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DISTRIBUTION OF MINIMAL VARIETIES
IN SPHERES IN TERMS OF THE

COORDINATE FUNCTIONS

OSCAR PERDOMO

ABSTRACT. Let M be a compact k-dimensional Rieman-
nian manifold minimally immersed in the unit n-dimensional
sphere Sn. It is easy to show that for any p ∈ Sn the bound-
ary of the geodesic ball in Sn with radius π/2 and center at
p (in this case this boundary is an equator) must intercept
the manifold M . When the codimension is 1, i.e., k = n − 1,
it is known that the Ricci curvature is not greater than 1.
We will prove that if the Ricci curvature is not greater than
1−α2/(n− 2), then the boundary of every geodesic ball with
radius cot−1(α) must intercept the manifold M . We give ex-
amples of manifolds for which the radius cot−1(α) is optimal.
Next, for any codimension, i.e., for any Mk ⊂ Sn, we find a
number r1 that depends only on n such that for any collection
of n + 1 points {pi}n+1

i=1 in Sn that constitutes an orthonor-

mal basis of Rn+1, the union of the boundaries of the geodesic
balls with radius r1 and center pi, i = 1, 2, . . . , n + 1, must
intercept the manifold M .

1. Introduction and preliminaries. Let M be a compact,
oriented minimal hypersurface immersed in the n-dimensional unit
sphere Sn. Let ν be a unit normal vector field along M . For any
tangent vector v ∈ TmM , m ∈ M , the shape operator A is given by
A(v) = −Dvν where D denotes the Levi Civita connection in Rn+1.
With the same notation, for any tangent vector field W , the Levi Civita
connection on M is given by DvW = (DvW )T where ( )T denotes the
orthogonal projection from Rn+1 to TmM . For a function f : M → R,
∇f will denote the gradient of f . For any pair of vectors v, w ∈ TmM
the Hessian of f is given by H(f)(v, w) = 〈Dv∇f, w〉, where 〈 , 〉
denotes the inner product in Rn+1. The Laplacian of f is given by
∆(f) =

∑n−1
i=1 H(f)(vi, vi) where {vi}n−1

i=1 is an orthonormal basis of
TmM .

For a given w ∈ Rn+1, let us define the functions lw : M → R and
fw : M → R by lw(m) = 〈m, w〉 and fw(m) = 〈ν(m), w〉. Clearly
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the function lw is the restriction to M of the linear function in Rn+1

whose gradient is the constant vector w; therefore, the gradient of the
function lw at m ∈ M is the projection of the vector w to TmM , i.e.,

∇lw = wT = w − lw(m)m − fw(m)ν(m).

Let vi, vj be two vectors in TmM . The Hessian of lw at m ∈ M is given
by

(1.1)
H(lw)(vi, vj) = 〈Dvi

∇lw, vj〉 = 〈Dvi
∇lw, vj〉

= −lw〈vi, vj〉 − fw〈Dvi
ν, vj〉

= −lw〈vi, vj〉 + fw〈A(vi), vj〉.
From the equation above and the fact that A is traceless (minimality
of M) we get that

(1.2) ∆lw = −(n − 1)lw.

Remark 1.3. As a corollary of equation (1.2) we get that every
coordinate function lw must change sign; therefore, the boundary of
every geodesic ball with radius π/2 must intersect M .

Given any nonequatorial compact minimal hypersurface in Sn we
know that there exists a radius r, r < π/2, such that M must intersect
the boundary of every geodesic ball in Sn with radius r. Let γM be
the minimum r with the property above. In Section 2 we will use the
expression for the Hessian of the coordinate function lw to find an upper
bound for γM , namely we will show:

Theorem 1.4. Let Mn−1 be a minimal hypersurface immersed in
Sn, and let {λi(m)}n−1

i=1 be the eigenvalues of the shape operator at
m ∈ M . Define ᾱ(m) = min{|λi(m)|, i = 1, . . . , n−1} and let α be the
minimum over M of the function ᾱ. If r0 satisfies that cot(r0) = α and
0 < r0 ≤ π/2, i.e., r0 = cot−1(α), then the boundary of every geodesic
ball in Sn with radius r0 must intersect M .

