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CONFORMALLY RECURRENT
SEMI-RIEMANNIAN MANIFOLDS

YOUNG JIN SUH AND JUNG-HWAN KWON

ABSTRACT. In this paper we give a complete classifica-
tion of conformally recurrent semi-Riemannian manifolds with
harmonic conformal curvature tensor and to give another gen-
eralization of conformally symmetric Riemannian manifolds.
Moreover, we give a nontrivial example which is neither locally
symmetric nor conformally flat.

1. Introduction. Let us denote by M an n(>4)-dimensional semi-
Riemannian manifold with semi-Riemannian metric g and Riemannian
connection V and let R, respectively S or r, be the Riemannian
curvature tensor, respectively the Ricci tensor or the scalar curvature,
on M.

It is said to be conformally recurrent if the conformal curvature tensor
C' with components Cjji; so that

Cijit = Rijr — 5 (Sitgjx — Sirgjt + Sirgia — Sjigir)
(1.1) -
+ CEICE) (9219jk — 9ikgjt)

is recurrent, i.e., there is a 1-form « such that VC = a®C, where
Rijri, Si; and g;; are components of R, S and g on M. In particular,
it is said to be conformally symmetric if VC = 0. As is easily seen,
the class of conformally recurrent semi-Riemannian manifolds includes
all the classes of conformally symmetric, conformally flat and locally
symmetric semi-Riemannian manifolds. Among them such kind of
Riemannian manifolds are studied by Besse [2], Ryan [12], Simon
[13], Weyl [15, 16], Yano [17], Yano and Bochner [18], for example.
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Conformally symmetric semi-Riemannian manifolds are investigated
by Derdzinski and Roter [6]. In particular, in the Riemannian case,
Derdziriski and Roter [6] and Miyazawa [9] proved the following

Theorem A. An n(>4)-dimensional conformally symmetric mani-
fold is conformally flat or locally symmetric.

The symmetric tensor K of type (0, 2) with components K;; is called
the Weyl tensor if it satisfies

1

1.2 Kii— Ky = — (kigi; — ki94a),

(1.2) Jl lj 20n—1) (k19i5 79il)

where k& = Tr K and Kjj, respectively k;, are components of the
covariant derivative VK, respectively Vk.

On the other hand, in Weyl [15] and [16] it can be easily seen that
the Ricci tensor is a Weyl tensor when we only consider an n(>4)-
dimensional conformally flat Riemannian manifold, see Eisenhart [7].
In particular, Derdzinski and Roter [6] investigated the structure of
analytic conformally symmetric indefinite Riemannian manifold of in-
dex 1 which is neither conformally flat nor locally symmetric.

We denote by M an n(2 4)-dimensional semi-Riemannian manifold
with semi-Riemannian metric ¢ and semi-Riemannian connection V.
For a tensor field (0,7 + 1) the codifferential §7" of T is defined by

i
0T(Xy,...,X,) =Y &V T(E;,Xy,...,X,)

i=1

for any vector fields Xy, ..., X,, where {E;} is an orthonormal frame
on M. If 6C = 0, then M is said to have harmonic conformal curvature
tensor, see Besse [2].

In this paper we want to make a generalization of such results in the
direction of a certain kind of curvature-like tensor fields. In order to do
this we introduce the notion of conformal recurrent curvature tensor,
that is, the covariant derivative of the conformal curvature tensor C
satisfies VC = a®C for a certain 1-form a. Moreover, let us say a semi-
Riemannian manifold M has harmonic conformal curvature tensor if
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its conformal curvature tensor C' satisfies §C' = 0, that is,

Zrarcrjk:mr =0.

If the semi-Riemannian manifold M is conformally symmetric, then
it is trivial that it is conformally recurrent for A4 = 0 and it has a
harmonic conformal curvature tensor.

Now in this paper we want to show the following

Theorem. Let M be an n(>4)-dimensional Riemannian manifold.
If M is conformally recurrent and it has a harmonic conformal curva-
ture tensor and if the scalar curvature is nonzero constant, then it is
conformally flat or locally symmetric.

When the 1-form « vanishes identically in above theorem, it can
be explained that a conformal Riemannian symmetric manifold M
is locally symmetric or conformally flat. So our theorem is also a
generalization of Theorem A. In Remark 3.3 given in Section 3 we
will explain that the condition concerned with the scalar curvature is
not necessary.

On the other hand, in Section 4 we will show that among the indef-
inite class of conformal recurrent manifolds with harmonic conformal
curvature tensor there are so many kind of examples which are neither
locally symmetric nor conformally flat, but its scalar curvature is van-
ishing. So in an indefinite version of such a theorem, the condition that
nonzero constant scalar curvature is essential.

