DISTRIBUTION OF MINIMAL VARIETIES IN SPHERES IN TERMS OF THE COORDINATE FUNCTIONS

OSCAR PERDOMO

Abstract

Let M be a compact k-dimensional Riemannian manifold minimally immersed in the unit n-dimensional sphere S^{n}. It is easy to show that for any $p \in S^{n}$ the boundary of the geodesic ball in S^{n} with radius $\pi / 2$ and center at p (in this case this boundary is an equator) must intercept the manifold M. When the codimension is 1 , i.e., $k=n-1$, it is known that the Ricci curvature is not greater than 1. We will prove that if the Ricci curvature is not greater than $1-\alpha^{2} /(n-2)$, then the boundary of every geodesic ball with radius $\cot ^{-1}(\alpha)$ must intercept the manifold M. We give examples of manifolds for which the radius $\cot ^{-1}(\alpha)$ is optimal. Next, for any codimension, i.e., for any $M^{k} \subset S^{n}$, we find a number r_{1} that depends only on n such that for any collection of $n+1$ points $\left\{p_{i}\right\}_{i=1}^{n+1}$ in S^{n} that constitutes an orthonormal basis of \mathbf{R}^{n+1}, the union of the boundaries of the geodesic balls with radius r_{1} and center $p_{i}, i=1,2, \ldots, n+1$, must intercept the manifold M.

1. Introduction and preliminaries. Let M be a compact, oriented minimal hypersurface immersed in the n-dimensional unit sphere S^{n}. Let ν be a unit normal vector field along M. For any tangent vector $v \in T_{m} M, m \in M$, the shape operator A is given by $A(v)=-\bar{D}_{v} \nu$ where \bar{D} denotes the Levi Civita connection in \mathbf{R}^{n+1}. With the same notation, for any tangent vector field W, the Levi Civita connection on M is given by $D_{v} W=\left(\bar{D}_{v} W\right)^{T}$ where ()T denotes the orthogonal projection from \mathbf{R}^{n+1} to $T_{m} M$. For a function $f: M \rightarrow \mathbf{R}$, ∇f will denote the gradient of f. For any pair of vectors $v, w \in T_{m} M$ the Hessian of f is given by $H(f)(v, w)=\left\langle D_{v} \nabla f, w\right\rangle$, where \langle, denotes the inner product in \mathbf{R}^{n+1}. The Laplacian of f is given by $\Delta(f)=\sum_{i=1}^{n-1} H(f)\left(v_{i}, v_{i}\right)$ where $\left\{v_{i}\right\}_{i=1}^{n-1}$ is an orthonormal basis of $T_{m} M$.

For a given $w \in \mathbf{R}^{n+1}$, let us define the functions $l_{w}: M \rightarrow \mathbf{R}$ and $f_{w}: M \rightarrow \mathbf{R}$ by $l_{w}(m)=\langle m, w\rangle$ and $f_{w}(m)=\langle\nu(m), w\rangle$. Clearly

Received by the editors on July 18, 2001.
the function l_{w} is the restriction to M of the linear function in \mathbf{R}^{n+1} whose gradient is the constant vector w; therefore, the gradient of the function l_{w} at $m \in M$ is the projection of the vector w to $T_{m} M$, i.e.,

$$
\nabla l_{w}=w^{T}=w-l_{w}(m) m-f_{w}(m) \nu(m)
$$

Let v_{i}, v_{j} be two vectors in $T_{m} M$. The Hessian of l_{w} at $m \in M$ is given by

$$
\begin{align*}
H\left(l_{w}\right)\left(v_{i}, v_{j}\right) & =\left\langle D_{v_{i}} \nabla l_{w}, v_{j}\right\rangle=\left\langle\bar{D}_{v_{i}} \nabla l_{w}, v_{j}\right\rangle \\
& =-l_{w}\left\langle v_{i}, v_{j}\right\rangle-f_{w}\left\langle\bar{D}_{v_{i}} \nu, v_{j}\right\rangle \tag{1.1}\\
& =-l_{w}\left\langle v_{i}, v_{j}\right\rangle+f_{w}\left\langle A\left(v_{i}\right), v_{j}\right\rangle
\end{align*}
$$

From the equation above and the fact that A is traceless (minimality of M) we get that

$$
\begin{equation*}
\Delta l_{w}=-(n-1) l_{w} \tag{1.2}
\end{equation*}
$$

Remark 1.3. As a corollary of equation (1.2) we get that every coordinate function l_{w} must change sign; therefore, the boundary of every geodesic ball with radius $\pi / 2$ must intersect M.

