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GENUS OF A CANTOR SET

MATJAŽ ŽELJKO

ABSTRACT. We define a genus of a Cantor set as the
minimal number of the maximal number of handles over all
possible defining sequences for it. The relationship between
the local and the global genus is studied for genus 0 and 1. The
criterion for estimating local genus is proved along with the
example of a Cantor set having prescribed genus. It is shown
that some condition similar to 1-ULC implies local genus equal
to 0.

1. Introduction. We will consider Cantor sets embedded in three-
dimensional Euclidean space E3. A defining sequence for a Cantor
set X ⊂ E3 is a sequence (Mi) of compact 3-manifolds Mi with
boundary such that each Mi consists of disjoint cubes with handles,
Mi+1 ⊂ Int Mi for each i and X = ∩iMi. We denote the set of all
defining sequences for X by D(X).

Armentrout [1] proved that every Cantor set has a defining sequence.
In fact every Cantor set has many nonequivalent, see [7] for definition,
defining sequences and in general there is no canonical way to choose
one. One approach is to compress unnecessary handles in the given
defining sequence for a Cantor set. A class for which this process
terminates is characterized by some property similar to 1-ULC, see [10]
for details. But in general this process is infinite so the “incompressible”
defining sequence may not exist. Hence we look at the minimal number
of the maximal number of handles over all possible defining sequences
for it and take the defining sequence for which this number is minimal.
Unfortunately this sequence need not to be canonical, but the minimal
number, i.e. the genus, itself has some interesting properties.

Using different terminology Babich [2] actually proved that the genus
of a wild scrawny, see [2] for definition, Cantor set is at least 2.
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2. The genus. Let M be a cube with handles. We denote the
number of handles of M by g(M). For a disjoint union of cubes with
handles M = �λ∈ΛMλ, we define g(M) = sup{g(Mλ); λ ∈ Λ}.

Let (Mi) be a defining sequence for a Cantor set X ⊂ E3. For any
subset A ⊂ X we denote by MA

i the union of those components of Mi

which intersect A. Define

gA(X; (Mi)) = sup{g(MA
i ); i ≥ 0}

and

gA(X) = inf{gA(X; (Mi)); (Mi) ∈ D(X)}.

The number gA(X) is called the genus of the Cantor set X with respect
to the subset A. For A = X we call the number gX(X) the genus of
the Cantor set X and denote it simply by g(X). For any point x ∈ X
we call the number g{x}(X) the local genus of the Cantor set X at the
point x and denote it by gx(X).

As a trivial consequence of the definition one can prove

Lemma 1. Genus of a Cantor set is a monotone function. Precisely:

1. For A ⊂ B ⊂ X where X is a Cantor set we have gA(X) ≤ gB(X).

2. For A ⊂ X ⊂ Y where X is a closed subset of a Cantor set Y we
have gA(X) ≤ gA(Y ).

By the standard construction of Antoine’s necklace A we know g(A) ≤
1. As the Cantor set A is wild we conclude g(A) = 1. So there exists
a Cantor set of genus 1. We call such Cantor sets toroidal.

Using the result of Babich [2] one can prove that there exists a Cantor
set of genus 2. We will extend the theorem [2, Theorem 2] to obtain a
criterion for estimating the local genus and thus constructing a Cantor
set of arbitrary genus.

3. Genus 0. By a theorem of Bing [4] we know that the Cantor set
X ⊂ E3 is tame if and only if g(X) = 0. By a theorem of Osborne [5,
Theorem 4] we know that the Cantor set X ⊂ E3 is tame if and only
if gx(X) = 0 for every point x ∈ X.
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Theorem 2. Let x be an arbitrary point of a Cantor set X ⊂ E3.
If for every ε > 0 there exists a δ > 0 such that for every mapping
f : S1 → Int B(x, δ) \X there exists a map F : B2 → Int B(x, ε) \X that
F |S1 = f then gx(X) = 0.

Proof. It suffices to find a sequence of nested 3-balls Mi whose
boundaries do not intersect X such that {x} = ∩iMi.