2. Preliminaries. Let M be an n(2 2)-dimensional semi-
Riemannian manifold of index s, 0 £ s < n, equipped with semi-
Riemannian metric tensor g and let R, respectively S or r, be the Rie-
mannian curvature tensor, respectively the Ricci tensor or the scalar
curvature, on M. In particular, if 0 < s < n, then M is said to be
indefinite.

We can choose a local field {E;} = {Ei,...,E,} of orthonormal
frames on a neighborhood of M. Here and in the sequel the indices
i,4,k,... run from 1 to n. With respect to the indefinite Riemannian
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metric we have g(E;, Ey,) = €;0;1, where

gj=—1 or 1, according to whether 1 < j<sors+1=<j< n.

Let {6;}, {0;;} and {O;;} be the canonical form, the connection form
and the curvature form on M, respectively, with respect to the local
field { £} of orthonormal frames. Then we have the structure equations

d@i-l-ZEjaij /\0j =0, Oij +9ji =0,
J
daij + Zsk&-k AN ij = 92’]’7
k

1
0;; = —3 ;fklRijklek Ny,

where 5., = €&+ € and Ryji; denotes the components of the
Riemannian curvature tensor R of M.

Now, let C be the conformal curvature tensor with components C;;y;
on M, which is given by

1
Cijii = Rijr — p—" {€:(0i1Sjx — 6:rSj1) + € (Sudjx — Sikdji)}

r
+ m (001 — 0i0j1),

(2.1)

where S;; = ), €1 Ryij are the components of the Ricci tensor S with
respect to the local field {e;} of orthonormal frames and r =}, ¢;S5j;
is the scalar curvature.

Remark 2.1. If M is Einstein, then the conformal curvature tensor C'
satisfies

Cijki = Rijri — €ij (00 — dirdj1)-

r
nin—1)
This yields that the conformal curvature tensors of Einstein Rieman-
nian manifolds are the concircular curvature one. In particular, if M
is of constant curvature, the conformal curvature tensor vanishes iden-
tically, Yano and Bochner [18].
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Let D"M be the vector bundle consisting of differentiable r-forms
and DM = "' D"M, where DM is the algebra of differentiable
functions on M. For any tensor field K in D" M the components Kj;xin
of the covariant derivative VK of K are defined by (for simplicity, we
consider the case r = 4)

> enKijkintn
h

=dKijn — Z en(KnjkiOni + KinkiOnj + KijniOnk + Kijenbni)-
h

Now we denote by T'M the tangent bundle of M. Let T be a
quadrilinear mapping of TM x TM x TM x TM into R satisfying
the curvature-like properties:

(a) T(X,Y,Z,U)=-T(Y,X,Z,U) = -T(X,Y,U, Z),
(b) T(X,Y,Z,U)=T(Z,U X,Y),
(c) T(X.Y.Z,U) + T(Y.Z,X,U) + T(2,X,Y,U) = 0.

Then T is called the curvature-like tensor on M. See Kobayashi and
Nomizu [5], for example. Let T;;x; be the components of T' associated
with the orthonormal frame {E;}; then the components T}, are given
by T;jri = T(E;, E;, Ex, E;). By the conditions (a), (b) and (c), the
following properties of the components of T" hold corresponding to the
conditions (a), (b) and (c):

(2.2) Tijkr = —Tjire = —Tijiks
(2.3) Tijkt = This; = Tikga,
(2.4) Tijit + Tikir + Trije = 0.

If the components Tjjx; of a tensor T in D*M = @4T*M satisfy (2.2),
(2.3) and (2.4), then it becomes a curvature-like tensor.

Lemma 2.1. On a semi-Riemannian manifold, the conformal cur-
vature tensor C' is curvature-like.

For any integer a and b such that 1 < a < b < s the metric contraction
reduced by a and b is denoted by Cqup : To M — T._ oM with respect
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to the orthonormal frame {E;}. The symmetric tensor U in DM is
called the Weyl tensor if its components of the covariant derivative VU
of U satisfy

1 1

(25) Uijk - 2(7’7,——1) uksiéij = Uikj - m

uj5i5ika

where u = C12U. In particular, if u is constant, then U is called the
Codazzi tensor. We put VxU(Y,Z) = VU (Y, Z,X). Then it is easily
seen that Y, exUpjr = ui/2.

Now let C' be the conformal curvature tensor with components C;;y;
on M. The semi-Riemannian manifold is said to be conformally flat
if C = 0. For the geometric meaning of conformally flat Riemannian
manifolds, see Yano and Bochner [18], for example. In particular, if
M is a space of constant curvature, the conformal curvature tensor
vanishes identically.

The Ricci-like tensor Ric (C) of C' is defined by C14(C) = Ca3(C).
Then the components Cjj of Ric (C) are given by Cjr = >, &,Crjkr.
We have then

(2.6) i = 0.