Given any nonequatorial compact minimal hypersurface in S^{n} we know that there exists a radius $r, r<\pi / 2$, such that M must intersect the boundary of every geodesic ball in S^{n} with radius r. Let γ_{M} be the minimum r with the property above. In Section 2 we will use the expression for the Hessian of the coordinate function l_{w} to find an upper bound for γ_{M}, namely we will show:

Theorem 1.4. Let M^{n-1} be a minimal hypersurface immersed in S^{n}, and let $\left\{\lambda_{i}(m)\right\}_{i=1}^{n-1}$ be the eigenvalues of the shape operator at $m \in M$. Define $\bar{\alpha}(m)=\min \left\{\left|\lambda_{i}(m)\right|, i=1, \ldots, n-1\right\}$ and let α be the minimum over M of the function $\bar{\alpha}$. If r_{0} satisfies that $\cot \left(r_{0}\right)=\alpha$ and $0<r_{0} \leq \pi / 2$, i.e., $r_{0}=\cot ^{-1}(\alpha)$, then the boundary of every geodesic ball in S^{n} with radius r_{0} must intersect M.

Notice that if $\alpha=0$, then Theorem 1.4 reduces to Remark 1.3. A direct computation shows that, if M is the minimal Clifford hypersurface, $M=\left\{(x, y) \in \mathbf{R}^{s+1} \times \mathbf{R}^{s+1}:\|x\|^{2}=\|y\|^{2}=1 / 2\right\}$, then for any
$r<\pi / 4$, the boundary of the geodesic ball with center at $(1,0, \ldots, 0)$ does not intersect M, therefore $\gamma_{M} \geq \pi / 4$. The principal eigenvalues of the shape operator A of M are either 1 or -1 everywhere, then $\alpha=1$ in this case and we get that $\pi / 4=\cot ^{-1}(1) \geq \gamma M \geq \pi / 4$. This example shows that the estimate in Theorem 1.4 is sharp.

Let us rewrite Theorem 1.4 in terms of the curvature of M. Denote by R and Ricci the curvature tensor and the Ricci curvature of M, respectively. The Gauss equation states that

$$
\begin{aligned}
\langle R(v, w) v, w\rangle= & \langle v, v\rangle\langle w, w\rangle-\langle v, w\rangle\langle v, w\rangle+\langle A(v), v\rangle\langle A(w), w\rangle \\
& -\langle A(w), v\rangle\langle A(v), w\rangle
\end{aligned}
$$

Therefore, if $\left\{v_{i}\right\}_{i=1}^{i=n-1}$ is an orthonormal basis of $T_{m} M$, we have

$$
\begin{aligned}
\operatorname{Ricc}(v)= & \frac{1}{n-2}\left(\sum_{i=1}^{n-1}\left\langle R\left(v, v_{i}\right) v, v_{i}\right)\right. \\
= & \frac{\sum_{i=1}^{n-1}\left(\langle v, v\rangle\left\langle e_{i}, e_{i}\right\rangle-\left\langle e_{i}, v\right\rangle\left\langle e_{i}, v\right\rangle\right.}{n-2} \\
& +\frac{\left.\langle A(v), v\rangle\left\langle A\left(e_{i}\right), e_{i}\right\rangle-\left\langle A\left(e_{i}\right), v\right\rangle\left\langle A\left(e_{i}\right), v\right\rangle\right)}{n-2} \\
= & \frac{(n-1)|v|^{2}-|v|^{2}-|A(v)|^{2}}{n-2} \\
= & |v|^{2}-\frac{|A(v)|^{2}}{n-2} .
\end{aligned}
$$

By the equation above, we get that another way to define α is given by

$$
\max _{v \in T^{1} M} \operatorname{Ricc}(v)=1-\frac{\alpha^{2}}{n-2}
$$

where $T^{1} M=\left\{v \in T_{m} M: m \in M\right.$ and $\left.|v|=1\right\}$. By the observations made above, we get

Corollary 1.5. Let $M \subset S^{n}$ be a minimal hypersurface. If $\operatorname{Ricc}(v) \leq 1-\alpha^{2} /(n-2)$ for every $v \in T^{1} M$, then the boundary of every geodesic ball in the sphere with radius $\cot ^{-1}(\alpha)$ must intersect M.

