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A SYSTEM OF PELLIAN EQUATIONS AND
RELATED TWO-PARAMETRIC FAMILY

OF QUARTIC THUE EQUATIONS

BORKA JADRIJEVIĆ

ABSTRACT. We show that solving of the two-parametric
family of quartic Thue equations

x4 − 2mnx3y + 2
(
m2 − n2 + 1

)
x2y2 + 2mnxy3 + y4 = 1,

using the method of Tzanakis, reduces to solving the system
of Pellian equations

V 2 −
(
m2 + 2

)
U2 = −2, Z2 −

(
n2 − 2

)
U2 = 2,

where parameters m and n �= 0, ±1 are integers. The main
result in this paper can be stated as follows: If |m| and |n| are
sufficiently large and have sufficiently large common divisor,
then the system has only the trivial solutions (V, Z, U) =
(±m,±n,±1), which implies that the original Thue equation
also has only the trivial solutions (x, y) = (±1, 0) , (0,±1).

1. Introduction. Let F ∈ Z [X, Y ] be a homogeneous irreducible
polynomial of degree ≥ 3 and t �= 0 a fixed integer. Then Diophantine
equation F (x, y) = t is called a Thue equation in honor of A. Thue,
who proved in 1909 [24] that such an equation has only finitely many
solutions (x, y) ∈ Z×Z. Thue’s proof is not effective. Using estimates
for linear forms in logarithms of algebraic numbers, Baker [1] could
give an effective upper bound for the solutions of Thue equation.
Since that time, general powerful methods have been developed for
the explicit solution of Thue equations, see [21, 27, 5], following from
Baker’s work. In 1990, Thomas [23] investigated for the first time
a parametrized family of Thue equations. Since then, several families
have been studied, see [12] for references. In particular, quartic families
have been considered in [6, 10, 12, 14, 16, 20, 22, 25, 28, 29].
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In this paper, we consider the equation

(1) x4 − 2mnx3y + 2
(
m2 − n2 + 1

)
x2y2 + 2mnxy3 + y4 = 1.

Let us note that, because of homogeneity and symmetry of equation
(1), it is enough to consider the cases when m and n are nonnegative
and find only all positive solutions. More precisely, (x, y) = (a, b) is
a solution of equation (1) if and only if (x, y) = (b, a) is a solution of
equation

x4 + 2mnx3y + 2
(
m2 − n2 + 1

)
x2y2 − 2mnxy3 + y4 = 1.

Further, if (x, y) = (a, b) is a solution of equation (1) then (x, y) =
(−a,−b) , (b,−a) , (−b, a) are solutions too. Thus, we will suppose,
without loss of generality, that m ≥ 0 and n ≥ 0 are integers and
consider an equation of the form (1).

Using the method of Tzanakis, given in [26], we will show that solving
equation (1) reduces to solving the system of Pellian equations

V 2 − (m2 + 2
)
U2 = −2,(2)

Z2 − (n2 − 2
)
U2 = 2,(3)

and we prove, roughly speaking, that if m and n are sufficiently large
and have a sufficiently large common divisor, then the system has only
the trivial solutions (V, Z, U) = (±m,±n,±1), which implies equation
(1) has only the trivial solutions (±1, 0), (0,±1).

We will find a lower bound for solutions of this system using the
“congruence method” introduced in [11] by Dujella and Pethő and
used also in [8, 9, 10]. The comparison of this lower bound with an
upper bound obtained from a theorem of Baker and Wüstholz [3] lead
to the main result of this paper.

In [26], Tzanakis considered a certain class of quartic Thue equa-
tions whose corresponding quartic field K is totally real, Galois and
noncyclic. Tzanakis showed that solving the equation, under the above
assumptions on K, reduces to solving a system of Pellian equations hav-
ing one common unknown. Such a reduction has certain advantages.
Dealing with the system of Pellian equations, all algebraic-arithmetic
data we need are easily accessible. Furthermore, methods based on
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the theory of linear forms in logarithms lead to a linear form in three
logarithms and two unknown integral coefficients instead, the known
direct general methods such as [27], to a linear form in four logarithms
and three unknown integral coefficients.

The main result of the present paper is the following theorem.

Theorem 1. For every 0.5 < ε ≤ 1 there exists an effectively
computable constant C(ε) such that if m �= 0, max {m, n} ≥ C(ε)
and

gcd (m, n) ≥ max {mε, nε} ,

then the system of Pellian equations (2) and (3) has only the triv-
ial solutions (V, Z, U) = (±m,±n,±1). In particular, we may take
C(0.999) = 1027, C(0.99) = 1030, C(0.9) = 1048, C(0.8) = 1071,
C(0.7) = 10116, C(0.6) = 10255, C(0.51) = 103138, C(0.501) = 1036836.

Corollary 1. For every 0.5 < ε ≤ 1 there exists an effectively
computable constant C(ε) such that if m �= 0, max {m, n} ≥ C(ε) and

gcd (m, n) ≥ max {mε, nε} ,

then Thue equation (1) has only the trivial solutions (x, y) = (±1, 0),
(0,±1).

