i=1

a
1/pi

i

)
+

m∏
i=1

Q(ai)1/pi ≤
m∏

i=1

R(ai)1/pi .

If p1 > 0 and pi < 0, i = 2, . . . , m are such that
∑m

i=1 1/pi = 1, then
the reverse of (4.1) holds.

Proof. If we define the functions fi as fi(x) = x1/qi , i = 1, . . . , m−1,
where qi, i = 1, . . . , m − 1 are defined as in (2.3), then applying (3.6)
we get (4.1).

Corollary 1. If pi > 0, i = 1, . . . , m are such that
∑m

i=1 1/pi = 1,
and if ai, i = 1, . . . , m and

∏m
i=1 a

1/pi

i are positive integrable functions,
µ is a positive measure on [a, b], P (g) =

∫ c

a
g dµ, Q(g) =

∫ b

c
g dµ,

R(g) =
∫ b

a
g dµ, a < c < b, then

(4.2)

∫ b

a

m∏
i=1

a
1/pi

i dµ ≤
∫ c

a

m∏
i=1

a
1/pi

i dµ +
m∏

i=1

(∫ b

c

ai dµ

)1/pi

≤
m∏

i=1

( ∫ b

a

ai dµ

)1/pi

.

If p1 > 0 and pi < 0, i = 2, . . .m are such that
∑m

i=1 1/pi = 1, then a
reverse of (4.2) holds.

Inequality (4.2) was obtained in [1], and it is a sharpening of Hölder’s
inequality. Here, we get also a similar result for reversed Hölder’s
inequality.

Corollary 2. Let (Ω, Σ, µ) be a space with positive finite measure.
Let L = L1(Ω, Σ, µ). If Ω1, Ω2 ⊂ Ω, µ(Ω1), µ(Ω2) ∈ (0,∞), then for
f ∈ L define

P (f) =
1

µ(Ω1)

∫
Ω1

f(x) dµ(x), Q(f) =
1

µ(Ω2)

∫
Ω2

f(x) dµ(x)
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and R(f) = P (f) + Q(f).

From the second part of inequality (4.1), the following new inequality
is obtained:

1
µ(Ω1)

∫
Ω1

m∏
i=1

ai(x)1/pi dµ(x) +
1

µ(Ω2)

m∏
i=1

( ∫
Ω2

ai(x) dµ(x)
)1/pi

≤
m∏

i=1

(
1

µ(Ω1)

∫
Ω1

ai(x) dµ(x) +
1

µ(Ω2)

∫
Ω2

ai(x) dµ(x)
)1/pi

Corollary 3. Let E = {1, 2} and functionals P and Q be defined by

P (f) = f(1), Q(f) = f(2).

If pi > 0, i = 1, . . .m are such that
∑

1/pi = 1 and ai : E → R are
positive functions, then inequality (4.1) gives

(4.3)
m∏

i=1

x
1/pi

i +
m∏

i=1

y
1/pi

i ≤
m∏

i=1

(xi + yi)1/pi

where xi = ai(1), yi = ai(2).

Inequality (4.3) is a generalization of the following inequality given
in [7].

Let ak > 0, k = 1, . . . , n. Then

n∏
i=1

(1 + ak) ≥
(

1 + n

√√√√ n∏
i=1

ak

)n

.

On the other hand, this inequality is a special case of a result given
in [4, pp. 31 32], (see also [8, p. 109]). Namely, replacing in (4.3)

a(1) = (x1, . . . , xm), a(2) = (y1, . . . , ym),
a(i) = xi + yi, i = 1, . . .m,

p = (p1, . . . , pm), w =
(

1
2
,
1
2

)
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we obtain

M
[1]
2 (M [0]

m (a(j); p); w) ≤ M [0]
m (M [1]

2 (a(i); w); p)

where M
[r]
n (x; p) is the r-ordered weighted mean of n-tuple x =

(x1, . . . , xn) with weights p = (p1, . . . , pn). The general case, which
is given in [4], deals with means of order r and s.

The following result is a sharpening of Jensen’s inequality, and it is
a simple consequence of Theorem 6.

Theorem 8. Let P and Q be positive isotonic linear functionals and
R = P + Q. Let k ∈ L with k ≥ 0, Q(k) > 0, R(k) > 0, f ∈ S. For
any function g : E → (0,∞) such that kg ∈ L, kf(g) ∈ L we get

(4.4) R(k)f
(

R(kg)
R(k)

)
≤ P (kf(g)) + Q(k)f

(
Q(kg)
Q(k)

)
≤ R(kf(g)).

