DISTRIBUTION OF MINIMAL VARIETIES IN SPHERES IN TERMS OF THE COORDINATE FUNCTIONS

OSCAR PERDOMO

ABSTRACT. Let M be a compact k-dimensional Riemannian manifold minimally immersed in the unit n-dimensional sphere S^n . It is easy to show that for any $p \in S^n$ the boundary of the geodesic ball in S^n with radius $\pi/2$ and center at p (in this case this boundary is an equator) must intercept the manifold M. When the codimension is 1, i.e., k=n-1, it is known that the Ricci curvature is not greater than 1. We will prove that if the Ricci curvature is not greater than $1-\alpha^2/(n-2)$, then the boundary of every geodesic ball with radius $\cot^{-1}(\alpha)$ must intercept the manifold M. We give examples of manifolds for which the radius $\cot^{-1}(\alpha)$ is optimal. Next, for any codimension, i.e., for any $M^k \subset S^n$, we find a number r_1 that depends only on n such that for any collection of n+1 points $\{p_i\}_{i=1}^{n+1}$ in S^n that constitutes an orthonormal basis of \mathbb{R}^{n+1} , the union of the boundaries of the geodesic balls with radius r_1 and center p_i , $i=1,2,\ldots,n+1$, must intercept the manifold M.

1. Introduction and preliminaries. Let M be a compact, oriented minimal hypersurface immersed in the n-dimensional unit sphere S^n . Let ν be a unit normal vector field along M. For any tangent vector $v \in T_m M$, $m \in M$, the shape operator A is given by $A(v) = -\overline{D}_v \nu$ where \overline{D} denotes the Levi Civita connection in \mathbf{R}^{n+1} . With the same notation, for any tangent vector field W, the Levi Civita connection on M is given by $D_v W = (\overline{D}_v W)^T$ where $()^T$ denotes the orthogonal projection from \mathbf{R}^{n+1} to $T_m M$. For a function $f: M \to \mathbf{R}$, ∇f will denote the gradient of f. For any pair of vectors $v, w \in T_m M$ the Hessian of f is given by $H(f)(v, w) = \langle D_v \nabla f, w \rangle$, where \langle , \rangle denotes the inner product in \mathbf{R}^{n+1} . The Laplacian of f is given by $\Delta(f) = \sum_{i=1}^{n-1} H(f)(v_i, v_i)$ where $\{v_i\}_{i=1}^{n-1}$ is an orthonormal basis of $T_m M$.

For a given $w \in \mathbf{R}^{n+1}$, let us define the functions $l_w : M \to \mathbf{R}$ and $f_w : M \to \mathbf{R}$ by $l_w(m) = \langle m, w \rangle$ and $f_w(m) = \langle \nu(m), w \rangle$. Clearly

Received by the editors on July 18, 2001.

the function l_w is the restriction to M of the linear function in \mathbb{R}^{n+1} whose gradient is the constant vector w; therefore, the gradient of the function l_w at $m \in M$ is the projection of the vector w to $T_m M$, i.e.,

$$\nabla l_w = w^T = w - l_w(m)m - f_w(m)\nu(m).$$

Let v_i, v_j be two vectors in $T_m M$. The Hessian of l_w at $m \in M$ is given by

(1.1)
$$H(l_w)(v_i, v_j) = \langle D_{v_i} \nabla l_w, v_j \rangle = \langle \overline{D}_{v_i} \nabla l_w, v_j \rangle$$
$$= -l_w \langle v_i, v_j \rangle - f_w \langle \overline{D}_{v_i} \nu, v_j \rangle$$
$$= -l_w \langle v_i, v_j \rangle + f_w \langle A(v_i), v_j \rangle.$$

From the equation above and the fact that A is traceless (minimality of M) we get that

$$(1.2) \Delta l_w = -(n-1)l_w.$$

Remark 1.3. As a corollary of equation (1.2) we get that every coordinate function l_w must change sign; therefore, the boundary of every geodesic ball with radius $\pi/2$ must intersect M.