3. Conformally recurrent spaces. Let M be an n(>2)-
dimensional semi-Riemannian manifold of index 2s, 0<s<n, with Rie-
mannian connection V and let R, respectively S or r, be the Rie-
mannian curvature tensor, respectively the Ricci tensor or the scalar
curvature, on M.

Now let C' be the conformal curvature tensor with components C;;y;
with respect to the field {E;} of orthonormal frames given by

1
Cijki = Rijri — s (€;Subjk — €;Sikdj + €5k — €iS10ik)

(3.1) ]
* (n—1)(n—2) €ij(0it0;k — Girbjt)-
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Differentiating C' of (3.1) covariantly, we have

1
Cijkim = Rijkim — " (€5 Sitm0jk — €5 Sikm0j1

(3.2) +€Sjkmit — €iSjimOik)
T'm
+ m €ij (6Zl5jk‘ - 5zk6]l)7

where Cjiim, respectively Rijkim, Sjkm OF T, are the components of
the covariant derivative VC of C, respectively the covariant derivative
VR of R, VS of S or dr.

By the second Bianchi identity
Rijrim + Rijimk + Rijmigr =0

for R and putting ¢ = m in (3.2) and summing up with respect to 4,
we obtain

ngrcrjkmr = (”_3){Sjkm_Sjmk_5j (Tméjk_TkajM)/2(”_1)}/(”_2)-

If M has a harmonic conformal curvature tensor, then we have by
definition

(33) ngrorjkmr = 0,

from which the following property is derived

Lemma 3.1. Let M be an n(>4)-dimensional semi-Riemannian
manifold. If M has a harmonic conformal curvature tensor, then the
Ricci tensor is a Weyl tensor.

Lemma 3.2. Let M be an n(>4)-dimensional semi-Riemannian
manifold. If M has a harmonic conformal curvature tensor, then it
satisfies

(3.4) Zrcfr(Rrik;erj + RyimjSrk + RrijkSrm) = 0.

Proof. By the assumption, Lemma 3.1 gives that the Ricci tensor S
is the Weyl tensor. By the definition of (2.5) we have

(3.5) Sijk — Sikj = €i(rudi; — rjdi)/2(n — 1).
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Differentiating covariantly, we get
Sijkem = Sikjm = (Tkm€ibij — Tjm€idir)/2(n — 1).

Interchanging the indices k and m and subtracting the resulting equa-
tion from this, we obtain

Sijkm — Sijmk + Simjk — Sikjm = €i(Tjk0im — Tjmeir)/2(n — 1),

where we have used the property that r;; is symmetric with respect to
¢ and 7, because r is the function. Thus we have that the left side is
equivalent to

= (Sijkm — Sijmk) + (Simjk — Simkj) + (Simkj — Sikjm)
= (Sijkem — Sijmk) + (Simjk — Simk;j)
+ [{Sikmj + Ei(rkj(sim - ij5ik)/2(n - 1)} - Sikjm]
= _ZTET(RmkirSrj + RmkjrSir) - ZTET(RkjiTSrm + Rkjm'rsir)
- ZTET(ijiTSTk + ijk:rsir) + Ei(rkj(sim - rmj(szk)/2(n - 1)
= _err(RmkirSTj + ijirSrk + Rkjirsrm
+ Ei(rkjéim — ij(sik)/2(n — 1)

where the second equality follows from (3.2), the third equality is
derived from the Ricci identity for the Ricci tensor S;; and the fourth
equality follows from the first Bianchi identity. It yields that we have
(3.4). Tt completes the proof. o

Lemma 3.3. Let M be an (n>4)-dimensional semi-Riemannian
manifold. If M is conformally recurrent and if S is the Weyl tensor,
then we obtain

(36) ngr(crikmsrj + Crimjsrk + Criijrm) = 07

(37) ZTET(C'rikerjn + C’riijrk:n + Crijk:Srmn) =0.

Proof. Substituting the components R;;km of (2.1) into the lefthand
side of (3.4) and calculating directly, we get the equation (3.6).
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Now differentiating (3.6) covariantly and taking account of (3.6), then
the conformal recurrence implies (3.7). This completes the proof. ]

Theorem 3.4. Let M be an n(>4)-dimensional semi-Riemannian
manifold of index s, 0<s<n, with Riemannian connection V. Assume
that M is conformally recurrent and has a harmonic conformal curva-
ture tensor. If the scalar curvature is constant, then it satisfies

lal®ICI?[IVS - aS|* =0,

where || ||? denotes the squared norm of the scalar product on M.

Proof. Let Cjjimnp be the components of the covariant derivative
V2C of VC. They are given by

(3.8) Cijkmnp = (Qn0p + anp)Cijkm.