Remark 1. In [13], it is proven that for all integers m and n there
are no nontrivial solutions of (1) satisfying the additional condition
gcd (xy, mn) = 1. The result is obtained by considering three cases:
m = n, m = 2n, n = 2m. These cases are completely solved
by applying a theorem of Bennett [4, Theorem 3.2] on simultaneous
approximations of algebraic numbers. In all cases we obtain only trivial
solutions, except for m = 1, n = 2, where there are also nontrivial
solutions (x, y) = (4, 5), (−4,−5), (5,−4), (−5, 4). The case m = 2n
can be considered as a special case of the Thue equation

x4 − 4cx3y + (6c + 2)x2y2 + 4cxy3 + y4 = 1,

which was completely solved in [10].

In Section 8 we will find a bound for the number of the solutions of
the system (2) and (3). Using a theorem of Bennett [4, Theorem 3.2]
we will prove the following theorem.
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Theorem 2. System of Pellian equations (2) and (3) for all m ≥ 0
and n ≥ 2 possess at most 7 solutions in positive integers (V, Z, U).

2. Small values of parameters.

Proposition 1. Equation (1) has only the trivial solutions (x, y) =
(±1, 0), (0,±1) in the following cases:

i) n ≤ 1,

ii) m = 0 and 2(n2 − 1) is not a perfect square.

Proof. The statement of the proposition is trivially true for n = 0.
On the other hand, for n = 1 we have

x4 − 2mx3y + 2m2x2y2 + 2mxy3 + y4

=
(
x2 − mxy − y2

)2
+ x2y2

(
m2 + 2

)
,

and therefore the statement is true in this case too.

For m = 0 we have

(4) x4 + 2(1 − n2)x2y2 + y4 = 1,

which is a special case of equation

(5) x4 − Kx2y2 + y4 = 1,

where K is a positive integer. This equation was considered by Cusick
in [7] and his result is generalized by Walsh in [30]. Using Ljunggren’s
results [15], it is proven that equation (5) does not have any solution
in positive integers x and y except for the trivial cases where K is a
square and x = 1 or y = 1. In our special case we have: If the sequence
(nk) is defined by

(6) n0 = 1, n1 = 3, nk+2 = 6nk+1 − nk, k ≥ 0,

then, for n = nk and k ≥ 1, all nontrivial solutions of equation (4) are
given by

(x, y) =
(
±1,±

√
2 (n2 − 1)

)
and

(
±
√

2 (n2 − 1),±1
)

.
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For all other values of n we have only the trivial solutions (x, y) =
(±1, 0) , (0,±1) .

Remark 2. For m = 0 system of Pellian equations (2) and (3) have
nontrivial positive solution (V, Z, U)=

(
n
√

2 (n2−1), 2n2−3, 2n2−1
)

if n = nk, k ≥ 1, where sequence (nk) is given by (6).

3. The method of Tzanakis. In this section we will describe
the method of Tzanakis [26] for solving quartic Thue equations whose
corresponding quartic field K has the properties stated in Section 1.

Consider the quartic Thue equation

f(x, y) = t

f(x, y) = a0x
4 + 4a1x

3y + 6a2x
2y2(7)

+ 4a3xy3 + a4y
4 ∈ Z [x, y] , a0 > 0,

whose corresponding quartic field K is Galois and non-cyclic. By
[18], this condition on K is equivalent with K having three quadratic
subfields, which happens exactly when the cubic resolvent of the quartic
Thue equation has three distinct rational roots.

It is more convenient to consider the cubic equation

(8) 4ρ3 − g2ρ − g3 = 0

with roots opposite to those of the cubic resolvent of the quartic
equation f(x, 1) = 0. Here g2 and g3 are invariants of the form:

g2 = a0a4 − 4a1a3 + 3a2
2 ∈ 1

12
Z,

g3 =

∣∣∣∣∣∣
a0 a1 a2

a1 a2 a3

a2 a3 a4

∣∣∣∣∣∣ ∈
1

432
Z .

Therefore, the above conditions on K are equivalent to the fact that
the cubic equation (8) has three rational roots ρ1, ρ2, ρ3. Assuming
that K is not totally complex, then by classification of Nagell (Table
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on p. 351 of [18]), K is totally real, in fact, it is a compositum of two
real quadratic fields. This happens exactly when

(9)
a2
1

a0
− a2 ≥ max{ρ1, ρ2, ρ3}.

Let H(x, y) and G(x, y) be the quartic and sextic covariants of f(x, y),
respectively, see [17, Chapter 25], i.e.,

H(x, y) = − 1
144

∣∣∣∣ ∂2f/∂x2 ∂2f/∂x∂y
∂2f/∂y∂x ∂2f/∂y2

∣∣∣∣ ∈ 1
48

Z [x, y] ,

G(x, y) = −1
8

∣∣∣∣ ∂f/∂x ∂f/∂y
∂H/∂x ∂H/∂y

∣∣∣∣ ∈ 1
96

Z [x, y] .

Then

(10) 4H3 − g2Hf2 − g3f
3 = G2.

If we put H = (1/48)H0, G = (1/96)G0, ρi = (1/12)ri, i = 1, 2, 3, then
H0, G0 ∈ Z [x, y], ri ∈ Z, i = 1, 2, 3. Since f and H are relatively prime
in Q [x, y], then, in view of (10),

(H0 − 4r1f)(H0 − 4r2f)(H0 − 4r3f) = 3G2
0

and the tree factors on the lefthand side are pairwise relatively prime
in Z [x, y]. So there exist positive square-free integers k1, k2, k3 and
quadratic forms G1, G2, G3 ∈ Z [x, y] such that

H0 − 4rif = kiG
2
i , i = 1, 2, 3

and k1k2k3(G1G2G3)2 = 3G2
0. If (x, y) ∈ Z × Z is a solution of (7),

then

k2G
2
2 − k1G

2
1 = 4(r1 − r2)t,(11)

k3G
2
3 − k1G

2
1 = 4(r1 − r3)t.(12)

In this way, solving the Thue equation (7) reduces to solving the system
of Pellian equations (11) and (12) with one common unknown.
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4. Binary recursive sequences. Let us apply the method from
Section 3 to the equation

f(x, y) = x4 − 2mnx3y + 2
(
m2 − n2 + 1

)
x2y2 + 2mnxy3 + y4 = 1 .