Notice that if α = 0, then Theorem 1.4 reduces to Remark 1.3. A
direct computation shows that, if M is the minimal Clifford hypersur-
face, M = {(x, y) ∈ Rs+1 × Rs+1 : ‖x‖2 = ‖y‖2 = 1/2}, then for any
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r < π/4, the boundary of the geodesic ball with center at (1, 0, . . . , 0)
does not intersect M , therefore γM ≥ π/4. The principal eigenvalues of
the shape operator A of M are either 1 or −1 everywhere, then α = 1 in
this case and we get that π/4 = cot−1(1) ≥ γM ≥ π/4. This example
shows that the estimate in Theorem 1.4 is sharp.

Let us rewrite Theorem 1.4 in terms of the curvature of M . Denote
by R and Ricci the curvature tensor and the Ricci curvature of M ,
respectively. The Gauss equation states that

〈R(v, w)v, w〉 = 〈v, v〉〈w, w〉 − 〈v, w〉〈v, w〉 + 〈A(v), v〉〈A(w), w〉
− 〈A(w), v〉〈A(v), w〉.

Therefore, if {vi}i=n−1
i=1 is an orthonormal basis of TmM , we have

Ricc (v) =
1

n − 2

( n−1∑
i=1

〈R(v, vi)v, vi

)

=
∑n−1

i=1 (〈v, v〉〈ei, ei〉 − 〈ei, v〉〈ei, v〉
n − 2

+
〈A(v), v〉〈A(ei), ei〉 − 〈A(ei), v〉〈A(ei), v〉)

n − 2

=
(n − 1)|v|2 − |v|2 − |A(v)|2

n − 2

= |v|2 − |A(v)|2
n − 2

.

By the equation above, we get that another way to define α is given by

max
v∈T 1M

Ricc (v) = 1 − α2

n − 2

where T 1M = {v ∈ TmM : m ∈ M and |v| = 1}. By the observations
made above, we get

Corollary 1.5. Let M ⊂ Sn be a minimal hypersurface. If
Ricc (v) ≤ 1 − α2/(n − 2) for every v ∈ T 1M , then the boundary of
every geodesic ball in the sphere with radius cot−1(α) must intersect
M .
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The result in the previous corollary needs the minimality condition.
To see this, it is enough to look at the following family of flat surfaces
in S3 given by

Mr1r2 = {(x, y) ∈ R2 × R2 : |x|2 = r2
1, |y|2 = r2

2, r2
1 + r2

2 = 1
and r1 ≤ r2}.

A direct computation shows that γMr1r2
= sin−1(r2). We also have

that α is 1 because all these surfaces are flat; therefore, if r1 < r2,
then γMr1r2

> π/4; hence, π/4 = cot−1(α) is not an upper bound
for γMr1r2

. The examples above show us that among all Euclidean
products of circles in S3, the minimal Clifford tori are the ones that
best make the work of “trying to be as close to every point in S3 as
possible”. In other words the minimal Clifford torus minimizes γMr1r2

in the family Mr1r2 .

Our second result states that if M is a minimal variety in Sn,
then at least one of its coordinate functions must take the value
−(1 − √

(n − 2)/(n + 1)) at some point. Namely, we will show

Theorem 1.6. Let Mk be a minimal k-dimensional manifold im-
mersed in the n-dimensional unit sphere Sn. Then for every ortho-
normal basis of Rn+1, {pi}i=n−1

i=1 for some i, M must intersect the
boundary of geodesic ball with center at pi and radius
cos−1(1 − √

(n − 2)/(n + 1)).

Before I proceed, I would like to thank Professor Bruce Solomon for
his lessons on mathematics and his comments on this paper. I would
also like to thank Professor Peter Li for meeting with me to discuss
mathematics; one of his comments motivated the idea for Theorem 1.4.

2. Proof of the theorems. We start this section stating and
proving Theorem 1.4. This result is a consequence of equation (1.1)
for the Hessian of the coordinate functions. Notice that in both of
the Theorems, 1.4 and 1.5, we may assume that our manifold M is
orientable, since otherwise the results follow by applying the theorem
to the double covering of M .
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Theorem 1.4. Let Mn−1 be a minimal hypersurface immersed in
Sn, and let {λi(m)}n−1

i=1 be the eigenvalues of the shape operator at
m ∈ M . Define ᾱ(m) = min{|λi(m)|, i = 1, . . . , n − 1} and let α be
the minimum over M of the function ᾱ. If r0 satisfies that cot(r0) = α
and 0 < r0 ≤ π/2, i.e., r0 = cot−1(α), then the boundary of every
geodesic ball in Sn with radius r0 must intersect M .