The sequence (Mi) will be constructed inductively. Let M1 be
some large 3-ball. Assume now that the 3-balls M1, M2, . . . , Mk are
constructed. Let ε = dist (x, Fr Mk)/2 and pick δ according to the
hypothesis of the theorem. We may assume that δ < ε.

There exists a cube with handles (denote this cube by M) of diameter
at most δ/2 which contains x in its interior and its boundary does not
intersect X, see [1, Paragraph 7] for details. Let s be the number
of handles of M . If s = 0 put Mk+1 := M , and the inductive
step is proven. If s > 0, let J be one of the meridional curves
on Fr M . By hypothesis of the theorem there exist a singular disk
f : B2 → Int B(x, ε) \ X with boundary J . We can modify f near S1

such that it embeds some small collar of S1 in B2 into some small collar
of Fr M in M \ X. We may also assume that f is PL and transversal
to Fr M .

If f−1(Fr M) ⊂ Int B2 has at least one component we pick the inner-
most one and compress Fr M along 2-disk bounded by this component.
(We either cut M along this disk or attach 2-handle onto M having
this disk as a core.) If f−1(Fr M) = ∅ then f(IntB2) ⊂ IntM . Hence
Fr M is compressible in M \ X. Using the Loop theorem we find an
appropriate compressing disk and reduce the number of handles in M .

If the cube with handles obtained in the previous step has some
more handles we repeat the procedure. As it is possible that the new
meridional curve J intersects some attached 2-handle we must push it
off this handle to have the diameter of J small enough. This procedure
stops after at most s steps.

Remark. The reader may note that the hypothesis of this theorem
is not enough for the Cantor set X to be locally tame at x. However
if the hypothesis of the theorem is satisfied for every x ∈ X we obtain
the well known 1-ULC taming theorem due to Bing [4].
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4. The existence of a Cantor set of arbitrary genus. Let Γ be
a tree having r +1 nodes. For k ∈ {2, 3, . . . , r} we denote by G(Γ, r, k)
the number of nodes of Γ whose degree is at most k. We define

G(r, k) = inf{G(Γ, r, k); Γ is a tree with r + 1 nodes}.

Lemma 3. Using the above notation we estimate

�r + 1 − (r − 1)/k	 ≤ G(r, k) ≤ r + 1,

where �x	 denotes the least integer not less than given x ∈ R (for
example �π	 = 4).

Proof. Let Γ be a an arbitrary tree having r + 1 nodes. We denote
by vi the number of nodes of Γ whose degree is equal to i. Hence

(1) v1 + 2 v2 + · · · + r vr = 2r,

as every edge is counted twice. The tree Γ has r + 1 nodes so

(2) v1 + v2 + · · · + vr = r + 1.

The number of nodes of Γ having degree at most k equals to

G(Γ, r, k) = v1 + v2 + · · · + vk.

We estimate

2r
(1)
= v1 + 2 v2 + · · · + k vk + (k + 1) vk+1 + · · · + r vr

≥ v1 + 2 v2 + · · · + k vk + (k + 1)(vk+1 + · · · + vr)
(2)
= v1 + 2 v2 + · · · + k vk + (k + 1)((r + 1) − (v1 + · · · + vk))
= (k + 1)(r + 1) − (kv1 + (k − 1)v2 + · · · + vk)
≥ (k + 1)(r + 1) − k(v1 + v2 + · · · + vk),

and hence

G(Γ, k, r) = v1 + v2 + · · · + vk ≥ r + 1 − 1
k

(r − 1).
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As G(Γ, k, r) is integer we can sharpen the estimate G(Γ, k, r) ≥
�r + 1 − (r − 1)/k	 to get the required inequality.

Remark. For k = 2 we have G(r, 2) ≥ �r + 3/2	 and for k = r we
have G(r, r) ≥ �r + 1/r	 = r + 1.

Using the following criterion we can estimate the lower bound for local
genus of a Cantor set.