Now we define by f the scalar product of C, namely we put f = (C, C).
Let M’ be the subset of M consisting of points x in M such that
f(z) = 0. Then we have

Vf=2(VC,C) =2af

on the open subset M — M’ and hence we have a« = V f/2f, from which
it follows that
2a = Vlog| f|.

This implies that
(39) Q;; = Qg On M — M/.

So, on M — M’, by (3.8) and (3.9) we have Cijkmnp = Cijkmpn-
Accordingly, by the Ricci identity we get

(3.10)
Zrar(anirerkm“‘ anjrcirkm+ RpTLkTCiij+ anmrcijkr) = 0.

Differentiating the above equation covariantly and taking account of
Cijkmn = anClijrm, we have

Zrar { (anirq erk:m +anj7‘q Cirkm +ank:rq Cijrm + anmrqcijk:r)
+ a4 (Rpm‘r erkm + anjv"civ"km +ank?“ Oij?"m +RP""”" CW“") } =0.



294 Y.J. SUH AND J.-H. KWON

Hence we have by (3.10)
(3.11)

ngr(aniqurjkm'i_ anjrqcirkm+ anqucijrm"f' anmrqcijkr) = 0.

On the other hand, by (2.1), (3.2) and a,Ciji = Cijrin we have

an[Rijkm — {€i(Sjxbim — Sjm0ir) + €;(IjxSim — 0jmSik)}/(n—2)
+7€i(0jk0im — Ojmbix)/(n — 1)(n — 2)]
= Rijimn— {€i(Sjknim — Sjmnir) + €;(8jkSimn— GjmSikn)}/(n—2)
+ 1015 (0k0im — Ojm0ix)/(n — 1)(n — 2)

and hence we get
(3.12)
Rijkmn
= anRijem +€i{(Sjendim— Sjmn0ir) — n(Sjkdim— Sjmdir)}/(n—2)
+€i{(8jkSimn— 0jmSikn) — an(0kSim — SjmSik) }/(n—2)
+(ran — 1) (0j10im — djmdix)/(n — 1)(n — 2).

From (3.11) and (3.12) it follows that

aqzrgr (anircrjkm + anjrcirkm + ankrcijrm + anmrcijkr)
+ ngrp[{sniqépr - Snrqépi) - Oéq(Sni(Spr - Snr(spi)}crjk:m
+ {(Snjqdpr — Snrqdp;) — ag(Snjdpr — Snrdp;)}Cirkm
+ {(Snk:q(spr - Snrqépk) - aq(Snk(Spr - Snr(spk:)}cijrm
+ {(SnmqOpr — Snrqdpm) — g (SnmOpr — Snrdpm)}Cijirl/ (n—2)
+ Zrarn[{ (éniSprq - 5anpiq) - O‘q(anispr - 5m”Spi)}C'rjkm
+ {01 Sprq — OnrSpjq) — Aq(0njSpr — GnrSpj) }Cirkm
+ {(5nkSprq - 5n7"Spkq) - aq(énkSpr - 5anpk)}Oijrm
+ {(0nmSprq = OnrSpmaq) = Aq(SnmSpr — OnrSpm) }Cijkr] /(n—2)
+ (T‘Oéq - Tq){gn((snicpjkm + 6njCipkm + 5nkrcijpm + 6nmcijk:p)
- 5p(6picnjkm + 5ijinkm + 5pkcijnm + 5mezjkn)}/(n_1)(n_2)
=0
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which can be reformed by (3.10) as

Zraw[{sniqépr - Snrq(spi)crjkm + (Snjqépr - Snrq5p‘)cirkm
+ {(Snk:qép'r - Snrq(spk)cij'rm - (Snmqépr - Snrqépm)cijk:r}
- aq{(Sni(Spr - Snr(spi)crjkm + (Snj(spr - Sm”(spj)cirkm
+ (Snképr - Snrépk)cijrm + (Snm(spr - Snrépm)cijkr}/(n_Z)
+ ngrn[{énisprq - 5nr5piq) - aq(énispr - 5nrspi)}crjkm
+ {(5njsprq - 6anqu) — Qq (5njspr - 5nrspj)}cirkm
+ {(5nkSprq - 5nrspkq) - aq((snkspr - (sanpk)}Cijrm
+ {(6nmSprq = OnrSpmq) — @ (OnmSpr — SnrSpm) }Cijrr]/(n—2)
+ (’I“Oéq - TQ){En(éniijkm + 5njCipkm + 6nktcijpm + 6nmcijk7p)
= &p(0piCrjkm + OpjCinkm + OpkCijnm + SpmCijkn) }/(n—1)(n—2)

