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INEQUALITIES OF OSTROWSKI
TYPE IN TWO DIMENSIONS

NENAD UJEVIC

ABSTRACT. A weighted version of Ostrowski type inequal-
ity in two dimensions is established. An ordinary generaliza-
tion of Ostrowski’s inequality in two dimensions and a corre-
sponding Ostrowski-Griiss inequality are also derived.

1. Introduction. In 1938 A. Ostrowski proved the following integral
inequality, [15] or [14, p. 468].

Theorem 1. Let f : I — R, where I C R is an interval, be a
mapping differentiable in the interior Int I of I, and let a,b € Int I,
a<b. If|f'(t)] < M, for all t € [a,b] then we have

b

0 [ o< b+ SR o

a

for x € [a, b].

The first (direct) generalization of Ostrowski’s inequality was given
by Milovanovi¢ and Pecari¢ in [12]. In recent years a number of
authors have written about generalizations of Ostrowski’s inequality.
For example, this topic is considered in [1, 3, 5, 7] and [12]. In this
way some new types of inequalities are formed, such as inequalities of
Ostrowski-Griiss type, inequalities of Ostrowski-Chebyshev type, etc.
The first inequality of Ostrowski-Griiss type was given by Dragomir
and Wang in [5]. It was generalized and improved in [7]. Cheng gave a
sharp version of the mentioned inequality in [3]. The first multivariate
version of Ostrowski’s inequality was given by Milovanovié in [10],
see also [11] and [14, p. 468]. Multivariate versions of Ostrowski’s
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inequality were also considered in [2, 6] and [9]. In this paper we give
a weighted two-dimensional generalization of Ostrowski’s inequality.
For that purpose, we introduce specially defined functions, which can
be considered as “harmonic functions,” since they are generalizations of
harmonic or Appell-like polynomials in two dimensions. In Section 3 we
use the mentioned generalization to obtain an ordinary two-dimensional
Ostrowski type inequality. Finally, in Section 4 we give a corresponding
Ostrowski-Griiss inequality.

2. A weighted Ostrowski type inequality. Let Q = [a,b] x
[a,b] € R? and let w : @ — R be an integrable function such that
w(z,y) >0, for all (x,y) € . We define

1 t s
@) Pyyq(t,s) = W a/a/(t — x)k(s - y)kw(x,y) dz dy,

k=0,1,2,...
Specially, we set
Py(t,s) = w(t,s).
Lemma 2. Let Py(t,s) be defined by (2). Then we have

PPty s)

= P =0,1,2,....
8t5‘3 k(tas)a k 07 ) &y

Proof. We have

aPkJralt(t,s) _ (k1,>2%[//(t_x)k(3 —y)kw(x,y) da dy

B (lﬂ% //(t =)' (s —y) (e, y) dedy.
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From the above relation we get

82Pk+1(t,8) . 0 (8Pk+1(t, S))

otds  Os ot

- ﬁ //(t =) (s = y)" Tw(z,y) de dy

= P(t,

Specially, we have

t s
%P (t,s 0?
5‘;(‘(?3 ) = 8tas(//w($,y) dxdy>

S

:%</w¢wmﬁzwm@=%¢ﬁ- o

a

Let f : © — R be a given function. Here we always suppose that
f € C?"2(Q). We now define

82k+1f(b,s)
(3) Jp+1 = /Pk+1(b>s)W ds, k=0,1,...,n,

b
1

S

(5) QjJrl(wkvs) = %/(s_y)jwk(y) dya j :0,17"' , 1,

a

(6) Qo(wy, 8) = wi(s).
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Note that

(7) Qr+1(wk, 8) = Pry1(b, s).

We also define

k
(8) uk(s):%, k=0,1,...,n
such that
(9) uF ) (5) = (b 5)
X = .