Theorem 4. Let X ⊂ E3 be a Cantor set and x0 ∈ X be an arbitrary
point. Let there exist a 3-ball B and 2-disks D1, . . . , Dr such that

1. For every disk Di we have Di ∩ X = Int Di ∩ X = {x0}.
2. For distinct pair of disks Di in Dj we have Di ∩ Dj = {x0}.
3. The point x0 lies in the interior of B and Fr Di ∩B = ∅ for every

disk Di.

4. If there exists a planar compact surface in B \ X whose boundary
components lie in (D1 ∪ · · · ∪ Dr) ∩ Fr B then this surface has at least
k + 1 boundary components.

Then gx0(X) ≥ G(r, k).

Proof. We will prove that every cube with handles N ⊂ Int B such
that x0 ∈ N and Fr N ∩ X = ∅, has at least G(r, k) handles. We
may assume that Di intersects Fr N transversally (shortly Di � Fr N)
and that Fr N has minimal genus. We may also assume that among all
cubes with g(Fr N) handles N minimizes the number of components of
Fr N ∩ (D1 ∪ · · · ∪ Dr).

Fix disk Di. The intersection Di ∩ Fr N has at least one component
and each of them bounds a disk in Int Di. If some of such disks in Int Di

does not contain x0 we pick the innermost one and denote it by E. (Disk
E need not be unique.) The loop FrE bounds a disk E∗ ⊂ Fr N as
otherwise N could be compressed along E and hence g(Fr N) would
decrease. So we can replace E by E∗ in order to decrease the number
of components in Fr N ∩ Di.

Therefore the components of Di ∩ Fr N are nested and each of them
bounds a disk containing x0. The number of components is odd
as x0 ∈ Di ∩ N and Fr Di ∩ N = ∅. If Di ∩ Fr N has at least
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three components there exist consecutive two of them which bound
an annulus A ⊂ Di such that A ∩ Fr N = Fr A and A ⊂ N . Now
we cut N along A to obtain the manifold N∗ which has at most
two components. As χ(A) = 0 we have χ(FrN) = χ(Fr N∗). If N∗

has two components we dispose of that one which does not contain
x0. Therefore g(FrN∗) ≤ g(Fr N) and the number of components of
Fr N∗ ∩ Di is less than the number of components of Fr N ∩ Di. We
repeat the procedure until there is only one component of Fr N ∩ Di

left. The remaining component, say ηi, separates Fr N as Di separates
N .

So there are exactly r + 1 components of Fr N \ (η1 ∪ · · · ∪ ηr). Let
us denote their closures by K1, . . . , Kr+1. For every i the compact
surface Ki is either nonplanar having at least one boundary component
or planar having at least k + 1 boundary components. The surface Ki

cannot be a disk with less than k holes as otherwise one can attach
onto it appropriate annuli in Di bound by ηi and Fr B ∩Di to obtain a
planar surface in B \ X having at most k boundary components (and
all of them are contained in (D1 ∪ · · · ∪ Dr) ∩ Fr B).

Finally we construct a graph Γ related to the components of FrN \
(η1 ∪ · · · ∪ ηr). The nodes of Γ shall be {K1, . . . , Kr+1}. The nodes Ki

and Kj are connected in Γ if and only if Ki ∩ Kj �= ∅. The graph Γ
is a tree as each of η1, . . . , ηr separates Fr N . The tree Γ has at least
G(r, k) nodes of degree at most k so there are at least G(r, k) nonplanar
components in {K1, . . . , Kr+1}. Hence g(Fr N) ≥ G(r, k).

Remark. It is easier to check the last condition in the statement of
the theorem when k is small but we get the most out of this criterion
for k = r as we have G(r, r) = r + 1.

Theorem 5. For every number r ∈ N∪{0,∞} there exists a Cantor
set X ⊂ E3 such that g(X) = r.

Proof. For the sake of simplicity we replace E3 by S3. We know
that every tame Cantor set has genus 0 and for example the Antoine’s
necklace has genus 1. Therefore we may assume 2 ≤ r < ∞.