Given any nonequatorial compact minimal hypersurface in S^n we know that there exists a radius r, $r < \pi/2$, such that M must intersect the boundary of *every* geodesic ball in S^n with radius r. Let γ_M be the minimum r with the property above. In Section 2 we will use the expression for the Hessian of the coordinate function l_w to find an upper bound for γ_M , namely we will show:

Theorem 1.4. Let M^{n-1} be a minimal hypersurface immersed in S^n , and let $\{\lambda_i(m)\}_{i=1}^{n-1}$ be the eigenvalues of the shape operator at $m \in M$. Define $\bar{\alpha}(m) = \min\{|\lambda_i(m)|, i=1,\ldots,n-1\}$ and let α be the minimum over M of the function $\bar{\alpha}$. If r_0 satisfies that $\cot(r_0) = \alpha$ and $0 < r_0 \le \pi/2$, i.e., $r_0 = \cot^{-1}(\alpha)$, then the boundary of every geodesic ball in S^n with radius r_0 must intersect M.

Notice that if $\alpha = 0$, then Theorem 1.4 reduces to Remark 1.3. A direct computation shows that, if M is the minimal Clifford hypersurface, $M = \{(x,y) \in \mathbf{R}^{s+1} \times \mathbf{R}^{s+1} : ||x||^2 = ||y||^2 = 1/2\}$, then for any

 $r < \pi/4$, the boundary of the geodesic ball with center at $(1,0,\ldots,0)$ does not intersect M, therefore $\gamma_M \ge \pi/4$. The principal eigenvalues of the shape operator A of M are either 1 or -1 everywhere, then $\alpha = 1$ in this case and we get that $\pi/4 = \cot^{-1}(1) \ge \gamma M \ge \pi/4$. This example shows that the estimate in Theorem 1.4 is sharp.

Let us rewrite Theorem 1.4 in terms of the curvature of M. Denote by R and Ricci the curvature tensor and the Ricci curvature of M, respectively. The Gauss equation states that

$$\langle R(v,w)v,w\rangle = \langle v,v\rangle\langle w,w\rangle - \langle v,w\rangle\langle v,w\rangle + \langle A(v),v\rangle\langle A(w),w\rangle - \langle A(w),v\rangle\langle A(v),w\rangle.$$

Therefore, if $\{v_i\}_{i=1}^{i=n-1}$ is an orthonormal basis of T_mM , we have

$$\begin{aligned} \operatorname{Ricc}\left(v\right) &= \frac{1}{n-2} \bigg(\sum_{i=1}^{n-1} \langle R(v,v_i)v,v_i \bigg) \\ &= \frac{\sum_{i=1}^{n-1} \left(\langle v,v \rangle \langle e_i,e_i \rangle - \langle e_i,v \rangle \langle e_i,v \rangle \right)}{n-2} \\ &+ \frac{\langle A(v),v \rangle \langle A(e_i),e_i \rangle - \langle A(e_i),v \rangle \langle A(e_i),v \rangle)}{n-2} \\ &= \frac{(n-1)|v|^2 - |v|^2 - |A(v)|^2}{n-2} \\ &= |v|^2 - \frac{|A(v)|^2}{n-2}. \end{aligned}$$

By the equation above, we get that another way to define α is given by

$$\max_{v \in T^1 M} \operatorname{Ricc}(v) = 1 - \frac{\alpha^2}{n - 2}$$

where $T^1M = \{v \in T_mM : m \in M \text{ and } |v| = 1\}$. By the observations made above, we get

Corollary 1.5. Let $M \subset S^n$ be a minimal hypersurface. If $\text{Ricc}(v) \leq 1 - \alpha^2/(n-2)$ for every $v \in T^1M$, then the boundary of every geodesic ball in the sphere with radius $\cot^{-1}(\alpha)$ must intersect M.