We have

g2 = 1 + m2n2 +
1
3
(
m2 − n2 + 1

)2
,

g3 = − 1
54
(
m2 + 2n2 − 2

) (
2m2 + n2 + 2

) (
m2 − n2 + 4

)
,

ρ1 =
1
6

m2 − 1
6

n2 +
2
3
,

ρ2 =
1
6

m2 +
1
3

n2 − 1
3
,

ρ3 = −1
3

m2 − 1
6

n2 − 1
3
.

If n ≥ 2, then

a2
1

a0
− a2 − ρ1 =

1
4
(
m2 + 2

) (
n2 − 2

) ≥ 0,

a2
1

a0
− a2 − ρ2 =

1
4

m2
(
n2 − 2

) ≥ 0,

a2
1

a0
− a2 − ρ3 =

1
4

n2
(
m2 + 2

) ≥ 0.

Thus, condition (9) is clearly satisfied for n ≥ 2.

Furthermore, we obtain

H0 − 4r1f = 12
(
n2 − 2

) (
m2 + 2

) (
x2 + y2

)2
,

H0 − 4r2f = 12
(
n2 − 2

) (
mx2 + 2nxy − my2

)2
,

H0 − 4r3f = 12
(
m2 + 2

) (−nx2 + 2mxy + ny2
)2

.

By putting k1 = 3
(
n2 − 2

) (
m2 + 2

)
, k2 = 3

(
n2 − 2

)
, k3 = 3

(
m2 + 2

)
,

U =
G1

2
= x2 + y2,

V =
G2

2
= mx2 + 2nxy − my2,

Z =
G3

2
= −nx2 + 2mxy + ny2,
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we get, from (11) and (12), the system of Pellian equations (2) and (3).
Consider the system of Pellian equations (2) and (3). Neither m2 + 2
nor n2 − 2 is a square and both Q

(√
m2 + 2

)
and Q

(√
n2 − 2

)
are

real quadratic real number fields. Moreover, by [19, Theorem 105],
m2 + 1 + m

√
m2 + 2 and n2 − 1 + n

√
n2 − 2 are nontrivial units of

norm 1 in number rings Z
[√

m2 + 2
]

and Z
[√

n2 − 2
]
, respectively.

By [19, Theorem 108a], we find that

v1 + u1

√
m2 + 2 = m +

√
m2 + 2,

v2 + u2

√
m2 + 2 = −m +

√
m2 + 2

are the possible fundamental solutions of equation (2). By [19, p.
58], these solutions belong to the same class, so we have only one
fundamental solution m +

√
m2 + 2.

Similarly, by [19, Theorem 108], we find that n+
√

n2 − 2 is the only
fundamental solution of equation (3).

Hence, all solutions of equation (2) in positive integers are given by

(13) v + u
√

m2 + 2 =
(
m +

√
m2 + 2

)(
m2 + 1 + m

√
m2 + 2

)k

,

where k ∈ Z and k ≥ 0 or by u = Uk and v = Vk, where the sequences
(Uk) and (Vk) are defined by the recurrences

(14)

U0 = 1, U1 = 2m2 + 1, Uk+2 = 2
(
m2 + 1

)
Uk+1 − Uk, k ≥ 0;

V0 = m, V1 = m
(
2m2 + 3

)
, Vk+2 = 2

(
m2 + 1

)
Vk+1 − Vk,

k ≥ 0.

All solutions of equation (3) in positive integers are given by

(15) z + t
√

n2 − 2 =
(
n +

√
n2 − 2

)(
n2 − 1 + n

√
n2 − 2

)l

where l ∈ Z and l ≥ 0 or by t = Tl and z = Zl, where the sequences
(Tl) and (Zl) are defined by the recurrences

(16)

T0 = 1, T1 = 2n2 − 1, Tl+2 = 2
(
n2 − 1

)
Tl+1 − Tl, l ≥ 0;

Z0 = n, Z1 = n
(
2n2 − 3

)
,

Zl+2 = 2
(
n2 − 1

)
Zl+1 − Zl, l ≥ 0.
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In this way we reformulated the system of Pellian equations (2) and
(3) to the Diophantine equation of the form

Uk = Tl

in integers k, l ≥ 0. In order to prove Theorem 1, it suffices to show
that Uk = Tl implies k = l = 0 in all these special cases.

Solving recurrences (14) and (16) we find

(17) Uk =
1

2
√

m2+ 2

[ (
m +

√
m2+ 2

)(
m2+ 1 + m

√
m2+ 2

)k

−
(
m −

√
m2+ 2

)(
m2+ 1 − m

√
m2+ 2

)k]
,

(18) Tl =
1

2
√

n2− 2

[ (
n +

√
n2− 2

)(
n2− 1 + n

√
n2− 2

)l

−
(
n −

√
n2− 2

)(
n2− 1 − n

√
n2− 2

)k]
.