Fix arbitrary point x0 ∈ S3. We will construct a defining sequence
(Mi) for the Cantor set X. Let M1 be a cube with r handles containing
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x0 in its interior. The manifold M2 shall have 5r +1 components. One
of them, denoted by M0

2 , is a cube with r handles containing x0 in
its interior. We link each handle of M0

2 by a chain of five tori and
this chain is spread along the core of some of the handles in M1. Now
we construct the manifold M3. The components of M3 which lie in
toroidal components of M2 for a chain of linked tori (use the Antoine
construction) and there are 5r +1 components of M3 in M0

2 embedded
in the same way as M2 is embedded in M1. Repeat the procedure
inductively. (See Figure 1 for details. There are only two “legs” of X
drawn in the figure, the remaining r− 2 ones are supposed to be in the
dotted part in the middle.)

�� ����

��

��

��

FIGURE 1. Defining sequence for a Cantor set of genus r, r ≥ 2.

By construction it is clear that g(X) ≤ r. Using the r − 1 disks
D1, . . . , Dr−1 and the criterion 4 we will prove that gx0(X) ≥ r.

We have to prove that there does not exist a planar surface F ⊂
Int B \ X which has r boundary components γ1, . . . , γr such that
γi ⊂ Di and γi is parallel to Fr Di in Di. Assume to the contrary:
let such F exist.

Simple connected curves γi bounds disks Ei ⊂ Int Di and x0 ∈ Int Ei

for every i. By attaching disks Ei to the surface F we obtain a singular
sphere Σ. As there are r + 1 “legs” of Cantor set joining in x0 but
only r “peaks” in Σ there exists a point a ∈ X close to x0 such that
lkZ2(Σ, a) = 1 (i.e. singular sphere Σ winds around a). Let A be the
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“leg” of X which contains a. Therefore A is a Cantor set obviously
homeomorphic to the Antoine’s necklace. The singular sphere Σ can
be modified near x0 so that it lies in S3 \ A. (One has just to space
out the peaks of Σ near x0.) Let f : S2 → Σ be a continuous map
representing Σ. Let

h: π2(S3 \ A) → H2(S3 \ A;Z)

be a Hurewicz homomorphism and

m: H2(S3 \ A;Z) → H2(S3 \ A;Z2)

be a map induced by homomorphism mod 2:Z → Z2. Kernel of a map
h is a subgroup of π2(S3 \ A) which we denote by N . If [f ] ∈ N then
also mh([f ]) = 0 ∈ H2(S3 \ A;Z2) but this contradicts lk Z2(Σ, a) = 1.
Hence [f ] /∈ N . Using the sphere theorem we replace f by a nonsingular
sphere g: S2 → S3 \X. As [g] �= 0 ∈ π2(S3 \X) the sphere g(S2) winds
around at least one point of A, but not around all of them. Therefore
some two points of A can be separated by sphere in S3 \ A. But it
is well known that this is impossible. Hence by Theorem 4 we have
gx0(X) ≥ r and therefore g(X) = r.

Finally we prove the case r = ∞. Let Xr be a Cantor set of genus
r ∈ N. One can take a disjoint union of Xrs converging to the point, say
x∞. Therefore X = �rXr is a Cantor set and gx∞(X) = ∞ = g(X).

Remark. The Cantor set in the previous theorem does not have
simply connected complement (except for r = 0). It is interesting
to note that, using the same construction, one can exhibit a Cantor
set of arbitrary genus with simply connected complement. We just
have to replace the building block: instead of Antoine’s necklace we
use Bing-Whitehead Cantor set as its complement is simply connected,
see [9] for details. The proof itself is almost the same: for the final
contradiction we refer to [3, Paragraph 5] as Bing-Whitehead Cantor
set can be separated by spheres but not with arbitrarily small ones.

Let X ⊂ E3 be a Cantor set. From 1 we see that gx(X) ≤ g(X) for
every point x ∈ X. The author believes that the following conjecture
may not be true in general:
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Conjecture 1. For every Cantor set X there exists a point x ∈ X
such that gx(X) = g(X).

