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HELLY’S SELECTION PRINCIPLE FOR
FUNCTIONS OF BOUNDED P -VARIATION

JOHN E. PORTER

ABSTRACT. The classical Helly’s selection principle states
that a uniformly bounded sequence of functions with uni-
form bounded variation admits a subsequence which converges
pointwise to a function of bounded variation. Helly’s selec-
tion principle for metric space-valued functions of bounded
p-variation is proven answering a question of Chistyakov and
Galkin.

1. Introduction. Jordan introduced the concept of variation of a
function and characterized functions of bounded variation as differences
of nondecreasing functions. Helly [10, p. 222] used this decomposition
to prove a compactness theorem for functions of bounded variation
which has become known as Helly’s selection principle, a uniformly
bounded sequence of functions with uniform bounded variation has a
pointwise convergent subsequence.

The interest in Helly’s selection principle is natural since it provides
an effective means of proving existence theorems in analysis. For some
examples see [3] and [9]. A problem of importance is proving Helly type
selection theorems for functions of generalized variation. For example,
Helly’s Selection Principle has been proven by Fleischer and Porter [7]
for metric-space valued BV functions, Waterman [11] for functions of
bounded Λ-variation, and Cyphert and Kelingos [4] for functions of
bounded χ-variation.

The p-variation, p ≥ 1, may be defined for a metric space-valued
function f : E → X of a real variable as

Vp(f, E) = sup
m∑

i=1

d(f(ti), f(ti−1))p
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where the supremum is taken over all finite t0 ≤ · · · ≤ ti ≤ · · · ≤ tm
in E ⊂ R (d is the metric on X). When finite, the function is said
to have bounded p-variation. The p-variation function is defined by
φ(x) = Vp(f, E ∩ (−∞, x]) which is a nondecreasing function.

The notion of p-variation for p = 2 was first introduced by Wiener
[12]. Young [14] later studied functions of bounded p-variation for
p ≥ 1. Functions of bounded p-variation for p = 1 are often referred
to as functions of bounded Jordan variation and were studied by
Chistyakov [1]. Recently, functions of bounded p-variation have been
applied to problems in stochastic differential equations [13] and integral
equations [8]. For an excellent list of papers on functions of bounded
p-variation see [5].

Chistyakov and Galkin [2] thoroughly studied the properties of func-
tions with bounded p-variation in which they proved the following Helly
type selection principle:

Theorem 1.1. Let K be a compact subset of the metric space X,
and let F ⊂ C([a, b]; K) be an infinite family of continuous maps from
the interval [a, b] into K of uniformly bounded p-variation, that is,
supf∈F Vp(f, [a, b]) < ∞. Then there exists a sequence {fn}∞n=1 of maps
from F which converges pointwise on [a, b] to a map f : [a, b] → K
of bounded p-variation. Moreover, if X is a Banach space, then the
assumption of continuity of the family F is redundant.

The second section is devoted to extending this theorem, dispensing
with continuity, to arbitrary real subsets and lighten compactness of
the range to pointwise precompactness, which answers Remark 6.1 in
[2].

2. Helly’s selection principle. Recall that a map f : E → X is
Hölderian of exponent 0 < γ ≤ 1 if there exists a positive number C
such that d(f(t), f(s)) ≤ C|t− s|γ for all t, s ∈ E. The least number C
satisfying the above inequality is called the Hölder constant of f and
is denoted by H(f). The argument is based on the following structure
theorem proved in [2]:
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Lemma 2.1. A map f : E → X has bounded p-variation if and
only if it factors as g ◦ φ where φ : E → R is its total p-variation and
g : φ(E) → X is a Hölderian map of exponent γ = 1/p and H(g) ≤ 1.
Moreover, if X is a Banach space, the map g : φ(E) → X can be
extended to a Hölderian map ḡ : R → X of the same exponent γ = 1/p
and Hölderian constant H(ḡ) ≤ 31−γH(g).

In proving Helly’s Selection Principle for mappings of bounded p-
variation, it suffices to prove convergence of the factors of a function
of bounded p-variation. Note that a family of Hölderian functions
with uniformly bounded Hölderian constants is equicontinuous. For
convergence of the non-decreasing factors, the following lemma is
needed.

Lemma 2.2. A uniformly bounded sequence of nondecreasing real-
valued functions has a pointwise convergent subsequence.

Proof. The proof is identical to Lemma 2 in [10, pp. 221 222] starting
with any countable dense subset of E.

Before we begin the proof of Theorem 2.4, we need one more lemma.

Lemma 2.3. Let {φn(t)}∞n=1 be a sequence of real-valued functions
such that φn(t) → φ(t) pointwise on E ⊂ R. Let {gn(t)}∞n=1 be a
sequence of Hölderian functions of exponent 0 < γ ≤ 1 from the reals
into a metric space X such that H(gn) ≤ C < ∞ for all n. Then
{gn ◦φn}∞n=1 converges pointwise on E if and only if {gn}∞n=1 converges
pointwise on φ(E).

Proof. (⇒). Suppose {gn ◦ φn}∞n=1 converges pointwise on E. Let
t ∈ E, and let y = limn→∞ gn(φn(t)). Then

d(gn(φ(t)), y) ≤ d(gn(φ(t)), gn(φn(t))) + d(gn(φn(t)), y)
≤ C|φn(t) − φ(t)|γ + d(gn(φn(t)), y).

Since the terms in the last sum tend to zero as n → ∞, {gn}∞n=1

converges pointwise on φ(E).
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(⇐). Suppose {gn}∞n=1 converges pointwise on φ(E). Let t ∈ E, and
let y = limn→∞ gn(φ(t)). Then

d(gn(φn(t)), y) ≤ d(gn(φn(t)), gn(φ(t))) + d(gn(φ(t)), y)
≤ C|φn(t) − φ(t)|γ + d(gn(φ(t)), y).

Since the terms in the last sum tend to zero as n → ∞, {gn ◦ φn}∞n=1

converges pointwise on E.

Theorem 2.4. Let F be a sequence of functions of uniform
bounded p-variation from E ⊂ R to a metric space X, that is,
supf∈F Vp(f, E) < ∞, such that F is pointwise precompact, i.e., the
closure of {f(t) : f ∈ F} is compact for every t ∈ E. Then there
exists a subsequence {fn} ⊂ F , pointwise convergent on E to a func-
tion f : E → X, hence of bounded p-variation with Vp(f, E) ≤
supf∗∈FVp(f∗, E).

Proof. Without loss of generality, we can assume X is a Banach
space since every metric space can be embedded isometrically in a
Banach space. Represent each f ∈ F as a composite f = gf ◦ φf

where φ is the p-variation function of f and g : φ(E) → X is a
Hölderian map of exponent γ = 1/p and H(g) ≤ 1. Note that
{φf : f ∈ F} is a uniformly bounded sequence of nondecreasing
real-valued functions since F has uniform bounded p-variation. By
Lemma 2.2, {φf : f ∈ F} has a subsequence {φn} which converges
pointwise to a nondecreasing function φ : E → R. Extend each gn

to Hölderian map gn : R → X such that H(g) ≤ 31−γH(g). Since
{fn = gn ◦ φn}∞n=1 is pointwise precompact on E, {gn} is pointwise
precompact on φ(E) by Lemma 2.3. By the Arzela-Ascoli theorem,
see [6], there exists a subsequence gnk

which converges on φ(E), and
again by Lemma 2.3, fnk

= gnk
◦ φnk

converges pointwise on E. The
inequality Vp(f, E) ≤ supf∗∈F Vp(f∗, E) follows from (P7) in [2].
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