The result in the previous corollary needs the minimality condition. To see this, it is enough to look at the following family of flat surfaces in S^3 given by

$$M_{r_1r_2} = \{(x,y) \in \mathbf{R}^2 \times \mathbf{R}^2 : |x|^2 = r_1^2, |y|^2 = r_2^2, r_1^2 + r_2^2 = 1$$
 and $r_1 < r_2 \}.$

A direct computation shows that $\gamma_{M_{r_1r_2}} = \sin^{-1}(r_2)$. We also have that α is 1 because all these surfaces are flat; therefore, if $r_1 < r_2$, then $\gamma_{M_{r_1r_2}} > \pi/4$; hence, $\pi/4 = \cot^{-1}(\alpha)$ is not an upper bound for $\gamma_{M_{r_1r_2}}$. The examples above show us that among all Euclidean products of circles in S^3 , the minimal Clifford tori are the ones that best make the work of "trying to be as close to every point in S^3 as possible". In other words the minimal Clifford torus minimizes $\gamma_{M_{r_1r_2}}$ in the family $M_{r_1r_2}$.

Our second result states that if M is a minimal variety in S^n , then at least one of its coordinate functions must take the value $-(1-\sqrt{(n-2)/(n+1)})$ at some point. Namely, we will show

Theorem 1.6. Let M^k be a minimal k-dimensional manifold immersed in the n-dimensional unit sphere S^n . Then for every orthonormal basis of \mathbf{R}^{n+1} , $\{p_i\}_{i=1}^{i=n-1}$ for some i, M must intersect the boundary of geodesic ball with center at p_i and radius $\cos^{-1}(1-\sqrt{(n-2)/(n+1)})$.

Before I proceed, I would like to thank Professor Bruce Solomon for his lessons on mathematics and his comments on this paper. I would also like to thank Professor Peter Li for meeting with me to discuss mathematics; one of his comments motivated the idea for Theorem 1.4.

2. Proof of the theorems. We start this section stating and proving Theorem 1.4. This result is a consequence of equation (1.1) for the Hessian of the coordinate functions. Notice that in both of the Theorems, 1.4 and 1.5, we may assume that our manifold M is orientable, since otherwise the results follow by applying the theorem to the double covering of M.

Theorem 1.4. Let M^{n-1} be a minimal hypersurface immersed in S^n , and let $\{\lambda_i(m)\}_{i=1}^{n-1}$ be the eigenvalues of the shape operator at $m \in M$. Define $\bar{\alpha}(m) = \min\{|\lambda_i(m)|, i = 1, \ldots, n-1\}$ and let α be the minimum over M of the function $\bar{\alpha}$. If r_0 satisfies that $\cot(r_0) = \alpha$ and $0 < r_0 \le \pi/2$, i.e., $r_0 = \cot^{-1}(\alpha)$, then the boundary of every geodesic ball in S^n with radius r_0 must intersect M.

Proof. Since the result is trivial when M is totally geodesic we will assume that this is not the case. Notice that it is enough to prove that for every $v \in S^n$ the minimum of the coordinate function $l_v : M \to \mathbf{R}$ over M is less than or equal to $-\alpha/\sqrt{1+\alpha^2}$. Let m_0 be a point in M where the function l_v reaches its minimum. Since M is not an equator we have that $l_v(m_0) < 0$. We need to show that $l_v(m_0) \leq -\alpha/\sqrt{1+\alpha^2}$ or equivalently $|l_v(m_0)| \geq \alpha/\sqrt{1+\alpha^2}$. Since m_0 is a critical point of the function l_v we have $\nabla l_v = 0$, therefore,

$$(2.1) 1 = ||v||^2 = \langle v, m_0 \rangle^2 + \langle \nu(v), m_0 \rangle^2 + ||\nabla l_v||^2 = l_v(m_0)^2 + f_v(m_0)^2.$$

Let $\{v_i\}_{i=1}^{n-1}$ be an orthonormal basis of $T_{m_0}M$ that diagonalizes the shape operator A at m_0 . Since m_0 is a minimum of l_v we get for $i = 1, \ldots, n-1$ that

$$(2.3) 0 \leq H(l_v)(v_i, v_i) = -l_v(m_0)\langle v_i, v_i \rangle + f_v(m_0)\langle A(v_i), v_i \rangle$$

= $-l_v(m_0) + f_v(m_0)\lambda_i$.