The conjecture may be restated as

Conjecture 2. Let gx(X) ≤ r for every point x of a Cantor set X.
Then g(X) ≤ r.

For r = 0, however, this is true [5]. We will prove this conjecture for
r = 1 under some additional technical hypothesis.

5. Local genus versus global genus. Let X ⊂ E3 be a Cantor
set. We say that the Cantor set X is splittable if there exists a 2-sphere
S in the complement of X which separates some two points of X. For
a splittable Cantor set we may define µ(X) = inf{diam (S); S ∈ S}
where S is a set of separating 2-spheres for X. If a Cantor set X is
not splittable we set µ(X) = ∞. The number µ(X) is called the lower
bound of splittability.

The number µ(X) certainly depends on embedding X ↪→ E3. One
can prove that for equivalently embedded, see [7] for definition, Cantor
sets X and X ′ we have

µ(X) = 0 if and only if µ(X ′) = 0,

µ(X) > 0 if and only if µ(X ′) > 0,

µ(X) = ∞ if and only if µ(X ′) = ∞.

Obviously µ(X) = 0 for a tame Cantor set X. One can easily construct
a wild Cantor set X such that µ(X) = 0. As the Antoine’s necklace A
is not splittable we have µ(A) = ∞. Finally there exists a wild cantor
set with positive lower bound of splittability, see [3, p. 361] for more
details.

Lemma 6. Let µ(X) > 0 for a given Cantor set X ⊂ E3. Let
M and N be two solid tori in E3 such that Fr M � Fr N , X ⊂
M ∪ N \ (Fr M ∪ Fr N) and diam (M ∪ N) < µ(X). Then for every
η > 0 there exist (at most) two disjoint solid tori whose interiors cover
X and each of them lies entirely in {x ∈ E3; dist (x, M) < η} or
{x ∈ E3; dist (x, N) < η}.
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Proof. Denote µ(X) simply by µ. We may assume that diam (M ∪
N) + η < µ. As Fr M � Fr N the components of Fr M ∩ Fr N are
1-spheres and the proof will be done by induction on the number of
components in Fr M ∩ Fr N . Case Fr M ∩ Fr N = ∅ is obvious.

If Fr M ∩ Fr N �= ∅ we distinguish three cases. If some component
of Fr M ∩Fr N bounds a 2-disk, say on FrM by symmetry, we pick an
innermost of such components, with respect to Fr M , and denote it by
J . Then J = Fr D for some 2-disk D.

Trivial case. The loop J is not contractible on Fr N so D is a
compressing disk for N . Then we can cut N along D or attach 2-
handle with core D onto N and obtain a 3-ball. As this disk is small
enough it contains either whole X or it is disjoint to X. Then either
M or N is unnecessary.

The 3-ball case. The loop bounds some 2-disk E on Fr N and
therefore D∪E = Fr B for some 3-ball B. Now we analyze two subcases:

• Inner disk D, see Figure 2: The 3-ball B lies in N and is disjoint
to X, or contains X which is trivial the torus M can be disposed.

As we cut out B from N along disk D we obtain a torus N∗ ⊂ N .
The number of components of Fr ∩ Fr M is less than the number of
components of Fr N ∪ Fr M . We conclude the proof using induction
hypothesis on solid tori M and N∗.

���

�

�

�
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�

FIGURE 2. Inner disk D with respect to N .
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• Outer disk D, see Figure 3: The 3-ball B does not lie in N . If B
lies in M , then either X ⊂ B (hence N can be disposed) or X∩B = ∅.
If B ∩ M = ∅ then certainly X ∩ B = ∅. Therefore we may assume
B ∩ X = ∅. There exists some η′, 0 < η′ < η, such that the η′-
neighborhood of B does not intersect X.

The torus Fr N does not intersect Int D so one can attach B onto
N along E and obtain N∗. Then the number of components of
Fr N∗ ∩ Fr M is less than the number of components of Fr N ∪ Fr M .
Now we conclude the proof using the inductive hypothesis on solid tori
M and N∗ and the number η′/2 in place of η.