Proof. Since the result is trivial when M is totally geodesic we will
assume that this is not the case. Notice that it is enough to prove that
for every v ∈ Sn the minimum of the coordinate function lv : M → R
over M is less than or equal to −α/

√
1 + α2. Let m0 be a point in M

where the function lv reaches its minimum. Since M is not an equator
we have that lv(m0) < 0. We need to show that lv(m0) ≤ −α/

√
1 + α2

or equivalently |lv(m0)| ≥ α/
√

1 + α2. Since m0 is a critical point of
the function lv we have ∇lv = 0, therefore,

(2.1) 1 = ‖v‖2 = 〈v, m0〉2+〈ν(v), m0〉2+‖∇lv‖2 = lv(m0)2+fv(m0)2.

Let {vi}n−1
i=1 be an orthonormal basis of Tm0M that diagonalizes the

shape operator A at m0. Since m0 is a minimum of lv we get for
i = 1, . . . , n − 1 that

(2.3)
0 ≤ H(lv)(vi, vi) = −lv(m0)〈vi, vi〉 + fv(m0)〈A(vi), vi〉

= −lv(m0) + fv(m0)λi.

Since
∑n−1

i=1 λi = 0 we can pick k such that −fv(m0)λk is not negative.
Using the definition of α, equation (2.1) and the inequalities (2.3) we
get

|lv(m0)| = −lv(m0) ≥ −fv(m0)λk = | − fv(m0)||λk| ≥ α
√

1 − lv(m0)2.

Finally from the inequality above we can easily deduce the inequality
we were looking for: |lv(m0)| ≥ α/

√
1 + α2 = β.

A direct computation shows that the formula for the Laplacian of
the coordinate functions, (1.2), holds true for any codimension, i.e., we
have that if Mk is a k-dimensional manifold minimally immersed in
Sn, then −∆lw = klw.
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Now we will prove our second result. For the reader’s convenience we
will restate this theorem.

Theorem 1.6. Let Mk be a minimal k-dimensional manifold im-
mersed in the n-dimensional unit sphere Sn. Then for every ortho-
normal basis of Rn+1, {pi}i=n−1

i=1 for some i, M must intersect the
boundary of geodesic ball with center at pi and radius
cos−1(1 − √

(n − 2)/(n + 1)).

Proof. Notice that it is enough to prove that at least one of
the coordinate functions lpi

takes a value less than or equal to
−(1 − √

(n − 2)/(n + 1)). We will proceed by contradiction. Let us
assume that all the functions li = lpi

are greater than or equal to
−(1−√

(n − 2)/(n + 1)). Therefore the vector fields Xi = (1+li)−1∇li
are well defined. Let us compute the divergence of Xi:

div (Xi) = −(1 + li)−2‖∇li‖2 + (1 + li)−1(−kli)

=
k

2

(
− 1 + (1 + li)−2

(
1 − 2

k
‖∇li‖2 − l2i

))
.

Since (1 + li)−2 ≤ (
1 − (1 − √

(n − 2)/(n + 1))
)−2 = (n + 1)/(n − 2)

by assumption and 1− 2/k‖∇li‖2 − l2i > 0, we get from the expression
above after using the divergence theorem that,

0 =
∫

M

(
− 1 + (1 + li)−2

(
1 − 2

k
‖∇li‖2 − l2i

))

<

∫
M

(
− 1 +

n + 1
n − 2

(
1 − 2

k
‖∇li‖2 − l2i

))
.

Notice that
∑n+1

i=1 l2i = 1 and by Stoke’s theorem
∫

M
‖∇li‖2 = k

∫
M

l2i .
Then if we sum the inequalities above from i = 1 to i = n + 1, we get

0 <
n+1∑
i=1

∫
M

(
− 1 +

n + 1
n − 2

(
1 − 2

k
‖∇li‖2 − l2i

))

=
∫

M

(
− (n + 1) +

n + 1
n − 2

(n + 1 − 2 − 1)
)

= 0.

This contradiction proves the theorem.
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Remark. The case n = 3 in the theorem above is also a consequence
of the fact that any two minimal surfaces in S3 must intersect [1]. For
any minimal surface M in S3 the surface −M = {p ∈ S3 : −p ∈ M} is
also minimal. If m0 ∈ −M ∩ M then one can check that either m0 or
−m0 must intersect the union of the four geodesic balls with center at
pi and radius 1/2.
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