If f ∈ T , then a reverse inequality of (4.4) holds.

Proof. Setting m = 2, a1 = k, a2 = kg, f1 = f in inequality (3.6) we
obtain (4.4).

Remark 7. If we specify that P (f) =
∫ c

a
f dµ and Q(f) =

∫ b

c
f dµ,

c ∈ (a, b), we get a sharpening of the integral version of Jensen’s
inequality [2] when µ is a positive measure on [a, b].

In the next theorem we show a result related to Theorems 5 and 6
when the functionals D, E and F are integrals.

Let us define A(d, s) as

A(d, s) =
∫ d

a

G1,m−1(a1, . . . , am) dµ

+G1,s−1

(∫ b

d

a1dµ,. . .,

∫ b

d

as−1dµ,

∫ b

d

Gs,m−1(as,. . ., am)dµ

)
,
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where d ∈ [a, b] and s = 1, 2, . . . , m.

When s = 1 the second addend is equal to
∫ b

d
G1,m−1(a1, . . . , am) dµ.

If d = b we define A(b, s) =
∫ b

a
G1,m−1(a1, . . . , am) dµ.

Here we suppose that all the integrals are well defined.

Theorem 9. If fi ∈ S, i = 1, . . . , m−1, f1, . . . , fm−2 are increasing
functions, ai > 0, i = 1, . . . , m, and if a ≤ c ≤ d ≤ b, then

(4.5) A(a, s) ≤ A(c, s) ≤ A(d, s) ≤ A(b, s)

for all s = 1, 2, . . . , m.

For any d ∈ [a, b] and s = 1, 2, . . . , m − 1, the following

(4.6) A(d, s) ≥ A(d, s + 1).

holds.

If fi ∈ S, i = 1, . . . , m − 1, are replaced by fi ∈ T , i = 1, . . . , m − 1,
then the reverse inequalities of (4.5) and (4.6) hold.

Proof. Denoting D(f) =
∫ d

c
f dµ =

∫ d

a
f dµ−∫ c

a
f dµ, E(f) =

∫ b

d
f dµ

and F (f) =
∫ b

c
f dµ and, applying Theorem 5, we get (4.5) and (4.6).

5. Sharpening of Popoviciu’s and related inequalities.

Theorem 10. Let E and F be functionals satisfying A1 and D be a
positive isotonic linear functional on L such that F − E = D.

a) If ci, ai, i = 1, . . . , m, satisfy the assumptions of Theorem 3, and
if fi ∈ S, i = 1, . . . , m− 1, and f1, . . . , fm−2 are increasing functions,
then

(5.1)

−D(G1,m−1(a1, . . . , am))
≤ G1,s−1(c1 − F (a1), . . . , cs−1 − F (as−1),

Gs,m−1(cs, . . . , cm) − F (Gs,m−1(as, . . . , am)))
− G1,s−1(c1 − E(a1), . . . , cs−1 − E(as−1),

Gs,m−1(cs, . . . , cm) − E(Gs,m−1(as, . . . , am))).
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b) The function s 	→ G1,m−1(c1, . . . , cm) −G1,s−1(D(a1), . . . , D(as−1),
D(Gs,m−1(as, . . . , am))) is increasing. (We assume that all the above-
mentioned terms are well-defined.)

c) If P and Q are isotonic positive functional with R = P + Q, then

(5.2)

G1,m−1(c1, . . . , cm) − R(G1,m−1(a1, . . . , am))
≤ G1,m−1(c1 − Q(a1), . . . , cm − Q(am))
− P (G1,m−1(a1, . . . , am))

≤ G1,m−1(c1 − R(a1), . . . , cm − R(am)).

If fi ∈ T , i = 1, . . . , m − 1, then the reverse inequalities of (5.1) and
(5.2) hold and the above-defined function is decreasing.

The proof is similar to the proof of Theorem 5 and is based on the
application of Theorems B, 1, 3 and 6.