���
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�

FIGURE 3. Outer disk D with respect to N .

As a result we obtain (at most) two disjoint solid tori. Finally using
Lemma 7 we cut slightly, say η′, enlarged disk B away from these two
solid tori.

The case of solid torus. This is the remaining case when none of
components of Fr M ∩ Fr N bounds a 2-disk on Fr M or Fr N . There
exist two components, say J1 and J2, which bound some annulus K
on Fr N whose interior does not intersect Int M . The loops J1 and
J2 bound some annulus K ′ on Fr M and K ∪ K ′ is the boundary of
some solid torus which lies entirely in M . Then we cut M along K to
obtain two disjoint solid tori. One of them lies in Int N and it can be
disposed. We denote the other one, which lies in E3 \ N , by M∗. As
Fr M∗ ∩ Fr N has less components than Fr M ∩ Fr N , we conclude the
proof by induction on M∗ and N .
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We were left to prove the following lemma

Lemma 7. Let µ(X) > 0 for a given Cantor set X ⊂ E3. Then
for every solid torus T ⊂ E3 and every 3-ball B ⊂ E3, such that
X ⊂ Int T \ B, B �⊂ T , Fr B � Fr T and diam (T ∪ B) < µ(X), there
exists a solid torus T ′ ⊂ T \ B which contains X in its interior.

Proof. The proof will be similar to the proof of preceding lemma. We
induct on the number of components of FrT ∩FrB. Case Fr T ∩FrB =
∅ is obvious.

If Fr T ∩ Fr B is connected, then this loop bounds two 2-disks on
Fr B and the interior of one of them, denoted by D, lies in Int T . As
diam (T ∪ B) < µ(X) we may cut T along D to obtain the required
torus T ′ ⊂ T and some 3-ball which can be disposed.

If Fr T ∩ Fr B has at least two components we choose the innermost
of them, with respect to FrB, and denote it by J . The loop J bounds
some 2-disk D ⊂ Fr B such that Int D ∩ Fr T = ∅. The loop J bounds
some 2-disk E on Fr T . Let B′ be a 3-ball with boundary D ∪ E. We
distinguish two cases

• If IntD ⊂ Int T we cut B′ out of T and repeat the procedure with
diminished torus T and disk B, see Figure 4.

• If Int D ⊂ E3\T then Int B′ ⊂ E3\T , see Figure 5. The intersection
Int E ∩Fr B may not be void so one has to push FrB out of Int B′ into
that part of slightly thickened disk B′ which lies in Int T .

Finally we distinguish two subcases

If IntE ⊂ B we cut slightly enlarged disk B′ out of B and repeat the
procedure with torus T and diminished disk B.

If IntE ⊂ E3 \B we attach B′ onto B and repeat the procedure with
torus T and enlarged disk B. (Note that diam (T ∪ B) remains the
same.)
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FIGURE 4. Inner disk D with respect to T .

Now we can state the main theorem for Cantor sets having local genus
equal to 1.

Theorem 8. Let µ(X) > 0 for a given Cantor set X ⊂ E3. If
gx(X) = 1 for every point x ∈ X then g(X) = 1.

Proof. Denote µ(X) simply by µ and fix ε > 0. We will find a finite
collection of disjoint small tori whose interiors cover X.

Using the assumption that gx(X) = 1 for every point x of a com-
pact set X there exists a finite collection T = {Ti}m

i=1 of tori such that

���
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�
�

FIGURE 5. Outer disk D with respect to T .
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diam (Ti) < min{ε, < µ/2} and Fr Ti∩X = ∅ for every i = 1, 2, . . . , m.
We may also assume that boundaries of these tori intersect transver-
sally.

We assign the number c(T ) =
∑

1≤i<j≤m ci,j to the cover T where

ci,j =
{

0 if Fr Ti ∩ Fr Tj = ∅,
1 otherwise.