= 0’

and hence by multiplying both sides by (n — 2) we obtain

(SnigCpjkm + SnjqCipkm + SnkqCijpm + SnmqCijrp)
- (Spiqcnjkm + Squcinkm + Spchijnm + Spchijkn)
~ > €rp(8piCrjem + 8 Cirtem + 6t Cijrm + SpmCijkr) Surq
+ ngrn((snicrjkm + 00 Cirkem + 00k Cijrm + 0nmCijkr) Sprq
— q{(8niCpjrm + SnjCipm + SnkCijpm + SumCijkp)
— (SpiCrjim + SpjCinkm + SpkClijnm + SpmCijkn) }
+ aq{zrgrp((spicrjkm + 65 Cirtem + 6piCijrm + Opm Cijier ) Snr

- ngrn((snicpjkm + 5njcirkm + 5nkcijpm + 6nmCijkr)Spr}

+ (’I"Oéq - Tq){gn((snicpjkm + 6njCipkm + 5nkrcijpm + 6nmcijk:p)
- 5p(6picnjkm + 5ijinkm + 5pkcijnm + 5mezjkn)}/(n - ]-)
=0.



296 Y.J. SUH AND J.-H. KWON

Accordingly, we have
(3.13)

{(Snig — @qSni)Cpjkm + (Snjq — gSnj)Cipkm

+ (Snkg — @gSnk)Cijpm + (Snmq — tqSnm)Cijkp}

—{(Spiq — aq)Crjkm + (Spjg — ¥qSp;) Cinkm

+ (Sprg — @) Cijnm + (Spmg — tqSpm)Cijkn) }

— errp((spierkm + 0p; Cirkem + 0pkCijrm + 0pmCijkr)
(Surg — 105ur)

+ Zrarn(énicrjkm + 60 Cirkm + OnkClijrm + OnmCijkr)
+ (Sprq — g Spr)

+ (rag=rg){en(0niCpjkm + on;Cipkm + 0nkCijpm + Onm Cijp)

= &p(0piCnjkm + 0pjCinkm + SpkCijnm + SpmCijn) }/(n = 1)

=0.

Now putting ¢ = r in (3.13), summing up with respect to ) _, and taking
account of (2.6), Lemma 2.1 and the first Bianchi identity for C, we
have

(3.14)
> e[ (1=2)(Sura = AgSur)Crsom + (Sirq = @4Si2) Crnem
+ (Skrq — @qSkr)Crinm + (Smrq — 0gSmr)Crikn
+> s{endur(Srsq=0Srs)Crims —Endum(Sroq—qSrs)Crins }
=0.

Next we assume that M is conformally recurrent and M has a har-
monic conformal curvature tensor, namely, it satisfies Y, €,Crjgmr = 0.
Then we have

(3.15) ZTgrarCTjkm =0.

Putting m = ¢ in (3.14), summing up with respect to m and taking
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account of (3.15) and (3.5), we have
(3.16)
ZT sers{(n_Q)Snrserks + Sjrscrnks + Sk:rscrjns - asSrserkn}
+ er:rrrcrjkn/Q + Zrysﬁtgngrstisnksrstcrjts
- Z ‘Srs(Srsn - anSrs)erks =0.
The third term of (3.16) vanishes identically, since it satisfies
the third term = Z tsns,«sténk(Srst — Srts)C’,«jts/2

= Z tsTStsnénker(rt(srs - Ts(sTt)CTjtS/4(n_1) =0

T?‘SS

where the first equality follows from (2.2), the second one is derived by
(3.5) and the last one is derived from (2.6).

On the other hand, we get

Z Erst(Srns - S’rsn)erks = Z Ersg'r(rsérn - T‘n(srs)crjks/2(n_1)

= earsCrjrs/2(n — 1)

where the first equality is derived by (3.4) and the second one follows
from (2.6). Thus (3.16) is deformed as

(3.17)
Zr sgrs{(n_?))snrscrjks + SjrsCrnks + Skrscrjns - aSSTSC’I‘ij’ﬂ}

)

+err5rcrjkn/2 +ZTTr5rchjkr/2(n_1) +Zr SanSrserks = 0.

Since M is conformally recurrent and M has a harmonic conformal
curvature tensor, by (3.7) we have

ngr(crikmsrjn + Criijrkn + Crijk:Srmn) =0.

Putting m and n by s in (3.7) and multiplying &; and summing up with
respect to s, we have

1
(318) Znsars(sjrscriks - Skrscrijs) + gzsasrscsijk =0.
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By (3.17) and (3.18) we have
Zr,sgrs{(n_l)snrscrjks - assrscrjkn} - errgrcrjkn/2
+ Z Trercnjkr/z(n_l) + Z 87‘80471‘SrsC(Tjk:s =0

Then from this by using the conformal recurrence and the assumption
of constant scalar curvature we have

(’I’L - 1)ersnrscrjks + ZTSSTS(erkns - erksn) =0.