If in (5.2) we specify: fi(x) = x1/qi where qi is defined as in (2.3),
then for pi > 0, i = 1, . . . , m,

∑m
i=1 1/pi = 1 we have

(5.3)

m∏
i=1

c
1/pi

i − R

( m∏
i=1

a
1/pi

i

)
≥

m∏
i=1

(ci − Q(ai))1/pi − P

( m∏
i=1

a
1/pi

i

)

≥
m∏

i=1

(ci − R(ai))1/pi ,

which is a sharpening of the functional version of Popoviciu’s inequality.
If p1 > 0, pi < 0, i = 2, . . . , m,

∑m
i=1 1/pi = 1, then we get a reverse of

(5.3).

If we choose the functionals P and Q as follow:

P (f) =
∫ c

a

f dµ, Q(f) =
∫ b

c

f dµ

where µ is a positive measure, c ∈ (a, b) then we have the following
theorem.

Theorem 11. Let ci > 0 and ai, i = 1, 2, . . . , m, be positive µ-
integrable functions such that

ci −
∫ b

a

ai dµ > 0, i = 1, . . . , m.
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If pi > 0, i = 1, . . . , m,
∑m

i=1 1/pi = 1, then

m∏
i=1

c
1/pi

i −
∫ b

a

m∏
i=1

a
1/pi

i dµ ≥
m∏

i=1

(
ci−

∫ b

c

ai dµ

)1/pi

−
∫ c

a

m∏
i=1

a
1/pi

i dµ

≥
m∏

i=1

(
ci −

∫ b

a

ai dµ

)1/pi

.

If p1 > 0, and pi < 0, i = 2, . . . , m,
∑m

i=1 1/pi = 1, then the reverse
inequality holds.

This is a sharpening of well-known integral Popoviciu’s inequality and
its reverse inequality with only one positive weight.

If we specify the functionals D, E and F as in the proof of Theorem 9,
we have the following results.

Theorem 12. Let ci, ai, i = 1, . . . , m, satisfy the assumptions of
Theorem 3, let fi ∈ S, i = 1, . . . , m − 1, f1, . . . , fm−2 be increasing
functions. Denote

B(d, s) = −
∫ d

a

G1,m−1(a1, . . . , am) dµ

+G1,s−1

(
c1−

∫ b

d

a1dµ,. . ., cs−1−
∫ b

d

as−1dµ,

Gs,m−1(cs,. . ., cm) −
∫ b

d

Gs,m−1(as, . . . , am) dµ

)
,

when a ≤ c ≤ d ≤ b. Then

(5.4) B(a, s) ≥ B(c, s) ≥ B(d, s) ≥ B(b, s),

and, for any d ∈ [a, b] and s = 1, 2, . . . , m − 1, the following holds

(5.5) B(d, s) ≤ B(d, s + 1).

If fi ∈ T , i = 1, . . . , m − 1, then the reverse inequalities in (5.4) and
(5.5) hold.
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And, finally, let us state a result which is a sharpening of inequality
(1.2) given in Theorem B.

Theorem 13. If P, Q, k, a, g satisfy the assumptions of Theorem 8
and u ∈ R, u − Q(k) > 0, u − R(k) > 0, (ua − Q(kg))/(u − Q(k)),
(ua − R(kg))/(u − R(k)) ∈ (0,∞), then for f ∈ S the following holds

uf(a) − R(kf(kg)) ≤ (u − Q(k))f
(

ua − Q(kg)
u − Q(k)

)
− P (kf(g))

≤ (u − R(k))f
(

ua − R(kg)
u − R(k)

)
.

If f ∈ T, then a reverse inequality holds.

Proof. Setting m = 2, a1 = k, a2 = kg, f1 = f c1 = u, c2 = ua in
inequality (5.2), we obtain the result.

Remark 8. If µ is a counting measure, then we have discrete results.
This remark is applicable for each result in the paper.
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14. , On Hölder and some related inequalities, Matematica Rev. D’Anal.
Num. Th. L’Approx. 25 (1982), 95 103.

15. J. von Neumann, Almost periodic function in a group, Trans Amer. Math.
Soc. 36 (1934), 445 492.

Department of Mathematics, University of Haifa, Haifa 31905, Israel
E-mail address: abramos@math.haifa.ac.il

Faculty of Textile Technology, University of Zagreb, Pierottijeva 6,
10000 Zagreb, Croatia
E-mail address: pecaric@hazu.hr

Department of Mathematics, University of Zagreb, Bijenička 30, 10000
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