5. Linear form in logarithms of algebraic numbers.

Lemma 1. If m ≥ n ≥ 2, Uk = Tl and k �= 0, then the following
hold:

10

0 < l log
(
n2− 1 + n

√
n2− 2

)
− k log

(
m2+ 1 + m

√
m2+ 2

)

+ log

√
m2+ 2

(
n +

√
n2− 2

)
√

n2− 2
(
m +

√
m2+ 2

) < 0.406
(
m2+ 1 + m

√
m2+ 2

)−2k

.

20 k < l < 0. 5674·t (m)·k, where t (m) = log
(
m2 + 1 + m

√
m2 + 2

)
.

Proof. 10 If we put

P =
(
m +

√
m2 + 2

)(
m2 + 1 + m

√
m2 + 2

)k

,

Q =
(
n +

√
n2 − 2

)(
n2 − 1 + n

√
n2 − 2

)l

,
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then

P−1 =
−1
2

(
m −

√
m2 + 2

)(
m2 + 1 − m

√
m2 + 2

)k

,

Q−1 =
1
2

(
n −

√
n2 − 2

)(
n2 − 1 − n

√
n2 − 2

)l

.

Now, from (17) and (18) it follows that the relation Uk = Tl implies

P + 2P−1 = A
(
Q − 2Q−1

)
,

where

A =

√
m2 + 2
n2 − 2

> 1.

It is clear that P > 1, Q > 1, and from

AQ − P = 2
(
AQ−1+ P−1

)
>

1
A

Q−1− P−1 =
1
A

(P− AQ)Q−1P−1,

it follows that AQ > P , which implies Q−1 < AP−1. Thus, we have

AQ − P = 2AQ−1 + 2P−1 < 2A2P−1 + 2P−1 = 2
(
A2 + 1

)
P−1.

Since k ≥ 1, we have

2
(
A2 + 1

)
P−2 ≤ 2

(
(m2 + 2)/(n2 − 2) + 1

)
((

m +
√

m2 + 2
) (

m2 + 1 + m
√

m2 + 2
))2

= f (m, n) .

For m ≥ n ≥ 2, function f (m, n) is decreasing in the both variables,
which implies

2
(
A2 + 1

)
P−2 ≤ f (2, 2) < 4.2 × 10−3.

Thus, we have

AQ−P

AQ
<

2
(
A2+ 1

)
A

P−1Q−1 < 2
(
A2+ 1

)
P−2 < 4.2 × 10−3.
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Hence,

0 < log
AQ

P
= − log

(
1 − AQ − P

AQ

)

<

(
AQ − P

AQ

)
+
(

AQ − P

AQ

)2

<
[
1 + 2

(
A2 + 1

)
P−2

] · 2 (A2 + 1
)
P−2

<
(
1 + 4.2 × 10−3

) · 2
(
(m2 + 2)/(n2 − 2) + 1

)
(
m +

√
m2 + 2

)2
·
(
m2 + 1 + m

√
m2 + 2

)−2k

.

The function

f1(m, n) =
2
(
(m2 + 2)/(n2 − 2) + 1

)
(
m +

√
m2 + 2

)2
is decreasing in both variables, so f1(m, n) ≤ f1(2, 2) < 0. 404 1. Thus
we have

0 < log
AQ

P
< 0.406

(
m2 + 1 + m

√
m2 + 2

)−2k

,

which implies the assertion.

20 From relations (17) and (18) it is clear that k < l. We have, by
10, that

l log
(
n2 − 1 + n

√
n2 − 2

)
− k log

(
m2 + 1 + m

√
m2 + 2

)
< 0.406

(
m2 + 1 + m

√
m2 + 2

)−2k

− log

√
m2 + 2

(
n +

√
n2 − 2

)
√

n2 − 2
(
m +

√
m2 + 2

)
≤ 0.406

(
m2 + 1 + m

√
m2 + 2

)−2

− log

√
m2 + 2

(
n +

√
n2 − 2

)
√

n2 − 2
(
m +

√
m2 + 2

) = g (m, n) .
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Since g (m, n) = g1 (m) + g2 (n), where

g1 (m) = 0.406
(
m2 + 1 + m

√
m2 + 2

)−2

+ log
m +

√
m2 + 2√

m2 + 2
,

g2 (n) = log
√

n2 − 2
n +

√
n2 − 2

,

then g (m, n) ≤ g1 (m) + g2 (m) = g3 (m). Function g3 (m) is continu-
ous, strictly increasing and limm→∞ g3 (m) = 0 and we conclude that
g3 (m) < 0 for m ≥ 2. Thus, we have

l log
(
n2 − 1 + n

√
n2 − 2

)
− k log

(
m2 + 1 + m

√
m2 + 2

)
< 0,

which implies

l

k
<

log
(
m2 + 1 + m

√
m2 + 2

)
log
(
n2 − 1 + n

√
n2 − 2

) = T (m, n) .

Since function T (m, n) attains its greatest value at n = 2 for every m,
we have

l

k
< T (m, 2) < 0. 5674 · log

(
m2 + 1 + m

√
m2 + 2

)
,

which implies the assertion.

Lemma 2. If 1 ≤ m < n, n ≥ 3, Uk = Tl and l �= 0, then the
following hold:

10

0 < l log
(
n2 − 1 + n

√
n2 − 2

)
− k log

(
m2 + 1 + m

√
m2 + 2

)

− log

√
n2 − 2

(
m +

√
m2 + 2

)
√

m2 + 2
(
n +

√
n2 − 2

)
< 0.211

(
n2 − 1 + n

√
n2 − 2

)−2l

,

20 l < k < 0.76 · t (n) · l, where t (n)=log
(
1.354

(
n2−1+n

√
n2−2

))
.
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Proof. Similarly as in the proof of Lemma 2. For details see [13,
Lemma 5.14].