Since $\sum_{i=1}^{n-1} \lambda_i = 0$ we can pick k such that $-f_v(m_0)\lambda_k$ is not negative. Using the definition of α , equation (2.1) and the inequalities (2.3) we get

$$|l_v(m_0)| = -l_v(m_0) \ge -f_v(m_0)\lambda_k = |-f_v(m_0)||\lambda_k| \ge \alpha \sqrt{1 - l_v(m_0)^2}.$$

Finally from the inequality above we can easily deduce the inequality we were looking for: $|l_v(m_0)| \ge \alpha/\sqrt{1+\alpha^2} = \beta$.

A direct computation shows that the formula for the Laplacian of the coordinate functions, (1.2), holds true for any codimension, i.e., we have that if M^k is a k-dimensional manifold minimally immersed in S^n , then $-\Delta l_w = k l_w$.

Now we will prove our second result. For the reader's convenience we will restate this theorem.

Theorem 1.6. Let M^k be a minimal k-dimensional manifold immersed in the n-dimensional unit sphere S^n . Then for every orthonormal basis of \mathbf{R}^{n+1} , $\{p_i\}_{i=1}^{i=n-1}$ for some i, M must intersect the boundary of geodesic ball with center at p_i and radius $\cos^{-1}(1-\sqrt{(n-2)/(n+1)})$.

Proof. Notice that it is enough to prove that at least one of the coordinate functions l_{p_i} takes a value less than or equal to $-(1-\sqrt{(n-2)/(n+1)})$. We will proceed by contradiction. Let us assume that all the functions $l_i=l_{p_i}$ are greater than or equal to $-(1-\sqrt{(n-2)/(n+1)})$. Therefore the vector fields $X_i=(1+l_i)^{-1}\nabla l_i$ are well defined. Let us compute the divergence of X_i :

$$\operatorname{div}(X_i) = -(1+l_i)^{-2} \|\nabla l_i\|^2 + (1+l_i)^{-1} (-kl_i)$$
$$= \frac{k}{2} \left(-1 + (1+l_i)^{-2} \left(1 - \frac{2}{k} \|\nabla l_i\|^2 - l_i^2 \right) \right).$$

Since $(1+l_i)^{-2} \leq (1-(1-\sqrt{(n-2)/(n+1)}))^{-2} = (n+1)/(n-2)$ by assumption and $1-2/k||\nabla l_i||^2 - l_i^2 > 0$, we get from the expression above after using the divergence theorem that,

$$0 = \int_{M} \left(-1 + (1 + l_{i})^{-2} \left(1 - \frac{2}{k} \|\nabla l_{i}\|^{2} - l_{i}^{2} \right) \right)$$
$$< \int_{M} \left(-1 + \frac{n+1}{n-2} \left(1 - \frac{2}{k} \|\nabla l_{i}\|^{2} - l_{i}^{2} \right) \right).$$

Notice that $\sum_{i=1}^{n+1} l_i^2 = 1$ and by Stoke's theorem $\int_M \|\nabla l_i\|^2 = k \int_M l_i^2$. Then if we sum the inequalities above from i = 1 to i = n + 1, we get

$$0 < \sum_{i=1}^{n+1} \int_{M} \left(-1 + \frac{n+1}{n-2} \left(1 - \frac{2}{k} ||\nabla l_{i}||^{2} - l_{i}^{2} \right) \right)$$
$$= \int_{M} \left(-(n+1) + \frac{n+1}{n-2} (n+1-2-1) \right) = 0.$$

This contradiction proves the theorem. \Box

Remark. The case n=3 in the theorem above is also a consequence of the fact that any two minimal surfaces in S^3 must intersect [1]. For any minimal surface M in S^3 the surface $-M=\{p\in S^3: -p\in M\}$ is also minimal. If $m_0\in -M\cap M$ then one can check that either m_0 or $-m_0$ must intersect the union of the four geodesic balls with center at p_i and radius 1/2.

REFERENCES

1. T. Frankel, On the fundamental group of a compact minimal submanifold, Ann. of Math. 83 (1966), 68–73.

 $E ext{-}mail\ address: }$ osperdom@univalle.edu.co