If ci,j = 0 for every i and j the tori are disjoint and T is the collection
we are looking for. Otherwise we define

η := min
{

ε

2(m − 1)
, min{dist (Ti, Tj); Ti ∩ Tj = ∅}

}

and pick the least pair of indexes (i, j), i < j, such that ci,j = 1. Using
Lemma 6 for the pair of tori M := Ti and N := Tj with control η we
replace the tori Ti in Tj with disjoint T ′

i in T ′
j to obtain a new cover

T ′. The number η was chosen appropriately to assure that for every
k �= i, j we have: T ′

i ∩ Tk = ∅ if Ti ∩ Tk = ∅ and T ′
j ∩ Tk = ∅ if

Tj ∩Tk = ∅. Therefore c(T ′) < c(T ) and we repeat the procedure with
new cover T ′. The diameters of tori T ′

i in T ′
j have increased at most by

ε/2(m − 1). The procedure must stop after at most m(m − 1)/2 steps
so the diameters of components increase at most to 2ε as every torus
is involved in the procedure at most m − 1 times.

As a trivial consequence of the preceding theorem we obtain

Corollary 9. Let X ⊂ E3 be a nonsplittable Cantor set. If
gx(X) = 1 for every point x ∈ X then g(X) = 1.

We say that the Cantor set X is locally nonsplittable if, for every point
x ∈ X, there exists a neighborhood U ⊂ E3 of x such that X ∩ U is a
nonsplittable Cantor set. Therefore

Corollary 9. Every locally nonsplittable and locally toroidal Cantor
set is toroidal.

6. Genus of the union of Cantor sets. If the Cantor sets X and
Y are disjoint we have g(X ∪ Y ) = max{g(X), g(Y )}. A tame Cantor
set behaves nicely with respect to the genus as we have
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Theorem 11. Let X ⊂ E3 be a tame Cantor set. Then g(X ∪ Y ) =
g(Y ) for every Cantor set Y ⊂ E3.

Proof. The estimation g(Y ) ≤ g(X ∪ Y ) is obvious. Now pick an
arbitrarily defining sequence (Mi) for Y . We will prove that for every
index i there exists a manifold Ni which contains X ∪ Y in its interior
such that diam Ni ≤ 2diamMi and g(Ni) = g(Mi).

Let ε = dist (Y, Fr Mi)/2. As X ⊂ E3 is a tame Cantor set it
can be pushed off the 2-manifold Fr Mi by some ε-move h. Hence
h−1(Mi) is a cube with handles which contains Y in its interior and
Fr (h−1(Mi)) ∩ X = ∅. The manifold Ni is therefore h−1(Mi) union
some disjoint small 3-balls which cover a tame Cantor set X \h−1(Mi).

As in [5] we denote by T(X) the set of all such points x of the Cantor
set X, where X is locally tame at x.

Theorem 12. Let X, Y ⊂ E3 be Cantor sets. If X ∩ Y ⊂
T(X) ∩ T(Y ), then g(X ∪ Y ) = max{g(X), g(Y )}.

Proof. By [5] the set T(X) is open in X and T(Y ) is open in Y . By
assumption of the theorem we have

X ∩ Y ⊂ T(X) ∩ T(Y ) ⊂ X ∩ Y

and hence X ∩ Y = T(X) ∩ T(Y ). Then the Cantor sets X ′ =
X \ (T(X) ∩ T(Y )), Y ′ = Y \ (T(X) ∩ T(Y )) and X ∩ Y are pairwise
disjoint. Because of X ∩ Y = T(X) ∩ T(Y ) this set is tame and hence

g(X ∪ Y ) = g(X ′ ∪ Y ′) = max{g(X ′), g(Y ′)} = max{g(X), g(Y )},

using g(X) = g(X ′) and g(Y ) = g(Y ′).

Theorem 13. Let X, Y ⊂ E3 be nondisjoint Cantor sets and
a ∈ X ∩ Y a point that there exists a 3-ball B and a 2-disk D ⊂ B
such that

1. a ∈ Int B, Fr D = D ∩ Fr B, D ∩ (X ∪ Y ) = {a} and
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2. We have X ∩B ⊂ BX ∪{a} and Y ∩B ⊂ BY ∪{a} where BX and
BY are the components of B \ D.