The result in the previous corollary needs the minimality condition. To see this, it is enough to look at the following family of flat surfaces in S^{3} given by

$$
\begin{aligned}
M_{r_{1} r_{2}}= & \left\{(x, y) \in \mathbf{R}^{2} \times \mathbf{R}^{2}:|x|^{2}=r_{1}^{2},|y|^{2}=r_{2}^{2}, r_{1}^{2}+r_{2}^{2}=1\right. \\
& \text { and } \left.r_{1} \leq r_{2}\right\} .
\end{aligned}
$$

A direct computation shows that $\gamma_{M_{r_{1} r_{2}}}=\sin ^{-1}\left(r_{2}\right)$. We also have that α is 1 because all these surfaces are flat; therefore, if $r_{1}<r_{2}$, then $\gamma_{M_{r_{1} r_{2}}}>\pi / 4$; hence, $\pi / 4=\cot ^{-1}(\alpha)$ is not an upper bound for $\gamma_{M_{r_{1} r_{2}}}$. The examples above show us that among all Euclidean products of circles in S^{3}, the minimal Clifford tori are the ones that best make the work of "trying to be as close to every point in S^{3} as possible". In other words the minimal Clifford torus minimizes $\gamma_{M_{r_{1} r_{2}}}$ in the family $M_{r_{1} r_{2}}$.

Our second result states that if M is a minimal variety in S^{n}, then at least one of its coordinate functions must take the value $-(1-\sqrt{(n-2) /(n+1)})$ at some point. Namely, we will show

Theorem 1.6. Let M^{k} be a minimal k-dimensional manifold immersed in the n-dimensional unit sphere S^{n}. Then for every orthonormal basis of \mathbf{R}^{n+1}, $\left\{p_{i}\right\}_{i=1}^{i=n-1}$ for some i, M must intersect the boundary of geodesic ball with center at p_{i} and radius $\cos ^{-1}(1-\sqrt{(n-2) /(n+1)})$.

Before I proceed, I would like to thank Professor Bruce Solomon for his lessons on mathematics and his comments on this paper. I would also like to thank Professor Peter Li for meeting with me to discuss mathematics; one of his comments motivated the idea for Theorem 1.4.
2. Proof of the theorems. We start this section stating and proving Theorem 1.4. This result is a consequence of equation (1.1) for the Hessian of the coordinate functions. Notice that in both of the Theorems, 1.4 and 1.5 , we may assume that our manifold M is orientable, since otherwise the results follow by applying the theorem to the double covering of M.

Theorem 1.4. Let M^{n-1} be a minimal hypersurface immersed in S^{n}, and let $\left\{\lambda_{i}(m)\right\}_{i=1}^{n-1}$ be the eigenvalues of the shape operator at $m \in M$. Define $\bar{\alpha}(m)=\min \left\{\left|\lambda_{i}(m)\right|, i=1, \ldots, n-1\right\}$ and let α be the minimum over M of the function $\bar{\alpha}$. If r_{0} satisfies that $\cot \left(r_{0}\right)=\alpha$ and $0<r_{0} \leq \pi / 2$, i.e., $r_{0}=\cot ^{-1}(\alpha)$, then the boundary of every geodesic ball in S^{n} with radius r_{0} must intersect M.

Proof. Since the result is trivial when M is totally geodesic we will assume that this is not the case. Notice that it is enough to prove that for every $v \in S^{n}$ the minimum of the coordinate function $l_{v}: M \rightarrow \mathbf{R}$ over M is less than or equal to $-\alpha / \sqrt{1+\alpha^{2}}$. Let m_{0} be a point in M where the function l_{v} reaches its minimum. Since M is not an equator we have that $l_{v}\left(m_{0}\right)<0$. We need to show that $l_{v}\left(m_{0}\right) \leq-\alpha / \sqrt{1+\alpha^{2}}$ or equivalently $\left|l_{v}\left(m_{0}\right)\right| \geq \alpha / \sqrt{1+\alpha^{2}}$. Since m_{0} is a critical point of the function l_{v} we have $\nabla l_{v}=0$, therefore,

$$
\begin{equation*}
1=\|v\|^{2}=\left\langle v, m_{0}\right\rangle^{2}+\left\langle\nu(v), m_{0}\right\rangle^{2}+\left\|\nabla l_{v}\right\|^{2}=l_{v}\left(m_{0}\right)^{2}+f_{v}\left(m_{0}\right)^{2} \tag{2.1}
\end{equation*}
$$

Let $\left\{v_{i}\right\}_{i=1}^{n-1}$ be an orthonormal basis of $T_{m_{0}} M$ that diagonalizes the shape operator A at m_{0}. Since m_{0} is a minimum of l_{v} we get for $i=1, \ldots, n-1$ that

$$
\begin{align*}
0 & \leq H\left(l_{v}\right)\left(v_{i}, v_{i}\right)=-l_{v}\left(m_{0}\right)\left\langle v_{i}, v_{i}\right\rangle+f_{v}\left(m_{0}\right)\left\langle A\left(v_{i}\right), v_{i}\right\rangle \tag{2.3}\\
& =-l_{v}\left(m_{0}\right)+f_{v}\left(m_{0}\right) \lambda_{i}
\end{align*}
$$

