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ON EXTENSIONS OF SIMPLE REAL GENUS ACTION

GRZEGORZ GROMADZKI

ABSTRACT. May has proved recently [7] that if a finite
simple group G is generated by two elements of order 2 and
s, and acts faithfully on a bordered Klein surface X of least
possible genus, then [Aut (X) : G] divides 4 and he asked if
[Aut (X) : G] = 4 can actually occur. The aim of this note
is to give a positive answer to this question. First we give
necessary and sufficient conditions for the action of G to be
so extendible and then we show that PSL (2, p) satisfy these
conditions for arbitrary prime p with p ≡ ±1mod8.

1. The real genus ρ(G) of a finite group G is the minimum algebraic
genus of any compact bordered Klein surface on which G acts faithfully
as a group of automorphisms. A real genus action of G is an action
of G on a bordered Klein surface of algebraic genus g = ρ(G). These
notions were introduced by May in [6]. In [7] May proved that if
G is a simple finite group with the real genus action on X and G is
generated by two elements of order 2 and s, then G is normal in the
group Aut (X) of all automorphisms of X, [Aut (X) : G] divides 4 and
finally Aut (X) embeds faithfully in Aut (G). In [7] May also posed
several open problems. The one he considered the most interesting was
whether the case [Aut (X) : G] = 4 can actually occur. Here we shall
give necessary and sufficient conditions for the action of G to be so
extended and then we show that PSL (2, p) for p ≡ ±1 mod 8 satisfies
these conditions.

2. We shall use the same approach, notations and terminology as
in [6] and [7]. May remarked that in such exceptional cases |G| =
3(ρ(G)− 1) and Aut (X) must be an M∗-group. So G = ∆/Γ, where Γ
is a bordered surface NEC group and ∆ is an NEC-group with signature
(0; +; [3, 3]; {(−)}), since, by [2], these are the only NEC groups with
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area 2π/3 which admit bordered surface groups as normal subgroups.
A group ∆ has the presentation 〈x1, x2, e, c |x3

1, x
3
2, x1x2e, c

2, ece−1c〉
and for the canonical epimorphism θ : ∆ → G,

(1) θ(x1) = a, θ(x2) = b, θ(c) = 1, θ(e) = (ab)−1,

where a and b are two elements of order 3. Now [Aut (X) : G] = 4 if and
only if there is a group Λ with signature (0; +; [−]; {(2, 2, 2, 3)}) con-
taining ∆ and Γ as normal subgroups. Recall that the group Λ has the
presentation 〈c0, c1, c2, c3 | c20, c21, c22, c23, (c0c1)2, (c1c2)2, (c2c3)2, (c0c3)3〉.
Using Theorem 2.3.3 and Remark 2.3.6 of [1] one can show that c1 or c2
belongs to ∆. Furthermore, in the first case x1 = c0c3, x2 = c2c3c0c2,
e = (c2c0)2 and c = c1 also belong to ∆; they obey all canonical rela-
tions of ∆ and

(2)
c3x1c3 = x−1

1 , c3x2c3 = x−1
2 , c3cc3 = x−1

1 cx1,

c2x1c2 = x−1
2 , c2x2c2 = x−1

1 , c2cc2 = c.

So these elements generate a normal subgroup in Λ of index 4 and
therefore they form a canonical set of generators for ∆. The second
case leads us to the same actions. Here x1 = c3c0, x2 = c1c0c3c1,
e = (c1c3)2, c = c2 and

(3)
c0x1c0 = x−1

1 , c0x2c0 = x−1
2 ,

c1x1c1 = x−1
2 , c1x2c1 = x−1

1 .

Thus if Γ is normal in Λ then the maps x1 �→ x−1
1 , x2 �→ x−1

2 and
x1 �→ x−1

2 , x2 �→ x−1
1 induce automorphisms of G. This gives the only

if part of the following

Theorem. Let G be a simple group generated by two elements
of order 2 and s. Then G is a subgroup of index 4 in Aut (X) for
some Klein surface X of genus g = ρ(G) if and only if G admits
two generators a and b of order 3 for which the maps ϕ(a) = a−1,
ϕ(b) = b−1 and ψ(a) = b−1, ψ(b) = a−1 induce automorphisms of G.

The above conditions are also sufficient. Indeed let Λ and ∆ be
a pair of NEC groups as above, where c1 ∈ ∆. Let a and b be a
pair of generators for G which satisfy the assumption. We define Γ as
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the kernel of epimorphism given by (1). The automorphisms ϕ, ψ are
induced by automorphisms ϕ̃, ˜ψ of ∆ defined by

ϕ̃(x1) = x−1
1 , ϕ̃(x2) = x−1

2 ,

˜ψ(x1) = x−1
2 , ˜ψ(x2) = x−1

1 ,

which preserve Γ. The images of c2 and c3 generate Λ/∆. Furthermore
if w ∈ Γ then c3wc3 = ϕ̃(w) ∈ Γ and c2wc2 = ˜ψ(w) ∈ Γ. So Γ is normal
in Λ.

3. Now by Theorem 2.16 of [3], see also [8], the group PSL (2, p),
where p is arbitrary prime with p ≡ ±1 mod 8, can be generated by
two elements x, y of order 3 with the same trace. On the other hand
Macbeath showed [4, Theorem 3] that two generating pairs (A,B)
and (A1, B1) of PSL (2, p) for which trA = trA1, trB = trB1 and
trAB = trA1B1 are conjugate within the larger group PSL (2,Fp), i.e.
A1 = XAX−1 and B1 = XBX−1 for some X ∈ PSL (2,Fp), where Fp

is the algebraic closure of Fp. So the above maps ϕ, ψ do indeed induce
automorphisms of PSL(2, p). The second part of this paragraph was
inspired by the proof of Theorem 3 in [9].

4. It is known [5] that every finite simple group except U3(3) can
be generated by two elements, one of which is an involution. So, in
particular, all results of May from [7] and the above theorem hold
true for all simple groups but U3(3) without the above generation
assumption. This solves another problem of May posed in [7].
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