Otkosk+1

Lemma 3. Let Jyi1, wi, Qj+1, ur be defined by (3), (4), (5) and
(8), respectively. Then we have

k

(10)  Jipr = D (=P Qi (wi b)u) (0) + (1) g (wn),
j=0

where
b

Up(wg) = /wk(s)uk(s) ds.

a

Proof. From (3), (7) and (9) it follows

b
(11) Jk+1 = /Qk-‘rl(wkH S)U](ck+1)(5) dS, k= 07 1a cee e

We have

(12)

/ 1 i-1 _ -
Qj+1<wk,s>—ma/<s—y> wn(y) dy = Qs (wes), j=1,....m,

Q' (wy, 5) = wi(s) = Qo(wr, 5).
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We now set Jix41 = Ugt1(wy). Then from (11) and (12) we get

(=) Uk (wy)

b
= (| Quns ()l 6) 2% [ Qulan,s)al) o) ds

b
= (— 1) Qpr (w, b)ul®) (b) + (~1)* / Qi (wr, s)ui (s) ds,

since Qk+1(wg, a) = 0. The above relation can be rewritten in the form

(=D U r (i) = (=) Qg1 (wi, )ul™ (b) + (—1)* U (wy).

In a similar way we get

(=D)*Uk(w) = (=1)*Qu(wr, buy ™ (b) + (= 1) Vg1 (wp)-
If we continue this procedure then we obtain

(1) g1 = (=) Upgr (wie)

k
=" (~1YQ 1 (wi, b)u (b) + Us (wwy,).
j=0

From the above relation we easily get (10). O

‘We now define

b
[ OPuga(t,b) 9%* f(t,b) _
(13) Kkt —/ p G aaE dt, k=0,1,...,n,

a

b
1) a0 =g (-9 e@dy=0, k=01 .. n
and

1 t
(15 Ry(ot) = ooy [0 a@)dn j=12
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(16) Ro(zk,t) = z1(1).
Note that
(17) 8P/g+871t(t,b) = Ry(z, t).
We also define
(18) vk(t):%, k=0,1,...,n
such that
(19) o (p) = L0

Otkosk

Lemma 4. Let Ky, 2, Rj, vi be defined by (13), (14), (15) and
(18), respectively. Then we have

k
(20)  Kppr = D (=DF IR (2, )0 TV (b) + (—1)FVa(2),

j=1

where

b
Vi(ze) = /zk(t)vk(t) dt.

Proof. From (13), (17) and (19) it follows

b
(21) K1 = / Ry (2, )0 (1) dt.
We have
(22)
. t
R;(Zkv t) - (]._2)' /(t-l’)j_ZZk(.’I}) dx = ijl(zk, t) ] :2, ,n,
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We now set Kjy1 = Viy1(z;). Then from (21) and (22) we get

(=1)* Vi (zx)

= (_1)kRk(Zk,b)’Ul(ck71) k 1/Rk 1(zk,t (k 1)(t) dt,

since Ry (zx,a) = 0. We can rewrite the above relation in the form
(=) Vi1 () = (—=1)* Ri(zn, b)o" P (B) + (—1)F " Vi(=)-
In a similar way we obtain
()P Wiar) = (~ 1D R (z, bog 2 (0) + (—1)F Vi (21).
If we continue this procedure then we get

(—1)F K1 = (=1)" Vi1 (z1)

k
=3 (1Y R; (2, b)o P (B) + Vi)
j=1
From the above relation we easily get (20). O

Theorem 5. Let Q = [a,b] x [a,b] C R?, and let w: Q — R be an
integrable function, w(x,y) > 0. If f € C*"*2(Q) and

0%+ f(t, 5)

(23) M2n+2 = max W

(t,s)eQ

, M, = max w(t,s
v (t,s)eQ( )

then we have the identity

b

b
(24) //w f(t,s)dtds = ZKZH ZJZH + Iy,

=0 =0

where
b b

8271-{-2 t. s
In+1 = //Pn+1(t s)atn'i‘l—g(n'i‘l) dt ds

a a
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and the inequality

b b n n
(25) //w(t,s)f(t,s) dtds =Y Kip1+ Y Ji
u i=0 i=0
M2n+2Mw (b _
= (n+2)12

where Jiy1, K;y1are given by Lemmas 3 and 4.