Note that we have to consider the cases m = 1 and n = 2 separately.
Here systems (2) and (3) have the form

V 2 − 3U2 = −2,

Z2 − 2U2 = 2.

We can show, by using a slight modification of [11, Lemma 5], which is
a variant of the Baker-Davenport reduction procedure [2], that this
system has two positive solutions (V, Z, U) = (1, 2, 1), (41, 71, 58),
so the corresponding Thue equation has solutions given by (x, y) =
(±1, 0), (0,±1), (4, 5), (−4,−5), (5,−4), (−5, 4). For details, see [13,
Lemma 5.10].

6. The congruence method. Let g = gcd(m, n).

Lemma 3. Let the sequences (Uk) and (Tl) be defined by (14) and
(16). Then for all k, l ≥ 0 we have

Uk ≡ [k (k + 1)m2 + 1
]

(mod 2g4),(19)

Tl ≡ (−1)l+1 [
l (l + 1)n2 − 1

]
(mod 2g4).(20)

Proof. Both relations are obviously true for k, l ∈ {0, 1}.
Assume that (19) is valid for k − 1 and k. Then

Uk+1 = 2
(
m2 + 1

)
Uk − Uk−1

≡ 2
(
m2+1

) (
k2m2+km2+1

)−((k − 1)2 m2+ (k − 1)m2+1
)

=
(
2k (k + 1)m4 +

(
k2 + 3k + 2

)
m2 + 1

)
≡ [(k + 1) ((k + 1) + 1)m2 + 1

]
(mod 2g4).
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Assume that (20) is valid for l − 1 and l. Then

Tl = 2
(
n2 − 1

)
Tl − Tl−1

≡ 2
(
n2−1

)
(−1)l+1 (l2n2+ln2−1

)− (−1)l
(
(l−1)2 n2+ (l−1)n2−1

)
= 2 (−1)l+1 (

l2 + l
)
n4 + (−1)l (

l2 + 3l + 2
)
n2 − (−1)l

≡ (−1)l+2 [(l + 1) ((l + 1) + 1)n2 − 1
]

(mod 2g4).

Suppose that k and l are positive integers such that Uk = Tl. Then,
of course, Uk ≡ Tl (mod 2g4). Furthermore suppose that m = m1g,
n = n1g and g > 1. By Lemma 3, we have 1 ≡ (−1)l (mod 2g2) and
therefore l is even, say l = 2l1. Further, Lemma 3 implies

k (k + 1)m2 + 1 ≡ 1 − 2l1 (2l1 + 1) n2 (mod 2g4),

and

k (k + 1)m2
1 ≡ −2l1 (2l1 + 1)n2

1 (mod 2g2),

which implies

(21)
k (k + 1)

2
m2

1 ≡ −l1 (2l1 + 1)n2
1 = − l (l + 1)

2
n2

1 (mod 2g2).

Consider the positive integer

Y =
k (k + 1)

2
m2

1 +
l (l + 1)

2
n2

1.

1) Let m ≥ n. Assume that l ≤ g/m1. We have by Lemma 1, 20,
that k < l, and since n1 ≤ m1 we also have

l (l + 1)
2

n2
1 ≤ l (l + 1)

2
m2

1 ≤ g2

and

k (k + 1)
2

m2
1 <

l (l + 1)
2

m2
1 ≤ g2.
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So we have 0 < Y < 2g2 and, by (21), Y ≡ 0 (mod 2g2), a contradic-
tion.

2) Let m < n. Assume that k ≤ g/n1. We have, by Lemma 2, 20,
that l < k, and since m1 < n1 we also have

k (k + 1)
2

m2
1 <

k (k + 1)
2

n2
1 ≤ g2

and
l (l + 1)

2
n2

1 <
k (k + 1)

2
n2

1 ≤ g2.

So, we have 0 < Y < 2g2, and by (21), we obtain a contradiction as
before.

Therefore we proved

Proposition 2. If Uk = Tl, (k, l) �= (0, 0), g = gcd(m, n) > 1,
m = m1g, n = n1g, then we have:

1) if m ≥ n then l > g/m1,

2) if m < n then k > g/n1.

Corollary 2. If Uk = Tl, (k, l) �= (0, 0), g = gcd(m, n) > 1,
m = m1g, n = n1g, then we have:

1) if m ≥ n then U >
(
2n2 − 3

)g/m1 ,

2) if m < n then U >
(
1.8m2 + 0.9

)g/n1 .

Proof. From relations (18) and (17) we have

U >
(
n2 − 1 + n

√
n2 − 2

)l

>
(
2n2 − 3

)l
,

U >
m +

√
m2 + 2

2
√

m2 + 2

(
m2 + 1 + m

√
m2 + 2

)k

>
9
10
(
2m2 + 1

)k
>
(
1.8m2 + 0.9

)k
,

respectively, so assertions 1) and 2) follow directly from Proposition 2.
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7. The proof of Theorem 1. Now we will apply the following
famous theorem of Baker and Wüstholz [3]:

Theorem 3. For a linear form Λ �= 0 in logarithms of s algebraic
numbers α1, . . . , αs with rational integer coefficients b1, . . . , bs we have

log Λ ≥ −18(s + 1)! ss+1(32d)s+2h′(α1) · · ·h′(αs) log(2sd) log G ,

where G = max{|b1|, . . . , |bs|}, and where d is the degree of the number
field generated by α1, . . . , αs.