Here we note that the indices j and k in the first and the third terms
are symmetric with each other, because S,,s and S, are symmetric
with respect to the indices r and s. From such a fact, if take a skew-
symmetric part to the above equation, then it follows that

0= Z Erssrs(crjkns - Crkjns) = Z 5rsSrs(erkns + Crknjs)

s s

= _Z ErsSrsCrnjks~
T,8
Hence we are able to assert that
(319) Zrysarssnrscrjks = Znssrssrsncrjks = 0.

Transvecting (3.14) to au, a0y, summing up with respect to m,n and
q, and taking account of (3.15) and (3.19), we have

(3.20) la®> " ereSrsCrirs =0,
where ||a|]? = ||, eraraq . By (3.14), (3.19) and (3.20) we have
||a\|QZTeT[{(n—2)(qu = agSnr)Crjkm + (Sirg = gSjr)Crnkm }
+ (Squ - aqSkT)ernm + (Sm'rq - aqur)erkn] =0.
By Lemma 3.3 we have
Zrer{(squ - aqskr)crjnm + (Smrq - aqur)erkn}
= ZTET{(Squ - aqSk:r)ernm - (Squ - aqSkr)ernm
- (Snrq - aanr)Orjmk}
= _Zrer(snrq - aanr)ermk~
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From the above two equations we obtain
|\6¥||22T6r{(n—1)(Snrq—aqu)erkar(Sjrq—aqur)cmkm} =0

which implies that

oD er(Sira=tqSjr) Crnem = —(n=1)l|e*D_ €r(Snrg=0tgSrnr) Crjivm-

From this it follows that

(3.21) 103" € (Sirg — g S;e) Crntom = 0.

Transvecting Spiq — @gSni or Cpjrm to (3.13) and applying equations
(3.20) and (3.21), we can obtain

(3.22)  [a2IVS —a®S[2C =0 or [la|?|CI*(VS - a®S) =0

on M — M’. Tt completes the proof. a

From this and Theorem 3.4 we want to give the following lemma
which will be useful to prove our main theorem

Lemma 3.5. Let M be an n(>4)-dimensional Riemannian manifold
with Riemannian connection V. If M is conformally recurrent and
if M has a harmonic conformal curvature tensor and constant scalar
curvature, we have

C®(VR — a®R) = 0.

Proof. By Theorem 3.4 we have
a®C®(VS —a®s) =0.

Let M be the subsets consisting of points x in M at which a(z) = 0.

First we suppose that M; is not empty. If Int M; is empty, the
nonvanishing 1-form a gives C' = 0 or VS — a®S = 0. Then by the
assumption of conformal recurrence we know that VR — a®R = 0. So
in such a subcase the conclusion is given by the continuity of C' and
VR - a®R.
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Suppose that Int M7 is not empty. Then in such a subcase M is
conformal symmetric. Then by Theorem A due to Derdzinski and
Roter [5] and Miyazawa [9] we have C = 0 or VR = 0 on Int M.
Hence it follows that we have C = 0 or VR = a®R on Int M;. Thus
we have C®(VR — a®R) =0 on M.

Now we suppose that M; is empty. Then nonvanishing 1-form «
implies C =0 or VS — a®S = 0. When VS — a®S5 = 0, we also have
VR — a®R = 0, because M is conformally recurrent. mi

By virtue of Lemma 3.5 we have the following

Theorem 3.6. Let M be an n(>4)-dimensional Riemannian man-
ifold with Riemannian connection V. Suppose that M is conformally
recurrent and has a harmonic conformal curvature tensor. If the scalar
curvature is a nonzero constant, then M is conformally flat or M is
locally symmetric.

Proof. Let M" be the subset of points x in M at which
(VR — a®R)(z) = 0.

Then we have (Vr — ar)(z) = 0 on M". Since we have assumed that
the scalar curvature is nonzero constant, we get a(z) = 0 on M”. Then
from this together with Lemma 3.5 it follows that & = 0 or C' = 0, that
is, a®C =0 on M.

Now let us consider the open subset M™* consisting of points = at
which C(x) = 0. Then on such an open subset we have VC' = 0 and
hence the inner product (C, C) is constant. By the continuity of (C, C),
if M* is not empty, then (C,C) = 0 on M, namely C = 0 on M. That
is, M is conformally flat. If M™* is empty, then the fact a®C = 0
implies @ = 0 on M. In such a case we know that M is conformally
symmetric. From this together with Theorem A we complete the proof
of our theorem. mi

Remark 3.1. In their paper [8] Goldberg and Okumura proved that in
an n(>4)-dimensional compact conformally flat Riemannian manifold,
if the length of the Ricci tensor is constant and less than r/v/n — 1,
then M is a space of constant curvature.
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Remark 3.2. In the next section we will show that the assumption
that the scalar curvature is a nonzero constant in Theorem 3.6 is
essential when we consider an indefinite version of Theorem 3.6. That
is, we will show a class of an indefinite complex hypersurfaces which is
neither conformally flat nor locally symmetric, but its scalar curvature
is vanishing.