Proof. Integrating by parts, we obtain
bob 82 +2f( )
" t,s
n+1 //Pn+1 t S 8t"+18 | dtds

b

82n+1f(t 5)
/ds/Pn_H (t,s 815( S gt ) dt

:/ds {pnﬂ(t’s)w t_b}

otnHsn+1 t=a
(26)

8Pn+1 (t,8) O*"HLf(t,s)
// ot"Os n+1 dtds

02+ f(b, s
:/P"Jrl(b’s)wa-l) ds

8Pn+1 (t,8) O*"FLf(t,s)
// Sngentl dt ds,

since P,11(a,s) =0.

If we introduce the notation

b b
_ aPnJrl(tv S) 82n+1f(ta S)
(27) Lyt = // ot SrDgn i1 dtds

a a
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then we can write
InJrl = JnJrl - Ln+1'
Integrating by parts, we get

0P, 11(t,s) aan(t’s)
Lnv1= / / at  os ( gingsn ) 8

_ / i {aPnJrl(t ,s) 0P f(t,s) |s—b]

ot otnosn 1T

O?P,1(t,s) O*"f(t,s)
/ / Dtds ginosn s

OP,11(t,b) 02" f(t,b) _// 82"f > f(t,s)
= / ot Dtndsn L b8) gpgen LA,

a

since (0P,41(t,a)/0t) = 0 and Lemma 2 holds. Thus,
Lyt = Kpy1 — I,

Hence, we have

(28) Ins1 = Jpit — Kpay + L.

The above described procedure is the first step of the whole procedure.
In a similar way we get

IL,=J,—Kp,+ 1,1

If we now continue the above described procedure, then we get

(29) Int1 = ZJH-I ZK1+1+I1-
We have
[ P F(s)
t,s

a a
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Using the previously given notations we have

w(z,y) dx

g
S~
—
®
S~—
Il
(S5
~
—
<
NG
g
o
<
S~—
Il
S o

and ,
Pi(b.s) = / / w(a,y) de dy = Q1 (wo, ).

From the above relations it follows

b

(31) Jp = /Ql(wo,s)ug(s) ds

a

b s
L1—// Y B dt ds.

such that
(32) L =J1— 1.

We also have

b

OP;(t,b
w(t) = .0, e = [wley)dy and D~ o,
From the above relations we get
b
(33) Kl = /R0(207t)vo(t) dt

such that

(34) L =K, — I,
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where

b b
10://f(t,s)w(t,s)dtds.

From (29), (32) and (34) it follows

(35) Iy = ZJZH ZK1+1+IO

Hence, (24) holds.

We now estimate I,,41,

a2n+2f(t 8)
’// 1 (L, s) S iiggnil dtds’
b

- ‘a/a/%[G/G/@—y)”(t—x)"w(w)dxdy}

P2 (1, 5)

irtigentl dt ds’
Mo, 12 M, (s —a)"*tt (t —a)"t? Qb ds
nl? n+1 n+1
_ M2ﬂ+2Mw (b - a)n+2 _ M2n+2Mw (b _ a)2n+4
(n+1)1? n+ 2 (n+2)1? '

This completes the proof. ]

3. An inequality of Ostrowski type. Here we use the notations
introduced in Section 2. We now choose w(z,y) = 1. If we substitute
this in (4) then we have
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such that

(b—a)"*! (b—a)it!
(m+1)!  (G+1)°

b
Qg—H(wn,b):; /(b— YYwn(y) dy =

We also have
b

—a n+1
Up(wy,) = /wn(s)un(s) ds = % /un(s) ds.