Here
h′(α) =

1
d

max {h(α), | log α|, 1} ,

and h(α) denotes the standard logarithmic Weil height of α.

1) Let m ≥ n, g = gcd(m, n), n = n1g, m = m1g = Bn1g. We will
apply Theorem 3 to the form from Lemma 1. We have s = 3, d = 4,
G = l,

α1 = n2 − 1 + n
√

n2 − 2, α2 = m2 + 1 + m
√

m2 + 2,

α3 =

√
m2 + 2

(
n +

√
n2 − 2

)
√

n2 − 2
(
m +

√
m2 + 2

) .
Under the assumption g > 1, we have

h′ (α1) =
1
2

log
(
n2 − 1 + n

√
n2 − 2

)
<

1
2

log
(
2n2
)

= log
(√

2n1g
)

< 4.329 · log
(√

2n1

)
· log g

h′ (α2) =
1
2

log
(
m2 + 1 + m

√
m2 + 2

)
<

1
2

log
((

2 +
√

2
)

m2
)

< log (2Bn1g) < 2.886 · log (2Bn1) · log g.

Furthermore, we find that

α3 = |α3| =

√
m2 + 2

(
n +

√
n2 − 2

)
√

n2 − 2
(
m +

√
m2 + 2

) <
n
√

m2 + 2
m
√

n2 − 2
,
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and the conjugates of α3 satisfy

α′
3 = |α′

3| =

√
m2 + 2

(
n −√

n2 − 2
)

√
n2 − 2

(
m +

√
m2 + 2

) < 1,

|α′′
3 | =

√
m2 + 2

(
n +

√
n2 − 2

)
√

n2 − 2
(√

m2 + 2 − m
) <

2n
(
m2 + 2

)
√

n2 − 2
,

|α′′′
3 | =

√
m2 + 2

(
n −√

n2 − 2
)

√
n2 − 2

(√
m2 + 2 − m

) <
m2 + 2
n2 − 2

.

Therefore,

h′ (α3) = h

( √
m2 + 2

(
n +

√
n2 − 2

)
√

n2 − 2
(
m +

√
m2 + 2

)
)

=
1
4

log

[(
n2 − 2

)2 4∏
i=1

max
j

(
1,
∣∣∣α(j)

∣∣∣)
]

<
1
4

log
(

2n2

m

(
m2 + 2

)5/2
)

< 7.576 · log
(√

2n1B
5/7
)
· log g.

Hence, Theorem 3 implies

(22)
log Λ > −3.617 × 1017 · log

(√
2n1

)
· log (2Bn1)

· log
(√

2n1B
5/7
)
· (log g)3 · log l.

On the other hand, Lemma 1 implies

(23)

log Λ < log
[
0.406

(
m2 + 1 + m

√
m2 + 2

)−2k
]

< −2k log
(
m2 + 1 + m

√
m2 + 2

)
< −2k · log g2

< 7.04 · l

t (m)
· log g,

where

(24)
t (m) = log

(
m2 + 1 + m

√
m2 + 2

)
< 2 log (2Bn1g)

< 5.773 · log (2Bn1) · log g
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Combining (22), (23) and (24) we obtain

l

log l
< F (B, n1) · log3 g,

where

F (B, n1) = 2.967 × 1017 · log
(√

2n1

)
· log2 (2Bn1) · log

(√
2n1B

5/7
)

< 2.967 × 1017 · log4 (2Bn1) = 2.967 × 1017 · log4 (2m1) .

By Proposition 2, 1), we have g/m1 < l, which implies

(25)
l

log l
< 2.967 × 1017 · log4 (2m1) · log3 (lm1)

< 7.133 × 1018 · log7 (2m1) · log3 l.

If (25) implies l < l0, then

g < l · m1 < l0 · m1.

For every m1 ≥ 1, (25) has form

(26) l < K · log4 l,

where K = K (m1) = 7. 133 × 1018 · log7 (2m1) > 5. 483 × 1017. We
have

K < K log4 K,

which implies K < l0. Therefore, we can assume that l0 = K1+t0 ,
where t0 > 0. Let us define a function tmin (K), which is implicitly
given by

K log4 K1+tmin = K1+tmin ,

with tmin (K) > 0. We find that tmin (K) is a continuous and decreasing
function, so we have tmin (K) < tmin

(
5. 483 × 1017

)
< 0.396. Hence,

we may take t0 = 3/7, i.e.,

l0 = K10/7 < 8.576 × 1026 log10 (2m1) ,

which implies

(27) g < K10/7m1 < 8.576 × 1026 · m1 · log10 (2m1) .
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Assume that g = mε, 0 < ε ≤ 1. Then, from (27), we have

(28) mε < G · m(1−ε) · log10
(
2m(1−ε)

)
,

where G = 8.576 × 1026. Let us define a function M0 (ε) which is
implicitly given by

(29) Mε
0 = G · M1−ε

0 · log10
(
2M

(1−ε)
0

)
,

with M0 (ε) ≥ 2. We find that M0 (ε) is defined for every 0.5 < ε ≤ 1
and M0 (ε) is a strictly decreasing function of ε. Hence M0 (ε) ≥
M0 (1) > 2.195 × 1025.