Remark 3.3. But in a Riemannian version the referee suggests that the
assumption concerned with the scalar curvature will not be necessary.
Namely, one can verify that any conformally recurrent Riemannian
manifold of dimension n>4 which has harmonic conformal curvature
tensor is conformally symmetric in the sense that VC = 0 (and
Theorem A gives conformally flat or locally symmetric). Namely, he
has given us another possible argument which is much more shorter
than our proof as follows.

First, let g be a Riemannian-product metric, positive-definite or not,
on a product manifold of dimension n > 4, with both factor manifolds
of positive dimensions. If C(X,,-,-) = 0 for all vectors X tangent to
the first factor, and VC = a ® C' with a 1-form « such that the vector
X obtained from a by index-raising (X7 = g’*qy,) is tangent to the first
factor, then VC' = 0 identically on M. (Here C(X,-,-,-) = 0 means
that C'(X,Y, Z,U) = 0 for all vectors Y, Z,U).

In fact, in product coordinates obtained from coordinates z® in the
first factor manifold and z* in the second factor, our assumptions mean
that all components of C' vanish except, possibly, those of the form
Chuve, while ay = 0. (We let A, p, v, &, p vary through one index range,
and a, b through the other.) Due to the definition of C' (formula (1.1)
in the paper), relations Coap, = 0, contracted against g™ or g™, show
that both factor metrics are Einstein, even if one or both of them
happen to be two-dimensional. In particular, they both have constant
scalar curvatures, which now easily implies that the only (possibly)
nonzero components of VC' are Cyype,p. As VO = a® C and «a, = 0,
this gives VC = 0.

It follows now that a Riemannian manifold of dimension n > 4 with

0C =0 and VC = a ® C must have VC = 0 everywhere.
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In fact, suppose on the contrary that VC # 0 somewhere. Thus,
we can pick a nonempty connected open set M’ such that C # 0 and
VC # 0, everywhere in M’. Since VC = a ® C, defining the norm
|C| of C by the usual formula |C|? = ¢??g79g**¢"* C;;11Cpqst We obtain
VT =0 on M’, where T is the tensor field on M’ given by T'= C/|C]|.
(To see this, first note that, by transvecting both sides of VC' = a® C
with C, we obtain o = dlog|C| on M’). The tangent vectors X such
that T(X,-,-,-) = 0, ie., T(X,Y,Z,U) = 0 for all Y,Z,U, form a
distribution D on M’ which is parallel (since so is T'). Its dimension
dim D satisfies 0 < dimD < n since not all vectors lie in D, as C' # 0,
but some nonzero vectors do (namely, the vector X obtained from «
by index-raising, at any point of M’, is in D, due to the assumption
that VC = a ® C and §C = 0. The parallel distributions D and
D+ are, locally in M’, tangent to the factors of a Riemannian-product
decomposition of the original metric which satisfies all the hypotheses
of the preceding paragraph. Therefore, VC = 0 on M’, contradicting
our very choice of M’.

4. Example. For any integer p(>2) and any complex number ¢ such
that |c|>1 we define an indefinite complex Euclidean space C2"+1 of
index 2n is defined as follows.

Let {27,277, 221} = {21 ... 2?1} be a complex coordinate of
C2+1 Then M = M(p,c) is an indefinite complete complex hyper-
surface of index 2n defined by

PR Zjhj(zj +e27), hj(z) = 2P,
where ¢ is any complex number such that |¢|>1. The range of indices
are given as follows:

ijyeee=1,--n, AB,---=1,---2n, «afB---=1--
jf=n+j, A*=2n+ A

4n

3 )

Usually in a semi-Kaehler manifold M we are able to choose a
local field of orthonormal frame {Ei,---, E,, E1s, - -, Eps = JE,}
on a neighborhood of M. Then U; = 1/V2(E; — iE;) and U; =
1/V2(E; + iE;«) constitute a local field of unitary frames on M.
Moreover, its semi-Kaehler metric is given by g = 2> e;w;®w;, where
Wj = 0]' —+ iﬂj*, and u_Jj = 0]' — iﬂj*.



SEMI-RIEMANNIAN MANIFOLDS 303

Then the components hap of the second fundamental form, see
Aiyama, Tkawa, Kwon and Nakagawa [1], are given by
hij = p(p —1)6;;2" 72, hivj = p(p — 1)ed;j2P 72,

4.1
(4.1) hiwje = p(p — 1)c?8;;2P 2.