Thus, from Lemma 3 we get
(37)

Jn+1 - Jn+1

b an+1 n n i b a)]+1

i+ 1) [Z TES] ul) (b)+(—1)"+ /bun(s)ds],

J=

If we substitute w(z,y) = 1 in (14) then we have

b
B 1 . 7 (b_a)nJrl
zn(fﬂ) = ﬁ/(b_y) dy (n+1)|
and
b
(z = ! —2) 2 (x x_(b—a)"“ (b-a)

We also have
b

_ n+1
Vi(2n) = /zn(t)vn(t) P Ul ) e /vn(t) dt.
Thus, from Lemma 4 we get

(37)
Kn+1 = KnJrl

_ (b—a) )t {En: ) b a)’ U1 (b) 4 (_1)"/bvn(t) dt}

n+1 =
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We now introduce the notation

b b
R R 82"+2f t, s
(38) L1 = // P”H(t’s)aﬂl“—a(snﬂ) dtds,
where
(39) Pt s) = (s —a)" 1 (t —a)"

(n+1)12

Theorem 6. Under the assumptions of Theorem 5 and the notations
(36)—(39) we have

< —
= (n+2)?

b b
'//f(t,s)dtds—ZJlH+ZK1+1

Proof. The proof follows immediately from the above considerations
and Theorem 5. ]

4. An inequality of Ostrowski-Griiss type. Let (X, (-,-)) be a
real inner product space and e € X, |le|]| = 1. Let v, ¢,I', ® be real
numbers and x,y € X such that the conditions

(40) (Pe —z,x—pe) >0 and (Te—y,y—ye)>0
hold. In [4] we can find the inequality

1
(41) [, y) = (@) (y,e)] < 71@ = o] [T =]

We also have

L [ (o R (S
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Let X = Lo(Q2) and e = 1/(b — a). If we define

b b
T(f,9) = (b—la)2 //f(t,s)g(t,s)dtds

b b b b
—ﬁ//f(t,s)dtds//g(t,s)dtds

then from (40) and (41) we get the Griiss inequality in Lo (),

(44) IT(f,9)] < (T =)(®— ),

| =

if
v < fla,y) ST, o <gla,y) <@, (2,y) €

From (42) we get the pre-Griiss inequality

(45) T(f.9)* <T(f, /)T (9,9)-

Theorem 7. Under the assumptions of Theorem 5 we have

b b n n
(46) ’//f(t,s)dtds%—zjiﬂ—ZIA(Z»H
a a i=0

=0

b_a 2n+4
- ﬁ [v(6,0) = v(b,a) — v(a,b) + v(a, a)] ‘
May o — Mang2 on 1 1 Ve
BT {(2n+3)2 ) (n+2)4} |

where v(x,y) = 02" f(x,y)/0x"dy" and Jiy1, Kiy1 are defined in
Theorem 6, while

O*nt2 f(x,y) 9?2 f(x,y)

Mopto = min ————————= Mspio = max ———————=,
2T pyeq otntlggntl T y)eq otntlggntt
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Proof. We have, see Theorems 5 and 6,

b b n n
//f(t,s) dtds = —Zji+1 +ZK¢+1 +fn+1.
W a =0 =0

We add the terms

5 9?2 f(t, 5)
Ly = b—a // Pi1(t,s)dtds //8t"+18 antds

_ 2n 2
= i% [U(b7 b) - ’U(b, a’) - v(a, b) + U(a’ a)]

to the above relation. Then we get

b b n n
JHECOTZ D SEAEED SF S AR A
o i=0 i=0

Hence, we have

5 0" T2f(t,s
Iny1— Lpy1 = (b—a)?*T <Pn+1(t, s), il )>

atn+1 aSnJrl

where T'(+, ) is defined by (43) and

InJrl - -Z/nJrl‘ < (b - G)QT (

8271-1-2170(157 8) 62n+2f(t, S) ) 1/2

DIt Pt Iggntl

R R 1/2
x T (PnH(t, s), P i (t, s)) ,

since (45) holds.

We also have

(Map42 — mapt2)

T<32"+2f(t,s> 82”+2f<t,s>)”2

Otntlogn+l ’ otnt1ygn+1
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by the Griiss inequality and

b b
A A 1 A
T (Pn+1(t, S), Pn+1(t, S)) = W // PnJrl(t, 8)2 dt ds

(b—a)4”+4[ 1 1 ]

(n+1)1* |(2n+3)2 (n+2)*
From the above relations we see that (46) holds. O
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