If 0 < ε ≤ 0.5 then (28) is satisfied for every m, which again implies
that (27) is satisfied for every 1 < g ≤ √

m. This case is not interesting.

If ε = 1, i.e., m = n = g, then (28) implies that for g ≥ 2.195 × 1025

we have only the trivial solutions. This case is completely solved in
[13], as we mentioned before.

Let us suppose ε0 ∈ (0.5, 1) and M0 (ε0) = m0. Then

mε0 < G · m(1−ε0) log10
(
2m(1−ε0)

)
implies m < m0. So, for g = mε, m ≥ m0 and g ≥ mε0 ≥ mε0

0 we have
only the trivial solutions (±1, 0) and (0,±1) of equation (1). Let us
give some special cases:

• if ε0 = 0.999, which implies m0 < 1026, then for m ≥ 1026 and
ε ≥ 0.999, i.e.,

g ≥ m0.999 = max
{
m0.999, n0.999

} ≥ 1025.974 > (m0)
0.999

,

we have only the trivial solutions.

• Similarly we find that, for g ≥ m0.99 ≥ 1028.71, g ≥ m0.9 ≥ 1042.3,
g ≥ m0.8 ≥ 1056.8, g ≥ m0.7 ≥ 1080.5, g ≥ m0.6 ≥ 10152.4,
g ≥ m0.51 ≥ 101591.2, g ≥ m0.501 ≥ 1018453.834, we have only the
trivial solutions.

2) If we suppose that 1 ≤ m < n and g = gcd(m, n) > 1, then in the
similar manner, we can find that for every ε0 ∈ (0.5, 1) if

g ≥ nε0 = max {mε0 , nε0} ,
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and n ≥ n0, where n0 = N0 (ε0) and N0 (ε) is a strictly decreasing
function implicitly given by

Nε
0 = 1.875 × 1027 · N (1−ε)

0 · log10
(
2N

(1−ε)
0

)
with N0 (ε) ≥ 2, then equation (1) has only the trivial solutions. In
particular, we find that, for g ≥ n0.999 ≥ 1026.973, g ≥ n0.99 ≥ 1029.7,
g ≥ n0.9 ≥ 1043.2, g ≥ n0.8 ≥ 1056.8, g ≥ n0.7 ≥ 1081.2, g ≥ n0.6 ≥
10153, g ≥ n0.51 ≥ 101600.38, g ≥ n0.501 ≥ 1018454.836 we have only the
trivial solutions. (For details, see [13, Section 5.4.3].)

Let us remark that N0 (ε) > M0 (ε) for every ε ∈ (0.5, 1), so the
combination of 1) and 2) finishes the proof of Theorem 1.

8. Bound for the number of the solutions. In [4], Bennett
proved that the system of simultaneous Pell equations

(30) x2 − az2 = 1, y2 − bz2 = 1

where a and b are distinct positive integers, possess at most three
solutions in positive integers (x, y, z). Recently, Yuan [31] proved that
if max(a, b) > 1.4 · 1057, then the system (30) possesses at most two
solutions.

In this section we follow Bennett [4] in proving that system (2) and
(3) has at most 7 solutions in positive integers (V, Z, U).

Let m ≥ 0, n ≥ 2 and V = Vki
, Z = Zli , U = Uki

= Tli be positive
solutions of systems (2) and (3) for i = 1, 2, 3, where Uk1 < Uk2 < Uk3 .
We consider the determinant ∆ defined as follows

∆ =

∣∣∣∣∣∣
Vk1 Zl1 Uk1

Vk2 Zl2 Uk2

Vk3 Zl3 Uk3

∣∣∣∣∣∣
=

∣∣∣∣∣∣
Vk1 −

√
m2 + 2 Uk1 Zl1 −

√
n2 − 2Tl1 Uk1

Vk2 −
√

m2 + 2 Uk2 Zl2 −
√

n2 − 2Tl2 Uk2

Vk3 −
√

m2 + 2 Uk2 Zl3 −
√

n2 − 2Tl3 Uk3 .

∣∣∣∣∣∣
If we expand ∆ along the third column and define αi = Vki

+√
m2 + 2Uki

and βi = Zli +
√

n2 − 2 Tli , as in [4, Lemmas 6.1 and
6.2], we find

∆ =
1√

(m2 + 2) (n2 − 2)Uk1Uk2Uk3

∑
1≤i≤3

U2
ki

δi
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where

δ1 = 2
(
α−2

3 − α−2
2

)− 2
(
β−2

2 − β−2
3

)
+ 4

(
α−2

2 β−2
3 − α−2

3 β−2
2

)
δ2 = 2

(
α−2

1 − α−2
3

)− 2
(
β−2

3 − β−2
1

)
+ 4

(
α−2

3 β−2
1 − α−2

1 β−2
3

)
δ3 = 2

(
α−2

2 − α−2
1

)− 2
(
β−2

1 − β−2
2

)
+ 4

(
α−2

1 β−2
2 − α−2

2 β−2
1

)
.

We can prove |δi| < 1/U2
k1

+ 1/9U4
k1

for i = 1, 2, 3, which implies that

|∆| ≤ 1√
(m2 + 2) (n2 − 2)Uk1Uk2Uk3

∑
1≤i≤3

U2
ki
|δi|

<
10

3
√

(m2 + 2) (n2 − 2) · U3
k1

Uk2

Uk3 .