Let S, be the components of the extended Ricci tensor S of M with
respect to the complex coordinate {27, 2" }. Then from the formula due
to Aiyama, Nakagawa and Suh [2] and Choi, Kwon and Suh [4, 5] we
obtain that

5= e
= —ch‘fkhikﬁkj - Zk*hik*ﬁk*j
= (1= |e)p?(p — 1)2035 P2,

Similarly, the other components are given by

Sij- = =3 penhinhny: = (L= lel)p*(p = 1) 202,
Sige = =3 perhanhiy = (1= |e)p?(p - 1)26y |20~

which means that if |c[> = 1, then the Ricci tensor S on M is flat.
Then by (3.2) and (3.13) we know that the conformal curvature tensor
is harmonic, that is, coclosed 6C = 0.

Next for the components hspc of the covariant derivatives of the
second fundamental form we have

hijk  =p(p—1)(p—2)d;0i2"",
(4.2) hi<ji =p(p—1)(p — 2)cdijdinz" ",

hisjox = p(p—1)(p — 2)P6;;0i2"",

hisjere = p(p— 1)(p — 2)38;;6i2" >

We should note that the expression is by the complex coordinates.

Let
{J:A7 yA’ x2n+1, y2n+1}
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be the real coordinate of C2"*!. Let K4y be the components of
the extended Riemannian curvature tensor R of M with respect to the
complex coordinate {27, 27 } defined by

Kpop = 9(R(Uz,UB)Uc, Up),
and let
Rﬂ(ﬁ’ﬂs = g(R(EOM Eﬂ)E’Y’ E5)

be the components of the Riemannian curvature tensor R of M with
respect to the real coordinates {2, y}. Then by the theory of complex
hypersurfaces, see Aiyama, Nakagawa and Suh [2], in an indefinite
Kaehler manifold we have

(43)  Kgpep = —hschap, Kapebe = —hscehap,

(44)  Kipep = —{Rapop + Ra-pc+p +i(Ra~pcp — Rapc-p)}-
By (4.1) and (4.3) we have

Kijpm = —hjkhim = —p°(p = 1)%040im 2?2,

Kijkm* = _hjkilim* = _sz(p - 1)25jk5im|2‘2(p72)~

(%)

Others are similarly given, from which it follows that M is not neces-
sarily flat. Furthermore we have

Kijkimn = —hjknhim = =p*(p = 1)*(p = 2)8mdis|2|* P72 271

=(p—2)6jn2" " Kijrm = @0 Kijpm,

where a; = df; and the smooth function ; is defined by

hs
6 =log M) _1og 22, p>3,
z
from which it follows that
Kijkmn = aj5janjkm~

Similarly, we get
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Accordingly, if p>3, then M is not locally symmetric and we are able
to get

(4.5) Kipope = @rKZpcp-
On the other hand, by (4.4) and the expression of Rg,s we have
(4.6) Kiiii = —Riwiivi = Rig=ivi = g(R(Ey, JE;) JE;, E;).

In general, since M is the semi-Kaehler manifold, the components
R.pys of the Riemannian curvature tensor R satisfy

(4.7) Ra-pep = —Rap+cp, Ra~p-cp = Rapcp-

For indices i,j such that i#j, we have known Ko =0 from the
formula (x). By (4.4) we get

(4.8) Rijkm + Rijrkm =0,  Rixjkm — Rijiem = 0.
Accordingly, the first equation of (4.8) is deformed as

Rijcp + Rij+cp~ = Rijcp — Rj=icp* = Rijep — Rjic-p~
= Rijop — Rjicp = 2Rijep

where the first equality is derived by the general property of the
Riemannian curvature tensor, the second one follows from (4.8) and the
general property of the Riemannian curvature tensor, and the third one
is also derived from (4.7) and the general property of the Riemannian
curvature tensor. Thus we have

(4.9) Rijcp =0, i#].

On the relation between the real natural frame and the complex
natural frame we have (4.4) and by the definition of the covariant
derivative the components K s5cpp are given by
(4.10)

KZBCBE
= —{Rapcpe+Rap~cp-e+i(Ra-BcpE—RaBcD*E)}/2

+i{Rapcpe+Rap-cp-g-+i(Ra-BcpE—Rapcp+E+)}/2.
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On the other hand, from (4.5) we get Kj;;;; = «;K5;;;. Then from

2110 T

this together with (4.8) and (4.10) it follows that
(4.11) Riviii»p = 200 Ri= i

Similarly, we get
RacpE = 2apRapep-

In such a case the Ricci tensor is flat if |¢] = 1 and the complex hy-
persurface M of index 2n in a (2n + 1)-dimensional indefinite complex
Euclidean space C2"*! of index 2n defined above is conformally re-
current. Of course its conformal curvature tensor is coclosed, which
is neither locally symmetric nor conformally flat if p>3. Moreover,
we know that the scalar curvature is identically vanishing, because its
Ricci tensor is vanishing on M.

This example shows that in an indefinite version of Theorem 3.6 the
assumption that the scalar curvature is a nonzero constant is essential.
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