Since $\sum_{i=1}^{n-1} \lambda_{i}=0$ we can pick k such that $-f_{v}\left(m_{0}\right) \lambda_{k}$ is not negative. Using the definition of α, equation (2.1) and the inequalities (2.3) we get
$\left|l_{v}\left(m_{0}\right)\right|=-l_{v}\left(m_{0}\right) \geq-f_{v}\left(m_{0}\right) \lambda_{k}=\left|-f_{v}\left(m_{0}\right)\right|\left|\lambda_{k}\right| \geq \alpha \sqrt{1-l_{v}\left(m_{0}\right)^{2}}$.
Finally from the inequality above we can easily deduce the inequality we were looking for: $\left|l_{v}\left(m_{0}\right)\right| \geq \alpha / \sqrt{1+\alpha^{2}}=\beta$.

A direct computation shows that the formula for the Laplacian of the coordinate functions, (1.2), holds true for any codimension, i.e., we have that if M^{k} is a k-dimensional manifold minimally immersed in S^{n}, then $-\Delta l_{w}=k l_{w}$.

Now we will prove our second result. For the reader's convenience we will restate this theorem.

Theorem 1.6. Let M^{k} be a minimal k-dimensional manifold immersed in the n-dimensional unit sphere S^{n}. Then for every orthonormal basis of \mathbf{R}^{n+1}, $\left\{p_{i}\right\}_{i=1}^{i=n-1}$ for some i, M must intersect the boundary of geodesic ball with center at p_{i} and radius $\cos ^{-1}(1-\sqrt{(n-2) /(n+1)})$.

Proof. Notice that it is enough to prove that at least one of the coordinate functions $l_{p_{i}}$ takes a value less than or equal to $-(1-\sqrt{(n-2) /(n+1)})$. We will proceed by contradiction. Let us assume that all the functions $l_{i}=l_{p_{i}}$ are greater than or equal to $-(1-\sqrt{(n-2) /(n+1)})$. Therefore the vector fields $X_{i}=\left(1+l_{i}\right)^{-1} \nabla l_{i}$ are well defined. Let us compute the divergence of X_{i} :

$$
\begin{aligned}
\operatorname{div}\left(X_{i}\right) & =-\left(1+l_{i}\right)^{-2}\left\|\nabla l_{i}\right\|^{2}+\left(1+l_{i}\right)^{-1}\left(-k l_{i}\right) \\
& =\frac{k}{2}\left(-1+\left(1+l_{i}\right)^{-2}\left(1-\frac{2}{k}\left\|\nabla l_{i}\right\|^{2}-l_{i}^{2}\right)\right)
\end{aligned}
$$

Since $\left(1+l_{i}\right)^{-2} \leq(1-(1-\sqrt{(n-2) /(n+1)}))^{-2}=(n+1) /(n-2)$ by assumption and $1-2 / k\left\|\nabla l_{i}\right\|^{2}-l_{i}^{2}>0$, we get from the expression above after using the divergence theorem that,

$$
\begin{aligned}
0 & =\int_{M}\left(-1+\left(1+l_{i}\right)^{-2}\left(1-\frac{2}{k}\left\|\nabla l_{i}\right\|^{2}-l_{i}^{2}\right)\right) \\
& <\int_{M}\left(-1+\frac{n+1}{n-2}\left(1-\frac{2}{k}\left\|\nabla l_{i}\right\|^{2}-l_{i}^{2}\right)\right)
\end{aligned}
$$

Notice that $\sum_{i=1}^{n+1} l_{i}^{2}=1$ and by Stoke's theorem $\int_{M}\left\|\nabla l_{i}\right\|^{2}=k \int_{M} l_{i}^{2}$. Then if we sum the inequalities above from $i=1$ to $i=n+1$, we get

$$
\begin{aligned}
0 & <\sum_{i=1}^{n+1} \int_{M}\left(-1+\frac{n+1}{n-2}\left(1-\frac{2}{k}\left\|\nabla l_{i}\right\|^{2}-l_{i}^{2}\right)\right) \\
& =\int_{M}\left(-(n+1)+\frac{n+1}{n-2}(n+1-2-1)\right)=0
\end{aligned}
$$

This contradiction proves the theorem.

Remark. The case $n=3$ in the theorem above is also a consequence of the fact that any two minimal surfaces in S^{3} must intersect [1]. For any minimal surface M in S^{3} the surface $-M=\left\{p \in S^{3}:-p \in M\right\}$ is also minimal. If $m_{0} \in-M \cap M$ then one can check that either m_{0} or $-m_{0}$ must intersect the union of the four geodesic balls with center at p_{i} and radius $1 / 2$.

REFERENCES

1. T. Frankel, On the fundamental group of a compact minimal submanifold, Ann. of Math. 83 (1966), 68-73.