Since ∆ is an integer and ∆ �= 0, it follows that

Uk3 >
3
√

(m2 + 2) (n2 − 2)
10

U3
k1

Uk2 .

If m ≥ n, except for m = n = 2, we have

(31) Uk3 > 1.4 · U3
k1

Uk2 .

From recurrences (14) we obtain

U5 < 8
(
m2 + 1

)3
U2 < 1.4 · (2m2 + 1

)3
U2 = 1.4 · U3

1 U2,

which implies k3 ≥ 6. If m = n = 2 we have only a trivial positive
solution (V, Z, U) = (2, 2, 1). For details, see [13, Proposition 8.8].

If m < n, except for n = 2, using Uki
= Tli , we find Tl3 > 1.9 ·T 3

l1
Tl2 .

Similarly, from recurrences (16), we obtain

T5 < 8
(
n2 − 1

)3
T2 < 1.9 · (2n2 − 1

)3
T2 = 1.9 · T 3

1 T2,

which implies l3 ≥ 6. If m = 0 and n = 2, it’s easy to show that we
have only the trivial nonnegative solution (V, Z, U) = (0, 2, 1). If m = 1
and n = 2 we have two positive solutions as we mentioned at the end
of Section 5.
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Let M = max
{
m2 + 2, n2 − 2

}
and (Vki

, Zli , Uki
), (Vkj

, Zlj , Ukj
) be

two positive solutions of (2) and (3) which satisfy Uki
< Ukj

. We will
use the following theorem of Bennett [4, Theorem 3.2].

Theorem 4. If ai, pi, q and N are integers for 0 ≤ i ≤ 2, with
a0 < a1 < a2, aj = 0 for some 0 ≤ j ≤ 2, q nonzero and N > M9

1 ,
where

M1 = max
0≤i≤2

{|ai|},

then we have

max
0≤i≤2

{∣∣∣
√

1 +
ai

N
− pi

q

∣∣∣} > (130Nγ)−1q−λ

where

λ = 1 +
log(33Nγ)

log
(
1.7N2

∏
0≤i<j≤2(ai − aj)−2

)
and

γ =
{

(a2 − a0)2(a2 − a1)2/ (2a2 − a0 − a1) if a2 − a1 ≥ a1 − a0,
(a2 − a0)2(a1 − a0)2/ (a1 + a2 − 2a0) if a2 − a1 < a1 − a0.

We will apply Theorem 4 with a0 = 0, a1, a2 ∈ {2 (m2 + 2
)
,

2
(
n2 − 2

)}, M1 = 2M , N =
(
m2 + 2

) (
n2 − 2

)
U2

ki
, q =

(
m2 + 2

)×(
n2 − 2

)
Uki

Ukj
, p1 =

(
m2 + 2

)
Vki

Vkj
, p2 =

(
n2 − 2

)
ZliZlj . Since

N ≥ M1U
2
ki

, we may apply Theorem 4 if Uki
> 16M4. We have, see

[4, Lemma 6.2]

max
{{∣∣∣∣

√
1 +

a1

N
− p1

q

∣∣∣∣,
∣∣∣∣
√

1 +
a2

N
− p2

q

∣∣∣∣
}}

<
2

U2
kj

.

Also Nγ ≤ 8 · M5U2
ki

and

N2
∏

0≤i<j≤2

(ai − aj)
−2 ≥ U4

ki

28 · M2
.
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So, for m ≥ n and m ≥ 3, Uki
> 33.88·M6 > 6×107 implies λ < 1.8635.

It follows from Theorem 4 that

(130 · 8M5U2
ki

)−1(M2Uki
Ukj

)−1.8635 <
2

U2
kj

,

which implies

(32) Ukj
< 20807. 327M63. 935U28. 305

ki
< 1. 0129 × 108 · U38. 97

ki
< U40

ki
.

For m < n, except for n = 2, we can prove, using Uki
= Tli and

Ukj
= Tlj that Tli > 148.6 · M6 > 1.7 × 107 implies λ < 1.842. So, it

follows from Theorem 4 that Tlj < T 34
li

.

Let (Vki
, Zli , Uki

), where Uki
= Tli is a sequence of all positive

solutions of (2) and (3) with Uki
< Ukj

for i < j.

Let m ≥ n. Since Uk3 ≥ U6 > 33.88 · M6, except for m = n = 2,
we have Uki

< U40
k3

for i ≥ 4. Using (31) successively, we obtain:
Uk5 > Uk4U

3
k3

> U4
k3

, Uk6 > Uk5U
3
k4

> U7
k3

, Uk7 > Uk6U
3
k5

> U19
k3

,
Uk8 > Uk7U

3
k6

> U40
k3

. So we have, by (32), a contradiction; hence, k8

doesn’t exist.

For m < n, except for n = 2, since Tl3 ≥ T6 > 148.6 · M6, we have
Tli < T 34

l3
for i ≥ 4. Now we obtain, as before, that l8 doesn’t exist.

Therefore, we proved Theorem 2.

Remark 3. The result from Theorem 2 on the system of Pellian
equations (2) and (3) is weaker than the corresponding Bennett’s result
on systems of Pell equations. This is mainly because, at present, there
is no analogon of Bennett’s doubly exponential gap principle [4, Lemma
2.2] for systems of Pellian equations. The difference between Pell and
Pellian equations is also the reason why we had to use linear forms in
three logarithms in Section 5, while in [4, Section 4] linear forms in two
logarithms were used.
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