Then ga(X ∪ Y ) = ga(X) + ga(Y ).

Proof. Let us prove that ga(X ∪ Y ) ≤ ga(X) + ga(Y ). There exists
such defining sequences (Mi) for X and (Ni) for Y that ga(X; (Mi)) =
ga(X) in ga(Y ; (Ni)) = ga(Y ). Let i be so large that the component
M of Mi and the component N of Ni which contains a both lie Int B.
We may assume that Fr M and Fr N intersect D transversally. Then
Fr M ∩ D consists of finitely many pairwise disjoint circles and by cut
and paste techniques as in the proof of Theorem 4 one can assume
that M ∩ D is a 2-disk containing a in its interior. As X ∩ BY = ∅,
the manifold M ∩ BX is a cube with at most g(Fr M) handles and its
boundary intersects X∪Y only in point a. Similarly one can modify N
so that N∩BY is a cube with at most g(Fr N) handles and its boundary
intersects X∪Y only in point a. If we modify M and N carefully we also
obtain M ∩D = N ∩D. Then Q = (M ∩BX)∪(N ∩BY ) is a cube with
at most g(Fr M)+ g(Fr N) handles, a ∈ IntQ and Fr Q∩ (X ∪Y ) = ∅.
Hence ga(X ∪ Y ) ≤ ga(X) + ga(Y ).

For the proof of ga(X ∪ Y ) ≥ ga(X) + ga(Y ) we take such defining
sequence (Qi) X∪) that ga(X ∪ Y ; (Qi)i) = ga(X ∪ Y ). As in the
first part of the proof we modify Qi so that D ∩ Qi is connected.
Now we cut Qi along D and thicken the components. We get the
manifolds QX

i in QY
i for which Fr (QX

i ) ∩ X = Fr (QY
i ) ∩ Y = ∅

and x ∈ QX
i ∩ QY

i . We may assume that 2-disk B is so small that
g(M) ≥ ga(X) for every cube with handles M ⊂ Int B which contains
a and g(N) ≥ ga(Y ) every cube with handles N ⊂ Int B which contains
a. Hence g(Qi) = g(QX

i ) + g(QY
i ) ≥ ga(X) + ga(Y ) and therefore

ga(X ∪ Y ) ≥ ga(X) + ga(Y ).

Remark. Using the preceding theorem one can alternatively prove
the existence of the Cantor set of given genus.

Summarizing the above theorems one may conjecture:
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Conjecture 3. For arbitrary Cantor sets X, Y ⊂ E3 we have

(3) max{g(X), g(Y )} ≤ g(X ∪ Y ) ≤ g(X) + g(Y ).

Using (1) we easily prove the left inequality above. But the right
inequality above is not true in general. We will briefly explain the
defining sequences for such Cantor sets.

Let X and Y be self-similar Cantor sets given by defining sequences
(Mi) in (Ni) which are symmetric with respect to E2 × {0} ⊂ E3, see
Figure 6. The plane E2 × {0} ⊂ E3 contains equators of all 3-balls.

��

��

FIGURE 6. Example of g(X ∪ Y ) = g(X) + g(Y ) + 1.

We have X ∩ Y ⊂ E2 × {0} hence the (Cantor) set X ∩ Y is tame.
Obviously g(X) = g(Y ) = 1 and one can prove that ga(X ∪ Y ) = 3 for
every a ∈ X ∩ Y .

Hence the new conjecture is

Conjecture 4. If the intersection of Cantor sets X ⊂ E3 and
Y ⊂ E3 is a tame (Cantor) set, we have

g(X ∪ Y ) ≤ g(X) + g(Y ) + 1.
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The author believes that in general genus of the union of Cantor is
not related to g(X) + g(Y ), more precisely

Conjecture 5. For every r ∈ N there exist Cantor sets X and Y ,
such that

g(X ∪ Y ) ≥ g(X) + g(Y ) + r.

Acknowledgments. This work constitutes part of the author’s
doctoral thesis prepared under direction by Professor Dušan Repovš at
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